Lecture 1 J

relations between structures, applications of compactness
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elementary equivalence

non-standard models of theories of N and R
The Lowenheim-Skolem theorem up

categoricity
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substructures

Definition: substructures

A C B (A is a substructure of B) iff
o ACB,
o RAis RB restricted to A,

o fA s fB restricted to A and A is closed under fB.

Ex. Q =(Q,0,1,+,-,<) CR=(R,0,1,+,-,<).

Ex. ([0,1],0,1,+,-,<) £ R=(R,0,1,+, -, <).

)
N



absoluteness of open flas

Lemma
Assume A C B. Let ¢(Z) be an open (= quantifier-free) formula, a € A”.
Then:

A = ¢(a) iff B |=1(a) -

Prf.:
For atomic flas this is from the definition and for their propositional
combinations it follows from Tarski's definition of =.



existential preservation up

Lemma

Assume A C B. Let ¢(X,y) be an open formula and 3 € A". Then:

AE=3yy(ay) = BEIyy(ay) .

Prf.:

A= 3y(a,y)

implies

A = 1(3,a") for some a' € A

implies by the previous lemma

B = (3,a') for the same 8 € AC B
implies

B 3yy(a,y).



universal preservation down

The lemma cannot be literally reversed:
RE Jy(y-y =1+1) but V2 does not exist in Q.

But it can be reversed if 3 is changed into V:

Lemma

Assume A C B. Let ¢(X,y) be an open formula and 3 € A". Then:

B EVy(a,y) = AEVyY(,y).

Ex.
REVy(y-y+1#0) and indeed v/—1 does not exist in Q either.



elementary substructures

When all flas are preserved we have a stronger notion:
Definition - elem.substructure

A < B (A is elementary substructure of B) iff
for all formulas ¢(x) and all 3 € A”™:

A= o(3@) iff BEo(a) .

Ex. Q is not elem.substructure of R but
(Q.<) = (R.<).

This needs a proof and we shall prove this later.
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embedding and isomorphism

The following notion generalizes the notion of a substructure to the case

when A is not literally a subset of B.
Definition - embedding

Map h : A — B is embedding of A into B iff
o his 1-to-1,

o ac R < h(a) € RE,
o h(fA(a)) = F(h(a))-
That is, for all open flas ¢(X):

A = (a) iff B = 1(h(a)) -

h(3) := (h(a1,...,h(an)).

Definition - isomorphism

I[somorphism = embedding + onto. Notation: A = B.
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isomorphism and elem.equivalence

Isomorphic structures are often just identified. In fact:
Lemma

Assume A = B via map h. Let ¢(X) be any fla and @3 € A”. Then:

AL (3) iff B E p(h(3)
Prf.:
By ind. on the complexity of ¢. The key step is: B = 3y (h(a),y)
implies
B = ¢ (h(3),b), forsomebe B .
But any b is in the range of h, so b = h(a’) and we have:

B = 4(h(3), h(2)) .
By ind. hypothesis A |= (3, a") and A = Jy(3,y) follows.
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theory of a structure

Corollary

Assume A = B via map h. Then for all sentences 6:
AE=0 iff BEO.
This statement can be elegantly phrased using the following notions

Definition: elem. equivalence and theory of a structure

Theory of A: Th(A) := the set of all sentences true in A.
Two structures A, b (in a common lang.) are elementarily equivalent,
A =B, iff

Th(A) = Th(B) .

A=B = A=B.



a question

What about A=B = A=B?

Our first applications of the compactness will be several counter-examples
to this implication.

A problem to take away: Show that this is true whenever A is a finite
structure in a finite language.

Set up:
o L:0,1,4,-,<
o N:=(N,0,1,+,-,<)
o ¢: a new constant
o theory T := Th(N) U {c>1+---+1 (ntimes) | n>1}.



non-standard integers

The compactness implies:
Lemma

T is satisfiable.

14/22



infinitesimal reals

A bit harder example. Take the same L and R and define:

9 € a new constant,

o new constants ¢,, one for each real r € R,

Lg is L plus all these constants c,,

o R’: an expansion of R by interpreting each constant ¢, by r,

o Thgr(R): Lg sentences true in R/,

o T:=Thg(R)U{0 < e} U{l > epsilon+ ...€ (ntimes) | n>1}.
In N we could use numerals 1 + --- 4+ 1 to name each element of the
universe. In R this is impossible and the role of the new constants ¢, is to
name all reals. E.g. statement 72 < 20 is represented by ¢, - ¢ < 2.
Lemma
T is satisfiable. J
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going up

L: any

A: any infinite

La: L with names ¢, for all u € A (as before)

Tha(A): as before

D: an arbitrary set of new constants

T = Tha(A)U{d # d'| and two different d,d" € D}

Lemma
T is satisfiable. J

Prf.:
Any finite number of constants from D can be interpreted in A by
different elements because it is infinite.
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Lowenheim-Skolem up

The Lowenheim-Skolem theorem upwards

Let A be an infinite structure in language L and let x be an arbitrary
cardinality. Then there is B such that:

A <B and |B| > maxk .

Informally: cardinalities of elem. extensions of an infinite structure are
unbounded.

Prf.:
Take D of cardinality x and any model B of T from previous slide.

Note that we do not know that the model has cardinality exactly «.
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categoricity

It follows that the theory of no infinite A can determine A up to
isomorphism. The next best thing we can hope for is that

o Th(A) determines all its models in some particular cardinality (i.e.
the theory plus the cardinality determines the structure up to iso).

Definition - categoricity

Let x be any infinite cardinality and let T be a theory with a model of
cardinality .

Then T is x-categorical iff T has a unique model in cardinality x up to
isomorphism.



Morley's thm

This looks like a chaotic situation where many combinations can occur.
But fortunately the picture is much simpler for countable T.

Morley's theorem

Let L and T be countable. If T is k-categorical for some uncountable s
then it is categorical all uncountable cardinalities.

Hence for countable L, T there are only four options, all combinations of:

o T is/is not countably categorical,

o T is/is not uncountably categorical.

We shall not prove Morley's thm but we shall see examples of theories of
all four categories.



Vaught's conjecture
Assume L, T are countable, T complete with infinite models. Define:

I(T,x) := the number of cardinality x models of T up to iso .

What are possible values of /(T,8g)?

Finite case: any n > 1 can appear except 2!
Infinite case: easy examples with /(T,Rq) = Rg and /(T,Rg) = 2%,

Vaught's conjecture
No other infinite cardinality is possible. J

Informally: Continuum Hypothesis holds as long as you look at structures
rather than sets.

The only known general result is:
I(T,Ro) >Ny — I(T,Rp) =2% .

22/22



