
Lecture 1

uncountable categoricity, complete theories
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Topics

some remarks on AD

uncountable categoricity

ex’s of uncountably categorical theories:
Th(Z, suc), VectQ, ACFp

complete theories and Vaught’s test (we shall prove it in Lect.5)
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AD - ax. of determinacy

a type of topological games:

moves: a1, b1, · · · ∈ N (natural numbers)

a play: infinite sequence of natural numbers

(a1, b1, . . . , ai , bi , . . . ) ∈ N

where N is the topological Baire space (set th. terminology)
Other notation: NN = Nω = ωω

Fact: N is homeomorphic to R \ Q (the set if irrational numbers)

Warning: N is the arena for descriptive set theory and they often talk
about N as about ”reals”.
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picture of N

4 / 27



games

a game is defined by any subset W ⊆ N :

player I wins play α = (a1, b1, . . . ) iff α ∈ W

Ehrenfeucht-Fraisse:
for countable universes A,B we can take w.l.o.g. A = B = N and define
W to be the set of all plays

(a1, b1, . . . , ai , bi , . . . )

such that
{(ai , bi ) | i ≥ 1}

is not a partial iso.
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AD - formulation

AD (Mycielski-Steinhaus ’62

Every game is determined, i.e. one of the players has a winning strategy.

Known facts:
YES for Borel sets W (D.Martin), and some more set theory ...
NO in general: AD contradicts AC

E.x:
AD ⇒ all sets of reals are Lebesgue measurable
AC ⇒ not all sets ...

many variants in between: take both AD and AC in some restricted forms
only
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HW problem

a model for RG

Marker (pp.50-51): a generic construction by an infinite process

A specific definition:
universe: N (natural numbers)
edges:

first define R0: R0(a, b) iff

2a occurs in the unique expression of b as a sum of powers of 2 .

edge relation R : symmetrization of R0

R(x , y) iff (R0(x , y) ∨ R0(y , x)) .
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RG model
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uncountable categoricity

We consider primarily theories T in a countable language L - this allows
for simpler formulations of statements and covers the cases we shall be
interested in.

uncountable categoricity: T has unique model (up to iso) in every
uncountable power

By Morley’s thm we stated earlier this is equal to having a unique model in
some uncountable power, so it suffice to think about models having the
cardinality of continuum.
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successor function

(Z , suc): suc(x) := x + 1.

Th(Z , suc)

This theory contains as axioms universal closures of the following formulas:

suc is a bijection:

(x 6= y → sux(y) 6= suc(y)) ∧ (∃z suc(z) = x)

no finite cycles: for each k ≥ 1:

suc(suc(. . . (x) . . . ) 6= x

where suc occurs k-times.

Call this theory SUC.
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models of SUC

11 / 27



SUC

Theorem

SUC is uncountably categorical.

Prf.: continuum size ⇔ continuum many blocks

So any two models of this size are isomorphic: put the blocks into a
bijection.

�

We will note in Lect.5 - as a corollary to the construction behind Vaught’s
test - the following statement.

Corollary

SUC axiomatizes Th(Z , suc).
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vector spaces

theory VectQ of vector spaces of Q

language:

constant 0 (for the zero vector),

binary f.symbol + (for the vector addition),

infinitely many unary f.symbols λq, one for each q ∈ Q.

Intended meaning of λq: scalar multiplication by q

λq : x → q · x .

This choice of language is because we do not want to have scalars (i.e.
rationals) as elements of our structures and be able to quantify over them
- we want to subject to FO logic (and to quantification) only vectors.
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VectQ

axioms:

axioms forcing that 0,+ define a commutative group,

axioms about scalar multiplication, universal closures of formulas:

λ0(x) = 0 and λ1(x) = x ,
λq(x) + λr (x) = λq+r (x),
λq(x + y) = λq(x) + λq(y),
λq(λr (x)) = λq·r (x)

Lemma

Models of VectQ are exactly vector spaces over Q.
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categoricity

Theorem

VectQ is uncountably categorical but not countably categorical.

Prf.:
The iso type of a vector space V is determined by its dimension. If the
dimension is κ (possibly infinite cardinality), i.e. it has a basis B of size κ,
then vectors V are of the form

q1v1 + · · · + qnvn

with qi ∈ Q and vi ∈ B , and there are

maxℵ0, κ

such choices (see next slide). Hence if V us uncountable, it must be that
κ = |V | and hence all spaces of that cardinality have the same dimension,
i.e. are iso.
In the countable case there are more options for dim: 1, 2, . . . or ℵ0.
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counting

recall that for infinite cardinalities λ, η it holds:

λ + η = λ · η = maxλ, η

number of choices qv , with q ∈ Q and v ∈ B :

ℵ0 · κ = κ

number of choice of n-tuples of such qv :

κ · · · · · κ (n-times) = κ

sum of these options for all n ≥ 1:

ℵo · κ = κ
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fields

theory Fields:

language: 0, 1,+, · (sometimes also binary − is included)

axioms: universal closures of

0 and = form a commutative group:

x +0 = x , x + y = y + x , x +(y + z) = (x + y)+ z , ∃y(x + y = 0)

1 and · form a commutative group on non-zero elements:

x 6= 0 → x · 1 = x , . . . , x 6= 0 → ∃y(x · y = 1)

distributivity:
x · (y + z) = (x · y) + (x · z)
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algebraic closure

Definition

A field K (i.e K |= Fields) is algebraically closed iff all non-constant
polynomials f (x) ∈ K [x ] over K have roots in K .

axioms:
∀x0, . . . , xn∃y (xn 6= 0 →

∑

i≤n

xiy
i = 0) .

where y i abbreviates the term y · · · · · y (i -times).

theory ACF: Fields + these axioms for all n ≥ 1.

Key example: the complex field C
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alg.closure

Algebraic fact:

For every field K there exists the smallest algebraically closed field
containing K : the algebraic closure K alg of K .
It is countable if K is finite and has the cardinality of K if K is infinite.

Ex’s:

Ralg = C

Qalg 6= C

F
alg
p , where Fp is the finite field of counting modulo a prime p, is a

countable field
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alg. independence

Definition

Elements a1, . . . , an ∈ K are algebraically independent iff the only
polynomial f (x1, dots, xn) ∈ Z[x ] for which

f (a1, . . . , an) = 0

is the zero polynomial. (A special case of a more general definition.)

Informally: there is no non-trivial algebraic relation among the elements.

This is analogous to the linear independence in vector spaces. And
similarly to that situation we have

Definition

B ⊆ K is a transcendence basis iff B is the maximal subset w.r.t ⊆ such
that all n-tuples of its elements are algebraically independent.
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characteristic

Algebraic fact

The cardinality of all bases of transcendence is the same, the
transcendence degree of K .

In vector space the cardinality of a basis determines the space. Here we
need additional info:

Definition

The characteristic of K is prime p, char K = p, iff
1 + · · · + 1 (p-times) = 0.
It is 0, char K = 0, iff it is not p for any prime p.

Algebraic fact

The characteristic and the transcendence degree determine K up to iso.
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ACFp

theory ACFp for p a prime or p = 0: ACF plus

axiom 1 + · · · + 1 (p-times) = 0, if p is a prime

axioms 1 + · · · + 1 (q-times) 6= 0 for all primes q, if p = 0

Ex’s:
C |= ACF0 and F

alg
p |= ACFp .

Theorem

Theory ACFp, p a prime or 0, is uncountably categorical.

Prf.:
Entirely analogous to the case of VectQ , using the transcendence degree
and the characteristic.

�
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summary
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So what?

What does follow about T if we know that it is categorical in some power?

A deeper/intrinsic consequence:
it betrays the existence of some invariants that classify structures.
⇒ modern model theory

A more direct consequence: completeness of the theory (under additional
cond.’s)
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completeness

Definition

An L-theory T is complete iff for all L-sentences ϕ:

T |= ϕ or T |= ¬ϕ .

Informally: axioms in T already ”logically” decide the truth value of all FO
statements.

bad news: ZFC is not complete

good news: many theories defining familiar classes of structures are
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Vaught’s test

Vaught’s test

Let T be a satisfiable theory in a countable language that has no finite
models.
If T is categorical in some (infinite) power then it is complete.

Proof next time.

Corollary

All theories DLO, RG, SUC, VectQ and ACFp (any p) are complete.
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HW problem

A problem to take away:

Take, for example, theory ACF0 and using the fact that it is complete
devise an algorithm that upon receiving ϕ as input decides if ACF0 |= ϕ or
ACF0 |= ¬ϕ.

Note that because C |= ACF0, the same algorithm decides what is true or
false in the complex field.

27 / 27


