Lecture 6 J

skolemization and full Lowenheim-Skolem theorem
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Topics

o the last HW problem: The reverse of the Ax-Grothendieck thm?
o skolemization of a theory
o a proof of the downwards Léwenheim-Skolem theorem

o the full Lowenheim-Skolem theorem
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last HW problem

Last time we proved the Ax-Grothendieck thm:

Inf = Sur

for polynomial maps on C".

The proof goes by showing that

@ if the thm fails then it also fails over Ff,’g, for some prime g

@ if that happens then the thm actually fails over some finite subfield
K C Fi

@ that is impossible as the implication above holds over finite sets
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HW cont’'d

The opposite implication
Sur = Inj

also holds over finite sets, and the item 1 works for any FO sentence.
Hence a problem with the argument must occur in item 2.

The key step in item 2 is the observations that if a map F is injective on
(F2%8)" then it is also injective when restricted to K.

The error in an argument that would attempt to prove the reverse
Ax-Grothendieck is that if map F is surjective on (Ff,lg)” then
it does not imply
that it is also surjective when restricted to K".
(See pic on the next page.)
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L-S thm so far

In Lect.2:

The Lowenheim-Skolem theorem upwards

Let A be an infinite structure in language L and let s be an arbitrary
cardinality. Then there is B such that:

A=<B and |B|> k.

and in Lect.5:

The Lowenheim-Skolem thm.

Let T be a theory in a countable language which has an infinite model.
Then T has models of all infinite cardinalities.
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new: L-S down

In this lecture we prove

The Lowenheim-Skolem theorem downwards

Let B be an L-structure and U C B be arbitrary. Then there is D such
that:

D=<B, DDU and |U| <|D| < max(Ro,|L],|U]).

In particular, if L is finite or countable and U is infinite then

Dl = 1U] .

~
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prf for Lect.5

Prf. of the L-S thm from Lecture 5:

Take T in a countable language that has an infinite model A, and let x be
any cardinality. Then do:

o By L-Sup get Bs.t. A <XB and |B| > &,
o take any U C B of cardinality precisely x,
o by the new L-S down there is D < B of cardinality .

We have that all three A, B, D are elementarily equivalent and hence all
are models of T.
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our task

Given: Band UC B

we want: D: U C D C B such that

D <B and |U] <|D| < max(Xo,|L],|U]) .

In particular,

o D has to be closed under all L-functions and contain all L-constants,
and

o for all 3 € D" and any formula ¢:

D |=¢(a) iff Bl=(a).
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simple case

Assume ¢(X) is open and D defines a substructure.

Then for all 3 € D™

B = ¢(3)
i}
D = ¢(3)

because open flas are absolute between structure-substructure (Lect.2).



idea

An idea how to prove the thm is to reduce to the simple case above;
expand L to Lgk 2 L such that:

o B can be expanded to an Lg,-structure B’,
o any L-fla ¢ is equivalent to an open Lg,-fla ¢/,
o D is closed under Lgi-functions too.

Then, as before:

B|=¢(a) & B' = 9(a)=B' = ¢'(3) D = ¢'(3)=D = ¢(a) -

A subtle point:
Where do the red equivalences < of ¢ and ¢’ hold?
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idea technically

We shall implement the informal idea by a construction that will define
language Lsx O L and an Lgk-theory Sk such that:

Q |L5k| < maX(NO7 |L|)'
o Sk is universal,

o B can be expanded to an Lgy-structure B’ = Sk,

©

any Lg-fla ¢ is equivalent to an open Lgi-fla ¢/, provably in theory
Sk,

D is an Lgk-substructure of B/,
and finally: U C D and |D| < max(Ro, |L], |U]).

©

©
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prf of L-S down

Having Lsx and Sk we can prove the L-S thm down as follows:

B = ¢(3) < B = ¢(@) « B = ¢'(3)
because B’ = Sk the equivalence holds in Sk, and then

& D ¢'(3)
because ¢’ is open and D is an Lg,-substructure, and

< D ¢(a)

because, Sk being universal, holds in D too.
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J-example

Let ¢(X) be an L-formula of the form

Jy (X, y)

with 1) open.
Introduce new Skolem function symbol f, and corresponding Skolem
axiom:

(X, y) — V(X f,(X)) .

Lemma

Formula ¢(X) is equivalent to

(X, (X))

modulo the Skolem axiom.
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J-ex pic
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V-example

Let ¢(X) be now an L-formula of the form

Yy (X, y)

with 1 open. Write it as
-3y (X, y) -

Introduce Skolem function g for dy —(X, y) and the corresponding
Skolem axiom for g:

_'1/}(77}/) - _‘w(y7g(7)) :

Note: symbol g ought to be f5,_(x,,) but that is typographically
cumbersome.
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ex cont'd

Lemma
Formula ¢(X) is equivalent to

¥(x,8(x))

modulo the Skolem axiom for g.

We have:
WY(x,y) & (X, (X))

and also
Yy (X, y) < (X, g(x))

which looks identical?!
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fvs g

The point is that f was introduced to find a witness y such that

V(X y)

while g was introduced to find a witness y such that

_‘w(77 y) :

Informally:

if ¥(X,y) fails for some element y then g finds one. Hence if ¥(x, g(Xx))
holds, there is no such y.

21/27



the construction

We shall define the language Lg, and the theory Sk in countably many
step, creating chains

Longg... and Tongg...

and putting
Lse = JLi and Sk:=|]JT;.

Start:
Lo:=L and Tp:=0.
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step /1 +1
language L;y1 and theory T;y1:

for every L; formula ¢(X) of the form Jy(X, y) with ¢ open

o add to L; new function symbol f, and

o add to T; new Skolem axiom for f:
P(x,y) = (% f(X)) .
Note:
|Lit1\ Li] < the nb. of Li-flas < max(No, |Li|) = max(Ro, |L])
(the last step by induction). So:

|L;] < max(No,|L|), forall i and hence |Lsx|= max(Ro,]|L|) .
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the construction cont'd

Lemma
D [Lsk| < max(Ro, |L]),
@ Sk is universal,
@ any L-structure B can be expanded to an Lg-structure B’ = Sk,

@ any Lsk-fla ¢ is equivalent to an open Lg-fla ', provably in theory
Sk,

Prf.:

ltems 1. and 2. are obvious, item 3 is also obvious (but needs AC).
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prf cont'd

ltem 4.:

if ©(x) is and L;-formula of the form

Quy1 - - Quyk (X,Y)
with Q; either 3 or V quantifiers and ) open:

o use a Skolem function in L;jy; and a Skolem axiom in T;1; to write
Qryk ¥(X,y) as an equivalent open L;;-formula,

o this reduces the nb. of quantifiers in ¢ by 1 at the expenses of
rewriting the open kernel as an L;-fla,

O repeat k-times.
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end of the construction

The lemma provides the first four of the six properties of Lg, and Sk we
needed:

|Lsk| < max(No, |L]),
Sk is universal,

©

B can be expanded to an Lg-structure B’ = Sk,

¢ © ©

any Lg-fla ¢ is equivalent to an open Lg-fla ¢/, provably in theory
Sk,

D is an Lgk-substructure of B/,
U C D and |D| < max(Ro, |L],|U]).

¢ ©

To get the last two properties define subseteq D C B by:

D := all elements of B that are generated from U by Lg,-terms .

DL—S down
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HW problem

The following take-away problem is often called the Skolem paradox:

Take set theory ZFC. Assume that it is satisfiable and argue first precisely
that it has in infinite model.

Then it follows by the L-S theorem that its has also countable model.

How do you reconcile this with the fact that ZFC proves the existence of
an uncountable set?
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