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topics

HW - Prop.4.3.2 (p.138)
the existence of saturated structures

N;-saturation via ultraproduct

)
)

)

o isolated types
o the Omitting types thm

o Peano arithmetic PA

o the MacDowell-Specker thm:

o countable case via omitting types,

o general case via definable ultrapower.



HW

The task: show that any structure that realizes all 1-types over less than

parameters is x-saturated.

Need to show that all n-types over less than x parameters are realized in
M. Prf by induction on n:

Case n=1: this is the hypothesis

Induction step n — n=1:

Let p(X,y) be an (n+ 1)-type over A, |A| < k. Define an n-type

p'(x) = {o(x) ¢ €p}.
By induction hypothesis p’ is realized by some n-tuple b € M".
Now define a 1-type g(y) over A" := AU {b1,...,bp}:

{(b,y) | ¥ € p} .

As still |A’| < k, it is realized (by the original hypothesis) by some ¢ € M
and it is easy to check that

(b, c) realizes type p .



existence

L: countable
T: complete L-theory with infinite models

Theorem
For all x, T has an infinite k-saturated model of cardinality at most 2. J

Corollaries
o If CH (the continuum hypothesis) holds then there is a saturated
model of cardinality Nj.
o If GCH (the generalized CH holds, i.e. T = 2%) the then are
saturated models of all uncountable successor cardinalities (i.e. of the
form k™).

We shall prove the thm (and hence the first corollary) for k = Rg.



ultraproduct

We shall prove the following statement.

Theorem

Let M;, i € w, be any L-structures and let ¢/ be a non-principal ultrafilter
on w. Then
M* = [ Mi/u
i
is Ni-saturated.

To see that this implies the previous thm for kK = Xy note:
Q NS_ = Nl,

o |M*| < TI; |M;| which is < Ngo = 2% for countable models M;,
oand M*=Tifall M; = T.




prf

Prf.:
Let A C M* be a countable set of parameters [«;], and let

p = {pilx) | i>0}

be any 1-type over A (by the HW it suffices to consider 1-types).

Because p is finitely satisfiable, for all k > 0 the set

D = (3 \ wi))

i<k
is in U. Clearly these set form a descending chain:

Do2>DiD....
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prf cont'd
Define a function v € [[; M; by:
v(j) = any witness to Jj<xpi(x) in M; if j € Dy \ Dgy1 -

In words: ~(j) witnesses as long initial sequence of formulas
©wo(x), ..., pk(s) as possible.

For all i > 0 we have
{ei(v)) 2 Dield
and hence
(it €U .

By Lo$'s thm then

M* = ¢i([y]) , alli=0.



countable case

Define the Stone space w.r.t. theory T:
Sn(T) := all complete n-types consistent with T .

It is the same as putting

for any model M of T.

Theorem
T has a countable saturated model iff all S,(T) are countable, n > 1. J

The only-if direction is immediate, the if-direction is proved by a variant of
the Henkin construction used to prove the completeness thm.



isolated types

Definition
A type p € S,(T) is isolated (= principal) iff there is a fla p(X) € p such
that

T F ox)—¢(x), forally ep.

That is: {p} = [p] in the topology of S,(T).

Lemma
If p is isolated then it is realized in all models of T. J

Prf.

Assume p is isolated by ¢(X) € p. As T is complete T + Ixp(Xx) and
hence

T F IxY(x), forallypep.



Henkin-Orey

The next statement says that being isolated is the only obstruction to
omitting a type.

The omitting types theorem (Henkin-Orey)

Let L be countable, T complete and let p;, i > 0 be a countable set of
non-isolated types.
Then there is a model of T that omits all p;, i > 0.

The theorem is proved by a variant of the Henkin construction used
usually when proving the Completeness theorem.



PA

Peano arithmetic: an important theory when studying the foundations of
mathematics

language Lpa: 0,1, 4, -, <

axioms:

a finite set of axioms called often Robinson's arithmetic Q:

Q

Q

¢ © ¢ ¢ ¢

©

x+0=x

x+(y+1)=(x+y)+1

x-0=0,

x-(y+1)=(x-y)+x,

x+1+#0,

x+1l=y+1—-x=y,

the axioms of discrete linear orders for < with x 4+ 1 being the

successor of x,

(x=yVx<y)=E@zx+z=y),



N
IND

and by infinitely many instances of the induction scheme IND:

[ #(0) AVX(p(x) = o(x +1)) ] — Vxp(x)

for all formulas ¢ that may contain other free variables than x.

Ttawdumd
wmuele(

w
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end-extensions

Definition
Let M C M’ be two models of PA. Then M’ is a end-extension of M,
denoted by M C, M, iff

WweM\MVueMM Eu<v.

In words: all elements not in M are at the end.
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MacDowell-Specker

Theorem (MacDowell-Specker)

All models of PA have proper end-extensions.

We shall first outline a proof of
- the countable case via the omitting types thm

and then give a proof of
- the general case using definable ultrapowers.



countable case

Prf. outline - countable case:

Let M be a countable model of PA. Consider the following theory T:
language: Lpa plus names for all elements of M and a new constant ¢
axioms: axioms of PA with IND in the extended language, and new axioms

c>m, foralme M.

Any model of T properly extends M but to arrange that it is an
end-extension we need to omit all - countably many - types:

pu = {x<ulU{x#m|meMMEmM<u}.

The heart of the proof is to show that all these types are non-isolated (this
uses some facts about PA).



general case

Let M = PA. We shall construct its proper end-extension M’ by definable
ultrapower, a variant of the earlier ultrapower construction.

index set: | := M (i.e. the model itself)

individual structures: M; := M, all i € /

The change in the construction is in how we construct the universe M’ of
the new structure: we do not start with the set [[; M; of all functions

a:l(=M)—=M
but with the set of definable functions:
DefFuc(M) = all « that are definable in M

i.e. the graph of « is definable by a fla 1) with parameters from M:

a(u)=v &g MEY(u,v,m).



universe - pic
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universe

Lemma

DefFuc(M) is closed under + and -, and for each m € M it contains
function A, that is constantly equal to m.

Next we replace the Boolean algebra P(M) by the algebra of definable
subsets:
Def(M) := all definable subsets of M .

Lemma

Def(M) is a Boolean algebra and it contain all finite and cofinite subsets
of M.
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ultrafilter

It remains to choose a suitable ultrafilter ¢ on the Boolean algebra. In
earlier constructions it sufficed to take any non-principal /. Here we need
a more specific choice.

Definition
U is M-closed iff for all & € DefFuc(M) and all m € M, if

a: M —[0,m]

then for some u < m, o= (u) e U.

In words, if M is partitioned definably into m pieces then U/ contains at
least one: this generalizes the property that &/ must contain a set or its
complement (that is the case m = 2).



ultrafilter

Lemma
A non-principal and M-closed U exists. J

This is not proved via Zorn's lemma but by defining &/ in M. This step
uses that we talk about models of PA: PA is strong enough to show that if

a: M —[0,m]

then at least one of the preimages o{=1)(u), u < m must be "large”.
This is a form of pigeon-hole principle.
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the structure

Now we are ready to complete the definition of the definable ultrapower
M’ (this goes back to Skolem).

universe M':
Take a non-principal M-closed ultrafilter ¢ and put

M' := DefFuc(M)/U .

That is, we identify «, 5 € DefFuc(M) iff

(a=p)eu.
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Log's thm

Los’s thm goes through in this set-up: the treatment of ax’s of equality
and of propositional connectives uses just properties of Boolean algebras
and ultrafilters. The only non-trivial thing to check are the quantifiers.

Lemma

For any fla Ixt(x) (with parameters from M'):

M’ Ixip(x) iff (Gxv(x)) €U .

Prf.:
The only-if direction is trivi. For the if-direction define v € DefFuc(M) by:

v(7) == min{u | ¥(u)}, if it exists, and := 0 otherwise .

This uses IND: it implies the least number principle and hence min v exists
and so 7 is definable.

d
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prf - thm

To conclude the proof of the MacDowell-Specker thm note first that
o M’ is proper extension:

for § € DefFuc(M) defined by d(u) := u we have

[6] e M\ M .

Lemma

M’ is an end-extension of M.




prf - lemma

Prf.:
Let m € M and 8 € DefFuc(M), and assume

M (5] < m
(m is represented by [Am]). Hence
D= (B<m)eld.

Define
a(u) = B(u), if u€ D and := m, otherwise.

By the property of U, one of a(~1)(u) for some u < m has to be in U. But
it cannot be a{=1)(m) because that is M\ D. So for some u < m:

D)y =(B=u)eu.
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