
Lecture 1

relations between structures, applications of compactness
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topics

substructures, preservation thms

elementary substructure

embedding and isomorphism

elementary equivalence

non-standard models of theories of N and R

The Löwenheim-Skolem theorem up

categoricity

2 / 22



substructures
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substructures

Definition: substructures

A ⊆ B (A is a substructure of B) iff

A ⊆ B ,

RA is RB restricted to A,

f A is f B restricted to A and A is closed under f B.

Ex. Q = (Q, 0, 1,+, ·, <) ⊆ R = (R , 0, 1,+, ·, <).

Ex. ([0, 1], 0, 1,+, ·, <) 6⊆ R = (R , 0, 1,+, ·, <).
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absoluteness of open flas

Lemma

Assume A ⊆ B. Let ψ(z) be an open (= quantifier-free) formula, a ∈ An.
Then:

A |= ψ(a) iff B |= ψ(a) .

Prf.:
For atomic flas this is from the definition and for their propositional
combinations it follows from Tarski’s definition of |=.

�
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existential preservation up

Lemma

Assume A ⊆ B. Let ψ(x , y) be an open formula and a ∈ An. Then:

A |= ∃yψ(a, y) =⇒ B |= ∃yψ(a, y) .

Prf.:
A |= ∃yψ(a, y)
implies
A |= ψ(a, a′) for some a′ ∈ A

implies by the previous lemma
B |= ψ(a, a′) for the same a′ ∈ A ⊆ B

implies
B |= ∃yψ(a, y).

�
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universal preservation down

The lemma cannot be literally reversed:

R |= ∃y(y · y = 1 + 1) but
√

2 does not exist in Q.

But it can be reversed if ∃ is changed into ∀:

Lemma

Assume A ⊆ B. Let ψ(x , y) be an open formula and a ∈ An. Then:

B |= ∀yψ(a, y) =⇒ A |= ∀yψ(a, y) .

Ex.
R |= ∀y(y · y + 1 6= 0) and indeed

√
−1 does not exist in Q either.
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elementary substructures

When all flas are preserved we have a stronger notion:

Definition - elem.substructure

A � B (A is elementary substructure of B) iff
for all formulas ϕ(x) and all a ∈ An:

A |= ϕ(a) iff B |= ϕ(a) .

Ex. Q is not elem.substructure of R but

(Q, <) � (R , <) .

This needs a proof and we shall prove this later.
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embedding
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embedding and isomorphism

The following notion generalizes the notion of a substructure to the case
when A is not literally a subset of B .

Definition - embedding

Map h : A → B is embedding of A into B iff

h is 1-to-1,

a ∈ RA ⇔ h(a) ∈ RB,

h(f A(a)) = f B(h(a)).

That is, for all open flas ψ(x):

A |= ψ(a) iff B |= ψ(h(a)) .

h(a) := (h(a1, . . . , h(an)).

Definition - isomorphism

Isomorphism = embedding + onto. Notation: A ∼= B.
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isomorphism and elem.equivalence

Isomorphic structures are often just identified. In fact:

Lemma

Assume A ∼= B via map h. Let ϕ(x) be any fla and a ∈ An. Then:

A |= ϕ(a) iff B |= ϕ(h(a)) .

Prf.:
By ind. on the complexity of ϕ. The key step is: B |= ∃yψ(h(a), y)
implies

B |= ψ(h(a), b) , for some b ∈ B .

But any b is in the range of h, so b = h(a′) and we have:

B |= ψ(h(a), h(a′)) .

By ind. hypothesis A |= ψ(a, a′) and A |= ∃yψ(a, y) follows.

�
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theory of a structure

Corollary

Assume A ∼= B via map h. Then for all sentences θ:

A |= θ iff B |= θ .

This statement can be elegantly phrased using the following notions

Definition: elem. equivalence and theory of a structure

Theory of A: Th(A) := the set of all sentences true in A.
Two structures A,b (in a common lang.) are elementarily equivalent,
A ≡ B, iff

Th(A) = Th(B) .

A ∼= B ⇒ A ≡ B .
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a question

What about A ≡ B ⇒ A ∼= B?

Our first applications of the compactness will be several counter-examples
to this implication.

A problem to take away: Show that this is true whenever A is a finite
structure in a finite language.

Set up:

L: 0, 1,+, ·, <
N := (N, 0, 1,+, ·, <)

c : a new constant

theory T := Th(N) ∪ {c > 1 + · · · + 1 (n times) | n ≥ 1} .

13 / 22



non-standard integers

The compactness implies:

Lemma

T is satisfiable.
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infinitesimal reals

A bit harder example. Take the same L and R and define:

ǫ: a new constant,

new constants cr , one for each real r ∈ R ,
LR is L plus all these constants cr ,

R′: an expansion of R by interpreting each constant cr by r ,

ThR(R): LR sentences true in R′,

T := ThR(R) ∪ {0 < ǫ} ∪ {1 > epsilon + . . . ǫ (n times) | n ≥ 1} .
In N we could use numerals 1 + · · · + 1 to name each element of the
universe. In R this is impossible and the role of the new constants cr is to
name all reals. E.g. statement π2 < 20 is represented by cπ · cπ < c20.

Lemma

T is satisfiable.
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going up

L: any
A: any infinite
LA: L with names cu for all u ∈ A (as before)
ThA(A): as before
D: an arbitrary set of new constants
T := ThA(A) ∪ {d 6= d ′ | and two different d , d ′ ∈ D}

Lemma

T is satisfiable.

Prf.:
Any finite number of constants from D can be interpreted in A by
different elements because it is infinite.

�
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huge model
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Löwenheim-Skolem up

The Löwenheim-Skolem theorem upwards

Let A be an infinite structure in language L and let κ be an arbitrary
cardinality. Then there is B such that:

A � B and |B | ≥ maxκ .

Informally: cardinalities of elem. extensions of an infinite structure are
unbounded.

Prf.:
Take D of cardinality κ and any model B of T from previous slide.

�

Note that we do not know that the model has cardinality exactly κ.
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categoricity

It follows that the theory of no infinite A can determine A up to
isomorphism. The next best thing we can hope for is that

Th(A) determines all its models in some particular cardinality (i.e.
the theory plus the cardinality determines the structure up to iso).

Definition - categoricity

Let κ be any infinite cardinality and let T be a theory with a model of
cardinality κ.
Then T is κ-categorical iff T has a unique model in cardinality κ up to
isomorphism.
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Morley’s thm

This looks like a chaotic situation where many combinations can occur.
But fortunately the picture is much simpler for countable T .

Morley’s theorem

Let L and T be countable. If T is κ-categorical for some uncountable κ
then it is categorical all uncountable cardinalities.

Hence for countable L, T there are only four options, all combinations of:

T is/is not countably categorical,

T is/is not uncountably categorical.

We shall not prove Morley’s thm but we shall see examples of theories of
all four categories.

21 / 22



Vaught’s conjecture

Assume L, T are countable, T complete with infinite models. Define:

I (T , κ) := the number of cardinality κ models of T up to iso .

What are possible values of I (T ,ℵ0)?

Finite case: any n ≥ 1 can appear except 2!
Infinite case: easy examples with I (T ,ℵ0) = ℵ0 and I (T ,ℵ0) = 2ℵ0 .

Vaught’s conjecture

No other infinite cardinality is possible.

Informally: Continuum Hypothesis holds as long as you look at structures
rather than sets.
The only known general result is:

I (T ,ℵ0) > ℵ1 → I (T ,ℵ0) = 2ℵ0 .

22 / 22


