Lecture 1 J

uncountable categoricity, complete theories
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Topics

o some remarks on AD
o uncountable categoricity

o ex's of uncountably categorical theories:
Th(Z, suc), Vectq, ACF,

o complete theories and Vaught's test (we shall prove it in Lect.5)



AD - ax. of determinacy

a type of topological games:
moves: ag, by, --- € N (natural numbers)

a play: infinite sequence of natural numbers
(al,bl,...,a,-,b,-,...) eN

where N is the topological Baire space (set th. terminology)
Other notation: NN = N = v

Fact: N is homeomorphic to R\ Q (the set if irrational numbers)

Warning: N is the arena for descriptive set theory and they often talk
about AV as about "reals”.
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games

a game is defined by any subset W C N:
player | wins play a = (a1, b1,...) iffa € W

Ehrenfeucht-Fraisse:
for countable universes A, B we can take w.l.o.g. A= B = N and define
W to be the set of all plays

(al,bl,...,a;,b,-,...)

such that
{(ai, bi) | i > 1}

is not a partial iso.
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AD - formulation

AD (Mycielski-Steinhaus '62

Every game is determined, i.e. one of the players has a winning strategy.

Known facts:
YES for Borel sets W (D.Martin), and some more set theory ...
NO in general: AD contradicts AC

E.x:
AD = all sets of reals are Lebesgue measurable
AC = not all sets ...

many variants in between: take both AD and AC in some restricted forms
only



HW problem

a model for RG

Marker (pp.50-51): a generic construction by an infinite process

A specific definition:
universe: N (natural numbers)
edges:

o first define Ry: Ro(a, b) iff

27 occurs in the unique expression of b as a sum of powers of 2 .

o edge relation R: symmetrization of Ry

R(x,y) iff (Ro(x,y)V Ro(y,x)) -
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uncountable categoricity

We consider primarily theories T in a countable language L - this allows
for simpler formulations of statements and covers the cases we shall be
interested in.

uncountable categoricity: T has unique model (up to iso) in every
uncountable power

By Morley's thm we stated earlier this is equal to having a unique model in
some uncountable power, so it suffice to think about models having the
cardinality of continuum.



successor function
(Z,suc): suc(x) :=x+ 1.
Th(Z, suc)

This theory contains as axioms universal closures of the following formulas:

o suc is a bijection:

(x #y — sux(y) # suc(y)) A (3z suc(z) = x)

o no finite cycles: for each k > 1:

suc(suc(...(x)...) #x

where suc occurs k-times.

Call this theory SUC.
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SUC

SUC is uncountably categorical.

Theorem J

Prf.: continuum size < continuum many blocks

So any two models of this size are isomorphic: put the blocks into a
bijection.

d

We will note in Lect.5 - as a corollary to the construction behind Vaught's
test - the following statement.

Corollary
SUC axiomatizes Th(Z, suc).

-
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vector spaces
theory Vectq of vector spaces of Q

language:
o constant 0 (for the zero vector),
o binary f.symbol + (for the vector addition),

o infinitely many unary f.symbols )4, one for each g € Q.

Intended meaning of \q: scalar multiplication by g
Ag 1 X—=q-X.
This choice of language is because we do not want to have scalars (i.e.

rationals) as elements of our structures and be able to quantify over them
- we want to subject to FO logic (and to quantification) only vectors.



Vectg

axioms:

o axioms forcing that 0,4 define a commutative group,
o axioms about scalar multiplication, universal closures of formulas:

Ao(x )—Oand Ai(x) =
Aq(x) + Ar(x) = Agir(x ).
Ag(X +¥) = Aq(x) + Aq(y),
Aq(Ar(x)) = Ag.r(x)

¢ ¢ ¢ ¢

Lemma
Models of Vectq are exactly vector spaces over Q. J
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categoricity

Theorem

Vectq is uncountably categorical but not countably categorical. J

Prf.:
The iso type of a vector space V is determined by its dimension. If the

dimension is k (possibly infinite cardinality), i.e. it has a basis B of size &,
then vectors V are of the form

qivi+ -+ QgnVp
with g; € Q and v; € B, and there are

max Ng, K

such choices (see next slide). Hence if V' us uncountable, it must be that
k = |V and hence all spaces of that cardinality have the same dimension,
i.e. are iso.

In the countable case there are more options for dim: 1,2,... or Ng.



counting
recall that for infinite cardinalities A, 7 it holds:

A+n=A-n=max\,n

number of choices gv, with g € Q and v € B:

No-k=k

number of choice of n-tuples of such qv:

K-+---k (n-times) =k

sum of these options for all n > 1:

No K=K
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fields

theory Fields:
language: 0,1,+,- (sometimes also binary — is included)

axioms: universal closures of

o 0 and = form a commutative group:
x+0=x, x+y=y+x, x+(y+2)=(x+y)+z, Iy(x+y=0)
o 1 and - form a commutative group on non-zero elements:
x#Z0—x-1=x, ..., x#0—Fy(x-y=1)

o distributivity:
x-(y+2)=(x-y)+(x2)
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algebraic closure

Definition
A field K (i.e K |= Fields) is algebraically closed iff all non-constant
polynomials f(x) € K[x]| over K have roots in K.

axioms: .
VX0, -+ Xp 3y (Xn 0 — iny' =0).
i<n
where y' abbreviates the term y - --- -y (i-times).

theory ACF: Fields 4 these axioms for all n > 1.

Key example: the complex field C



alg.closure

Algebraic fact:

For every field K there exists the smallest algebraically closed field
containing K: the algebraic closure K28 of K.

It is countable if K is finite and has the cardinality of K if K is infinite.
Ex’s:

Ralg =C

Qalg ?é C

leg, where F, is the finite field of counting modulo a prime p, is a

countable field
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alg. independence

Definition
Elements a1,...,a, € K are algebraically independent iff the only
polynomial f(x;, dots,x,) € Z[x] for which

f(al,...,a,,)zo

is the zero polynomial. (A special case of a more general definition.)

Informally: there is no non-trivial algebraic relation among the elements.

This is analogous to the linear independence in vector spaces. And
similarly to that situation we have

Definition
B C K is a transcendence basis iff B is the maximal subset w.r.t C such
that all n-tuples of its elements are algebraically independent.



characteristic

Algebraic fact

The cardinality of all bases of transcendence is the same, the
transcendence degree of K.

In vector space the cardinality of a basis determines the space. Here we
need additional info:

Definition

The characteristic of K is prime p, char K = p, iff

1+---+1 (p-times) =0.

It is 0, char K = 0, iff it is not p for any prime p.

Algebraic fact

The characteristic and the transcendence degree determine K up to iso.

N
=
N
~



ACF,

theory ACF, for p a prime or p = 0: ACF plus
o axiom 1+---+1 (p-times) =0, if pis a prime
o axioms 1+---+1 (g-times) # 0 for all primes g, if p=0

Ex's:
C = ACFy and F3%8 = ACF, .
Theorem
Theory ACF,,, p a prime or 0, is uncountably categorical. J

Prf.:

Entirely analogous to the case of Vectg, using the transcendence degree
and the characteristic.
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So what?

What does follow about T if we know that it is categorical in some power?

A deeper/intrinsic consequence:

it betrays the existence of some invariants that classify structures.
= modern model theory

A more direct consequence: completeness of the theory (under additional
cond.’s)
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completeness

Definition
An L-theory T is complete iff for all L-sentences ¢:

TEe o TE-p.

Informally: axioms in T already "logically” decide the truth value of all FO
statements.

bad news: ZFC is not complete

good news: many theories defining familiar classes of structures are
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Vaught's test

Vaught'’s test

Let T be a satisfiable theory in a countable language that has no finite
models.
If T is categorical in some (infinite) power then it is complete.

Proof next time.

Corollary
All theories DLO, RG, SUC, Vectg and ACF, (any p) are complete. J



HW problem

A problem to take away:

Take, for example, theory ACFy and using the fact that it is complete

devise an algorithm that upon receiving ¢ as input decides if ACFy |= ¢ or
ACFO ': Q.

Note that because C = ACFp, the same algorithm decides what is true or
false in the complex field.
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