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Chance-Constrained Optimization

.
l. Introduction
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General Uncertainty Problem (UP)

min ¢(x; §) subject to g(x;€) <0, xe X

m £ € RS .. data element of the problem

m x € X C R" .. decision vector

m c:R" x R% = R .. objective function

m g:R” x RS — RX . constraint function

Characterization of the problem:

m the knowledge of the data is insufficient (uncertain): we only know
that £ € £ C R® (E .. uncertainty set)

m the value of the objective is the best possible, given an instance
(realization) of &

m the constraints are to be satisfied as much as possible, given the
instance of £

WLOG: ¢(x; &) :=c'x
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Robust Optimization (RO) Approach

to Solve General Uncertainty Problem

m g(x &) <0 to be satisfied for all instances ¢ € =
|

min ¢’ x subject to g(x;£) <0, xe X VE€E

m no other info on ¢ needed/used
.. worst-case approach
| issues:

m numerical tractability
m conservativeness

m some methods developed if a stochastic information is given
.. randomized approach

1This = can differ from the uncertainty set defined beforehand but the distinction is
not important for our purposes.
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Chance Constrained Optimization (CCO) Approach

to Solve General Uncertainty Problem

m g(x; &) <0 to be satisfied with a prescribed, sufficiently high
probability:

|
min c’x subject to P{{ € | g(x;£) <0} >1—¢, xe X

m formal assumptions:

m £ is a random vector of a know distribution P with the support =
m ¢ € [0;1] is the prescribed probability of violating the uncertain
constraints

m issues:

B convexity
m numerical tractability
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Chance Constrained Optimization

Notational Remarks

m Formalization of the CCO problem
H(x) :={¢ € 2| g(x &) < 0}
G(x):=P{H(x)} =P{{ € 2] g(x &) < 0},
Xe)={xeX|P{{ecZ|gx& <0}>1—-ec}={xeX|Gx)>1-¢
m The problem can be rewritten also as
min ¢’ x subject to P{H(x)} >1—¢, xe X
min ¢’ x subject to G(x) > 1 —¢, x € X,
min ¢’ x subject to x € X(e).
m Assume X closed convex set and denote
©(e) ... optimal objective value of CCO
X*(e) ... optimal solution set of CCO

m Sometimes p =1 — ¢ used instead.
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CCO - Special Case |

Random Right-Hand Side Only (RHS problem)

B g(x &) =& — g(x) where g: R" — RK
|

min c'x subject to P{€ € Z | g(x) > €} >1—¢, x€ X

m In this case
G(x) = Flg(x))

where F is K-dimensional cdf (with marginals Fx and corresponding
densities f;).
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CCO - Special Case Il

Linear problem (LCCO)

m g(x;€) := h— Tx where T € R¥*" h e RK
|
minc'x subject to P{€ € E | Tx> h} >1—¢, xe X

m WLOG: h can be deterministic

m if T is deterministic (£ = h only), the problem is a special case of
the RHS problem with the linear g(x) = Tx
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Chance-Constrained Optimization

|
Il. Convexity (theory)
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Extended Convexity

A function f: C — R is said to be r-concave for some r € R if

C is a convex set
for each x,y € C and each \ € [0;1]

fOx+ (1= N)y) > [M(x)+ 1= NF))Y"

A function f: C — R is said to be r-convex for some r € R if
C is a convex set
for each x,y € C and each \ € [0;1]

Fdx+ (1= A)y) < M)+ (1= A F ()]

Cases r= —o0, 0, 400 treated by continuity.

Michal Houda Chance-Constrained Optimization



Properties of r-concave/convex functions

If fis r-concave (for some r € R) then it is P-concave for each ¥’ < r.

If fis r-convex (for some r € R) then it is '-convex for each ¥’ > r.
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Prominent One-Dimensional Examples

. r-concave | r-convex
function for rec for rc dom f | Note
Vx [—00; 3] [B;+0c] | R
VX [—00; 2] 25+00] | Ry
X [—o0; 1] [1; +o0] R ordinary concave/convex
< [~ooig] [ [zitod] | R
x* [—o0; 3] [5; +o0] R
e* [—00; 0] [0; 4-00] R log-concave/convex
X [—oo; =53] | [=3:+00] | Ry
. B N e
X [ 03 2] [ 27"_00] ++
x ! [—o0;=1] | [=1;400] | Ryt
x 12 [-o0;—2] | [-2;400] | Ryy
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Special Cases |

log-Concave and log-Convex Functions

m O-concave function fis also characterized by the inequality
x4+ (1= N)y) > P (x) - £172(y).

It is called log-concave as In fis a concave function.

m 0-convex (log-convex) functions are treated similarly.
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Special Cases Il

Quasi-Concave and Quasi-Convex Functions

m —oo-concave function fis also characterized by the inequality
f(Ax+ (1 = A)y) > minf(x), f{y).
It is called quasi-concave function. Equivalently,
levsq == x| flx) > «

are convex.

m foo-convex function fis also characterized by the inequality
f(Ax+ (1 = A)y) < maxf(x), fly).
It is called quasi-convex function. Equivalently,
leveq == x| fix) < «

are convex.
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Quasi-Concave Functions

Characterization

Proposition 3 (BOoYD, VANDENBERGHE (2004

A continuous function f: R — R is quasi-concave iif at least one of the
following assertions holds

f is nondecreasing

f is nonincreasing

dc € dom f such that

m f(t) is nondecreasing if t < ¢
m f{(t) is nonincreasing if t > ¢

(i.e., c can by any of the global maximizers).
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Quasi-Convex Functions

Characterization

Proposition 4 (BoyD, VANDENBERGHE (2004

A continuous function f: R — R is quasi-convex iif at least one of the
following assertions holds

f is nondecreasing
f is nonincreasing
Jc € dom f such that

m f(t) is nonincreasing if t < ¢
m f{(t) is nondecreasing if t > ¢

(i.e., ¢ can by any of the global minimizers).

Quasi-concave and/or quasi-convex functions are sometimes called
unimodal.
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Extension to Probability Measures

Definition 5

P is r-concave if for any Borel convex sets A, B with P(A),P(B) > 0 and
every A\ € [0;1] one has

P(A + (1 - X)B) > [X\P'(A) + (1 — MP'(B)]". (1)

cases r = —00, 0, 400 treated by continuity.

Proposition 6 (BORELL (1975

An r-concave probability measure induces an r-concave distribution
function.

IfP is a quasi-concave measure on R® and dimsuppP = S then P
has a density (with respect to the Lebesgue measure).
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Extension to Probability Measures

Convexity of the measures and densities

Proposition 7 (BRASCAMP, LIEB (1976

Let = be convex such that dim affE = S'. Then P is r'-concave with
r' € [~o0; &) < its probability density (wrt. Lebesgue measure on aff£)
is r-concave where

-% if ¥ = —o0,
o— /4 g .1
r:= 57 Ifl/ € (_OO7 §),

e 1
+00 ifr=g.

m In particular:
m if a density is (at least) (—4)-concave then the corresponding

probability measure is (at least) quasi-concave;
m log-concave density induces log-concave distribution and vice-versa
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Chance-Constrained Optimization

|
I11. Convexity and CCO
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Convexity of the General CCO Problem

X(g) is convex < G(x) is quasi-concave on X.
(still assuming X convex). Recall

Glx) :=P{ € E| g(x£) < 0},
Xe):={xe X| G(x) >1—¢}
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Convexity of the General CCO Problem

Key Theorem

Theorem 9 (PREKOPA (1995

If

gk(x; &) .. quasi-concave functions of x and & (components of g);

& .. r.v. with r-concave density;
r> —< (S is the dimension of &);
Then G(x) is v = 7/5-concave function on the set

D:={x|3ze R°: g(x;z) > 0}

m (2) implies ¢ have ~y-concave probability
m r=0 .. G(x) is log-concave (= X(¢) is convex)

m r=—< .. G(x) is quasi-concave (= X(¢) is convex)
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Convexity of the RHS Problem

Classical Results

= g(x8) =& —gx)
minc'x subject to P{E € Z | g(x) > €} > 1—¢, x€ X

m needed: g(-;-) quasi-concave

m problem: quasi-concavity not preserved under addition (only for
r>1)

m classical sufficient assumption (PREKOPA (1971)): g is concave
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Convexity of the RHS Problem

New Results

HENRION, STRUGAREK (2008), HENRION, STRUGAREK (2011),
CHENG, Houpa, LISSER (2014), VAN AckoolJ (2015)

m general idea of the results: show that marginal constraints Fj o g
are concave, then take convenient copula (independent /
log-exp-concave / Archimedean / §-y-concave) to obtain a concave

G(x)
Definition 10

For some r € R, a function f: R — R is called rdecreasing with the
threshold t*(r) > 0 if the function t'f(t) is strictly decreasing YVt > t*(r).

Lemma 11

If a density fis (r+ 1)-decreasing (with a threshold t*(r)) for r > 0 then
Fo[]7/r is concave (on (0,t"(r)~")).
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Convexity of the RHS Problem

Remarks and Alternative Conditions

m The concavity of Fy o g, follows by the trick

Feoge=(Fio[17/%) o ([ &)

Theorem 12

If
gk are (—rx)-concave function for some ry > 0;

& has independent components with (r, + 1)-decreasing densities
with the thresholds t;(rx + 1) > 0

e<e*:=1-—maxF(ti(r + 1))
then X(e) is convex.

m (2) can be replaced by a tighter condition: the reversed hazard rate

functions % are (rg + 1)-decreasing (with some thresholds

ti(re+1) > 0).
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Convexity of the RHS Problem

Extending to Dependent Rows

Theorem 13

If
gk are (—ry)-concave function for some r > 0;
&k have (ry + 1)-decreasing densities with thresholds t(rc +1) > 0
the joint distribution of £ is driven by a copula C which

(a) is either Archimedean,

(b) or for which InoC o exp is concave on X[In Fi[ti(n+1)]; 1)
K

e <e*:=1-—maxF(ti(r+1))
then X(e) is convex.

m (b) is even improved by VAN Ackoow (2015)
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Convexity of the LCCO Problem

One-row problem

HENRION (2007): complete description of
Xe)={xe X|P{¢cZ|&Tg(x) <h} >1—¢}

Theorem 14

¢ is elliptically distributed with (pu, % = 0)
g(x) is
(a) either affine linear (cf.
KATAOKA (1963), VAN DE PANNE, PoPP(1963)),

(b) or with nonnegative convex components, . > 0, ¥ with nonnegative
elements.

Then X(e) is convex for all e < 3. If ¢ has a (strictly) positive density,
then the above works also for ¢ = %

Also negative result given: X(e) is nonconvex if
h<Oande >3, or

h>0andee (5;0(Vu™SCDp
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Convexity of the LCCO Problem

Normal Distribution with a special covariance structure

Theorem 15 (PREKOPA (1974

If T has independent normally distributed rows such that their covariance
matrices are constant multiples of each other, and ¢ < % then

G(x) =P{Tx < h}

)
is quasi-concave on {G(x) > 1} thus X. is convex.

m extended by PREKOPA, YODA, SUBASI (2011) (uniformly
quasi-concavity)
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Convexity of the LCCO Problem

Problem with independent rows

Xe)=P{EcE | Ex< h Yk} >1—¢, xe X

Theorem 16 (HENRION, STRUGAREK (2008), with an

improved threshold by CHENG, HouDA, LISSER (2014

If &k are pairwise independent normally distributed rows with (pux, X),
and

1 2
oo L el IIM(kkI)I
AEY‘II(I)H mln

where )\fm)n are the smallest eigenvalues of ¥y, then X(e) is convex.

m extension to elliptical distributions straightforward

m further extension to dependent rows is possible but a problem with

the dependence of the copula on the decision vector exists (currently
investigated)
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