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Motivation

Motivation

Prof. Asmund Olstad (Molde University, Norway) – reparations of oil
platforms:
Fixed Interval Scheduling (FIS) problem under Uncertainty (FISuU)

Machines = highly specialized and costly workmen (Ph.D. in
engineering, mountain climbing etc.)

Jobs = reparations of oil platforms

Intervals = helicopter trips

Uncertainty = weather conditions, unpredictable complications
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Motivation

Fixed Interval Scheduling

Other applications:

personnel scheduling (Shift Minimization Personnel Task Scheduling
Problems)

assigning aircrafts to gates (Kroon et al. 1995)

bus driver scheduling problem

crew scheduling,

vehicle scheduling

telecommunication, data transmission

scheduling of operating rooms in hospitals

...
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Stochastic integer programming formulation

Notation

T = [0,T ] – planning horizon with continuous time,

C – set of machines,

J – set of jobs,

sj – starting time,
f 0
j – prescribed completion time,
Dj(ξ) – random delay, where Dj(ξ) = 0 has a positive probability,
random “true” finishing time

fj(ξ) = f 0
j + Dj(ξ),

xjc – binary decision variable, j ∈ J , c ∈ C – equal to one if job j is
assigned to machine c , and to zero otherwise.
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Stochastic integer programming formulation

Maximization of schedule reliability

max
xjc

P

(
ξ ∈ Ξ :

∑
j : sj≤t<fj (ξ)

xjc ≤ 1, t ∈ T̂ , c ∈ C
)

∑
j : sj≤t<f 0

j

xjc ≤ 1, c ∈ C, t ∈ T̂ , (1)

∑
c∈C

xjc = 1, j ∈ J , xjc ∈ {0, 1}, c ∈ C, j ∈ J .

Maximization of probability that in each moment a machine processes
at most one job under the constraints:

at most one job assigned to a machine at each time with respect to
the prescribed job processing times,

a job is assigned to exactly one machine.
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Stochastic integer programming formulation

Minimization of expected number of overlaps

min
x ,y

Eξ

∑
c∈C

∑
j∈J

yjc(ξ)


∑

j : sj≤t<f 0
j

xjc ≤ 1, t ∈ T̂ , c ∈ C,

∑
c∈C

xjc = 1, j ∈ J , (2)

xjc ∈ {0, 1}, c ∈ C, j ∈ J ,∑
k: f 0

j ≤sk<fj (ξ)

xkc ≤ yjc(ξ) + |J |(1− xjc), c ∈ C, j ∈ J ,

yjc(ξ) ∈ N, c ∈ C.

yjc(ξ) express the number of jobs which cannot be processed by machine c
due to the random delay in processing job j .
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Robust coloring formulation

Relation to robust coloring problem

Feasible coloring with reliability (1-0.1)(1-0.4) = 0.54

Machine 1
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Interval graph
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Job 5  

Job 3 
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Robust coloring formulation

Robust coloring problem
Notation

The interval graph for FIS:

C available machines (colors),

J set of vertices,

set of (hard) edges E with overlapping pairs of jobs {j , j ′}, i.e.
sj ≤ sj ′ < f 0

j .

set of complementary (soft) edges E with all pairs {j , j ′} such that
delay of job j can influence job j ′ if it is processed by the same
machine, under unbounded support of Dj(ξ) if f 0

j ≤ sj ′ .

E ∩ E = ∅

ASSUMPTION: the number of available machines (colors) is greater or
equal to the chromatic number of the graph J , E .
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Robust coloring formulation

Robust coloring problem

Yanez and Ramirez (2003):

min
xjc ,yjj′

∑
{j ,j ′}∈E

qjj ′yjj ′

∑
c∈C

xjc = 1, j ∈ J ,

xjc + xj ′c ≤ 1, {j , j ′} ∈ E , c ∈ C, (3)

xjc + xj ′c ≤ 1 + yjj ′ , {j , j ′} ∈ E , c ∈ C,
xjc ∈ {0, 1}, c ∈ C, j ∈ J ,
yjj ′ ∈ {0, 1}, {j , j ′} ∈ E .

Penalty qjj ′ assigned to edges from E if the connected vertices share
the same color,
exactly one color is assigned to vertex j ,
forbids an identical coloring to hardly connected vertices,
yjj ′ = 1 for equally colored vertices connected in E .
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Robust coloring formulation

Schedule reliability maximization – independence

ASSUMPTION: The delays are mutually independent.

Penalties suggested by Yanez and Ramirez (2003):

qjj ′ = − ln
(
P(Dj(ξ) ≤ sj ′ − f 0

j )
)

= − ln(pjj ′),

for yjj ′ = 1, {j , j ′} ∈ E obtained

∑
{j ,j ′}∈E : yjj′=1

qjj ′ = − ln

 ∏
{j ,j ′}∈E : yjj′=1

pjj ′

 ,

which is equal to the minus logarithm of the whole schedule reliability in
the case of independence of the machine overload. This formula does not
hold for FISuU, a simple example ...
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Robust coloring formulation

Simple example

Three jobs scheduled to the same machine, i.e.
s1 < f 0

1 ≤ s2 < f 0
2 ≤ s3 < f 0

3 , and y12 = y13 = y23 = 1. Let the delays
D1(ξ),D2(ξ) be independent. Then the reliability of the schedule is equal
to

P(D1(ξ) ≤ s2 − f 0
1 ,D1(ξ) ≤ s3 − f 0

1 ,D2(ξ) ≤ s3 − f 0
2 )

= P(D1(ξ) ≤ s2 − f 0
1 ,D2(ξ) ≤ s3 − f 0

2 )

= (1− p12)(1− p23)

6= (1− p12)(1− p13)(1− p23).
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Robust coloring formulation

Schedule reliability maximization – copula dependence

We say that C : [0, 1]J → [0, 1] is a J-dimensional copula if it satisfies

1 C (u1, . . . , ui−1, 0, ui+1, . . . , uJ) = 0 for arbitrary i ,

2 C (1, . . . , 1, ui , 1, . . . , 1) = ui for arbitrary i ,

3 C is J-increasing, i.e. for each B =
∏J

i=1[ai , bi ] ⊆ [0, 1]J∫
B
dC (u) =

∑
z∈×J

i=1{ai ,bi}

(−1)card{i : zi=ai}C (z) ≥ 0.

Joint distribution of delays using their marginal distributions Fj

P(D1(ξ) ≤ d1, . . . ,DJ(ξ) ≤ dJ) = C (F1(d1), . . . ,FJ(dJ)).

If each dj corresponds to the difference between the prescribed job end f 0
j

and a start of the subsequent job sk , then we obtain the schedule
reliability. Note that we set dj =∞ if there is no subsequent job.
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Robust coloring formulation

Archimedean copula

A copula C is called Archimedean if there exists a continuous strictly
decreasing function ψ : [0, 1]→ R+ such that ψ(1) = 0 and

C (u) = ψ−1

(
J∑

i=1

ψ(ui )

)
,

where ψ is called the generator of the Archimedean copula C . These are
the most important generators and corresponding copulas:

The independent copula ψ(u) = − log(u),

Clayton copulas ψ(u) = θ−1(u−θ − 1), θ > 0,

Gumbel copulas ψ(u) = (− log(u))θ, θ ≥ 1,

Frank copulas ψ(u) = − log( e
−θu−1
e−θ−1

), θ > 0.
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Robust coloring formulation

Archimedean copula

Since the random delays are assumed to have Archimedean copula
dependence, the schedule reliability R of coloring x can be expressed as

R(x) = P

(
ξ ∈ Ξ :

∑
j : sj≤t<fj (ξ)

xjc ≤ 1, t ∈ T̂ , c ∈ C
)

= ψ−1

 J∑
j=1

ψ(uj)

 ,

with uj = P
(
Dj(ξ) ≤ mink: yjk=1 & sk≥f 0

j
sk − f 0

j

)
, where we are using the

convention for the minimum over an empty set min∅ = +∞, i.e.

P
(
Dj ≤ min∅ sk − f 0

j

)
= 1 if job j has no successors scheduled to the

same machine.

qjj ′ = ψ
(
P(Dj(ξ) ≤ sj ′ − f 0

j )
)
, {j , j ′} ∈ E .
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Robust coloring formulation

Extended robust coloring problem

ASS.: Jobs sorted according their starting times sj (no ties).

min
x ,y ,z

∑
{j ,j ′}∈E

qjj ′zjj ′ s.t.
∑
c∈C

xjc = 1, j ∈ J ,

xjc + xj ′c ≤ 1, {j , j ′} ∈ E ,

xjc + xj ′c ≤ 1 + yjj ′ , {j , j ′} ∈ E , (4)

yjj ′ +
∑

k: {j ,k}∈E & sk≥f 0
j′

zjk ≤ 1, {j , j ′} ∈ E ,

∑
k:{j ,k}∈E

yjk ≤ |J | ·
∑

k:{j ,k}∈E

zjk , j ∈ J ,

xjc , yjk , zjk ∈ {0, 1}, c ∈ C, j , k ∈ J ,

where zjk = 1 if job k is a successor of j and share the same color.
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Robust coloring formulation

Relation to robust coloring problem

Feasible coloring with reliability (1-0.4)(1-0.4) = 0.36
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Robust coloring formulation

Relation to robust coloring problem

Feasible coloring with reliability (1-0.2)(1-0.4) = 0.48
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Robust coloring formulation

Relation to robust coloring problem

Feasible coloring with reliability (1-0.1)(1-0.4) = 0.54
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Robust coloring formulation

Relation to robust coloring problem

Feasible coloring with reliability (1-0.2)(1-0.2) = 0.64
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Numerical study I

Simulated test instances

We consider 40 original test instances, which were simulated using the
exponential distributions for the job processing times (with parameter λ1)
and breaks between jobs (λ2):

Instances 1–10: 30 jobs assigned to 5 machines, λ1 = 0.2, λ2 = 0.05
(simulated on 5 machines with 6 jobs)

11–20: 30 jobs, 5 machines, λ1 = 0.1, λ2 = 0.05 (5m, 6j)

21–25: 100 jobs, 10 machines, λ1 = 0.2, λ2 = 0.05 (5m, 20j)

25–30: 100 jobs, 10 machines, λ1 = 0.2, λ2 = 0.1 (5m, 20j)

31–35: 250 jobs, 20 machines, λ1 = 0.2, λ2 = 0.05 (10m, 25j)

35–40: 250 jobs, 30 machines, λ1 = 0.2, λ2 = 0.05 (25m, 10j)
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Numerical study I

Simulated test instances

Solution:

CPLEX 12.1 solver available in the modeling system GAMS 23.2.

PC with Intel Core i7 2.90 GHz CPU, 8 GB RAM and 64-bit Windows
7 Professional operational system

Time limit set to 1 hour.

Matlab implementation of tabu search (parameters: No of iterations,
maximal length of tenures, random neighbourhood).
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Numerical study I

Tabu search

1. INITIALIZATION:

I. Find a feasible coloring using the left edge algorithm for the
graph (J ,E).

II. Set the tabu lists (tabu1, tabu2) to zero.
III. Set the actual x̃0 and the best solution x̂ equal to the initial

solution.

2. THE MAIN CYCLE: For i = 1 to MaxIterations do:

I. Find the best solution y in a neighbourhood of the actual
solution x̃i−1 – For all vertices which are allowed (tabu1) to
change the color do:

i. Assign a new allowed (tabu2) color to the
vertex

ii. Compute the reliability – if the solution x̂
has not changed for 20 iterations, then
allow infeasible solutions

iii. If the reliability is higher than the best one
already found, save the coloring to y

II. Set the actual solution to y , i.e. x̃i = y , and actualize the
tabu lists (vertex, new color) by random tenures.

III. If the actual coloring x̃i has a higher reliability, i.e.
R(x̃i ) > R(x̂), then actualize the best solution and set
x̂ = x̃i .
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Numerical study I

Instances with 30 jobs – results of GAMS (CPlex) and
tabu search algorithm (MatLab)

GAMS/ TS Test instance
11 12 13 14 15 16 17 18 19 20 Avg.

Reliability 94.9% 83.4% 91.5% 65.4% 90.1% 96.1% 65.7% 88.7% 80.6% 82.2% -
Time 2:00 LIMIT 14:26 LIMIT 49:40 3:36 11:23 LIMIT LIMIT LIMIT -

Avg. rel. 94.6% 82.5% 91.2% 63.7% 89.3% 95.3% 63.7% 88.5% 79.6% 81.7% -
Min. rel. 94.6% 82.2% 90.8% 63.5% 89.2% 95.0% 63.2% 88.5% 79.6% 81.7% -
Max. rel. 94.7% 83.0% 91.4% 64.2% 89.7% 95.7% 64.0% 88.5% 79.7% 81.8% -

Abs. diff. (Avg) -0.3% -0.9% -0.3% -1.6% -0.8% -0.8% -2.0% -0.3% -1.0% -0.5% -
Abs. diff. (Min) -0.3% -1.2% -0.7% -1.9% -1.0% -1.1% -2.6% -0.3% -1.0% -0.5% -
Abs. diff. (Max) -0.2% -0.4% -0.1% -1.1% -0.4% -0.4% -1.7% -0.2% -0.9% -0.4% -
Rel. diff. (Avg) -0.3% -1.1% -0.3% -2.5% -0.9% -0.8% -3.1% -0.3% -1.2% -0.6% -1.1%
Rel. diff. (Min) -0.3% -1.5% -0.8% -2.8% -1.1% -1.1% -3.9% -0.3% -1.2% -0.6% -1.4%
Rel. diff. (Max) -0.2% -0.5% -0.1% -1.7% -0.4% -0.4% -2.7% -0.3% -1.1% -0.5% -0.8%

Avg. time 1:17 1:15 1:21 1:14 1:17 1:9 1:20 1:13 1:14 1:14 1:22
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Numerical study I

Instances with 100 jobs – average reliabilities (10 runs)

Max. Test instance
tenures Iter. 21 22 23 24 25 26 27 28 29 30 PoFR

0 0.7% 0.7% 0.5% 1.0% 0.6% 0.4% 0.8% 1.0% 0.5% 0.7% 0.9%
1000 78.6% 72.8% 68.3% 72.7% 76.8% 84.2% 84.7% 87.8% 89.0% 90.6% 99.1%

TS 2000 78.9% 73.1% 68.4% 73.4% 77.4% 84.3% 85.0% 88.3% 89.3% 91.0% 99.5%
60-120 3000 79.0% 73.2% 68.5% 73.6% 77.8% 84.5% 85.1% 88.6% 89.6% 91.1% 99.7%

4000 79.0% 73.3% 68.6% 73.7% 78.0% 84.6% 85.2% 88.7% 89.7% 91.2% 99.9%
5000 79.0% 73.3% 68.7% 73.9% 78.2% 84.7% 85.2% 88.8% 89.9% 91.3% 100.0%

Avg. time 24:34 24:29 25:19 24:54 24:46 25:45 25:12 25:23 25:11 25:11

0 0.7% 0.7% 0.5% 1.0% 0.6% 0.6% 0.8% 1.0% 0.5% 0.7% 0.9%
TS 1000 77.5% 72.6% 69.3% 72.3% 76.9% 84.3% 85.1% 87.7% 88.8% 90.3% 99.1%

60-120 2000 77.9% 72.8% 69.8% 72.6% 77.5% 84.6% 85.3% 88.1% 89.1% 90.8% 99.5%
Rand. sel. 3000 78.2% 73.2% 70.0% 72.9% 77.7% 84.7% 85.4% 88.3% 89.3% 91.0% 99.8%

30% 4000 78.3% 73.2% 70.3% 73.1% 78.0% 84.7% 85.5% 88.3% 89.4% 91.0% 99.9%
5000 78.3% 73.2% 70.4% 73.3% 78.0% 84.9% 85.5% 88.5% 89.5% 91.0% 100.0%

Avg. time 7:23 7:15 7:17 7:12 7:20 7:17 7:17 7:15 7:13 7:17
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Flow-based formulation

Flow-based formulation

We define penalties

qjkc = ψ (P(Djc(ξ) ≤ sk − fj)) ,

Two artificial jobs 0, J + 1 (= machine start and end):

J0 = J ∪ {0},
JJ+1 = J ∪ {J + 1},
J0(J+1) = J ∪ {0} ∪ {J + 1}.

(5)

We extend the set of edges Ē by {0, J + 1}, {0, j}, {j , J + 1}, ∀j ∈ J
with penalties q0(J+1)c = q0jc = qj(J+1)c ≡ 0. We denote by Ē.j the set of
possible predecessors of job j ∈ J , i.e.

Ē.j = {j ′ ∈ J0 : {j ′, j} ∈ Ē},

and by Ēj . the set of allowed successors

Ēj . = {j ′ ∈ JJ+1 : {j , j ′} ∈ Ē}.
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Flow-based formulation

Flow-based formulation

Branda and Hájek (2016):

min
y

∑
c∈C

∑
{j , j ′}∈Ē

qjj ′cyjj ′c

s.t.
∑

j∈JJ+1

y0jc = 1, c ∈ C,

∑
k∈Ē·j

ykjc =
∑
j ′∈Ēj·

yjj ′c , j ∈ J , c ∈ C,

∑
j∈J0

yj(J+1)c = 1, c ∈ C,

∑
c∈C

∑
j ′∈Ēj·

yjj ′c = 1, j ∈ J ,

yjj ′c ∈ {0, 1}, j , j ′ ∈ J , c ∈ C.

(6)
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Numerical study II

Parameters:
1 number of jobs J,
2 number of machines C ,
3 λ1 – rate parameter of the exponential distribution – starting time of

a job,
4 λ2 – rate parameter of the exp. d. – length of the processing interval,
5 p – probability that no delay appears, i.e. a job is finished in time,
6 λ3 – rate parameter of the exp. d. – length of the random delay if it

appears with probability (1− p); it enables to compute the
coefficients qjj ′c = qjj ′ , independent delays ψ(u) = − log u.

Input parameters 1:

λ1 =
1

2
, λ2 =

1

5
, λ3 =

1

2, 5
, p =

1

3
,

Input parameters 2:

λ1 =
1

2.5
, λ2 =

1

5
, λ3 =

1

2
, p =

1

2
.
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Numerical study II

Problem size Average computational time [s]
Input parameters 1 Input parameters 2

No. of jobs No. of machines FBF ERCP FBF ERCP

10 5 0.12 0.48 0.13 0.54
13 6 0.18 3.24 0.18 3.33
15 6 0.19 46.05 0.19 30.55
17 7 0.20 66.42 0.21 46.80
20 8 0.31 254.24 0.27 328.30
22 8 0.34 652.77 0.38 457.05
25 9 0.43 707.31 0.42 664.63
27 10 0.66 920.14 0.67 886.66
30 11 0.74 879.97 0.75 837.92
35 12 0.94 928.72 0.97 918.24
40 15 1.74 1000.14 1.48 1000.13

Larger instances in Branda and Hájek (2016) ..
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