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Differentiability of a function

Consider a function f : D→ Rm, where D ⊂ Rn.
Then, the derivative of f at a point x ∈ D in a direction h ∈ Rn is defined
by

f ′(x; h) = lim
t→0

1

t
(f(x + th)− f(x)) , whenever the limit exists.

Let us denote D′x = {h ∈ Rn : f ′(x; h) exists}. Hence,

I D′x is a double-cone, i.e. αh ∈ D′x whenever α ∈ R and h ∈ D′x .

I The function f′(x; ·) is homogeneous on D′x (a double-cone
function), i.e. f′(x;αh) = αf ′(x; h) for each α ∈ R, h ∈ D′x .

I For each h ∈ D′x there is an δ > 0 such that x + th ∈ D for all
t ∈ [−δ, δ].
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Differentiability of a function

I Function f is called differentiable at a point x ∈ D if f ′(x; h) exists
for each h ∈ Rn.

I Function f is called Gâteaux differentiable at x ∈ D if f is
differentiable at x and f ′(x; ·) is a continuous linear function on Rn.

I Function f is called Hadamard differentiable at x ∈ D if f is
differentiable at x and f ′(x; ·) is a linear function on Rn fulfilling

lim
n→+∞

1

tn
(f(x + tnhn)− f(x)) = f ′(x; h)

for all sequences tn ∈ R, tn 6= 0, hn ∈ Rn, x + tnhn ∈ D,
lim

n→+∞
tn = 0 and lim

n→+∞
hn = h ∈ Rn.
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Differentiability of a function

I Function f is called boundedly differentiable at x ∈ D being
differentiable at x and fulfilling

lim
t→0

sup
h∈Rn,‖h‖=1

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′(x; h)

∥∥∥∥ = 0.

I Function f is called Fréchet differentiable at x ∈ D being Gâteaux
differentiable at x and fulfilling

lim
t→0

sup
h∈Rn,‖h‖=1

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′(x; h)

∥∥∥∥ = 0.
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Counterexample

Consider a homogeneous function g on Rn. Then,

∀t 6= 0 ∀h ∈ Rn 1

t
(g(th)− g(0)) =

1

t
g(th) = g(h)

Hence, g′(0; h) = g(h) for each h ∈ Rn. Thus, g is boundedly
differentiable at the origin.
Particularly,

F(x1, x2) = 0 whenever x2 6= 0,

= x1 whenever x2 = 0.

F is homogenous, therefore, it is boundedly differentiable at the origin.
But, F is discontinuous and, hence, its derivative at origin F′(0; ·) = F is
discontinuous.
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Bounded, Fréchet and Hadamard differentiability possess useful
equivalent descriptions.

I Function f is boundedly differentiable at x ∈ D if and only if it is
differentiable at x and fulfills

lim
t→0

sup
h∈B

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′(x; h)

∥∥∥∥ = 0

for each bounded set B ⊂ Rn.

I Function f is Fréchet differentiable at x ∈ D if and only if it is
Gâteaux differentiable at x and fulfills

lim
t→0

sup
h∈B

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′(x; h)

∥∥∥∥ = 0

for each bounded set B ⊂ Rn.
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I Function f is Hadamard differentiable at x ∈ D if and only if it is
Gâteaux differentiable at x and fulfills

lim
t→0

sup
h∈K

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′(x; h)

∥∥∥∥ = 0

for each compact K ⊂ Rn.
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Differentiability of a function

In finite dimension we have the following scheme:

Hadamard diff. =⇒ Gâteaux diff. =⇒ differentiability
m

Fréchet diff. =⇒ boundedly diff. ↗↗

If f is Gâteaux, Hadamard or Fréchet differentiable then the gradient

∇f (x) =


∂f1
∂x1

(x) · · · ∂fm
∂x1

(x)
...

. . .
...

∂f1
∂xn

(x) · · · ∂fm
∂xn

(x)


possesses the property

f ′(x; h) = ∇f (x)> h.
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Directional differentiability of a function

Consider again a function f : D→ Rm, where D ⊂ Rn. Then, the
directional derivative of f at a point x ∈ D in a direction h ∈ Rn is
defined by

f ′+(x; h) = lim
t→0+

1

t
(f(x + th)− f(x)) , whenever the limit exists.

Let D′x+ =
{

h ∈ Rn : f ′+(x; h) exists
}

denote the definition region of
f ′+(x; ·).
Hence,

I D′x+ is a cone, i.e. αh ∈ D′x+ whenever α ≥ 0 and h ∈ D′x+.

I The function f′+(x; ·) is positively homogeneous on D′x+ (a cone
function), i.e. f′+(x;αh) = αf ′+(x; h) for each α ≥ 0, h ∈ D′x+.

I For each h ∈ D′x there is an δ > 0 such that x + th ∈ D for all
t ∈ [0, δ].
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Directional differentiability of a function

I Function f is called Gâteaux directionally differentiable at a point
x ∈ D if f ′+(x; h) exists for each h ∈ Rn.

I Function f is called Hadamard directionally differentiable at x ∈ D if
f is Gâteaux directionally differentiable at x and

lim
n→+∞

1

tn
(f(x + tnhn)− f(x)) = f ′+(x; h)

for all sequences tn > 0, hn ∈ Rn, x + tnhn ∈ D, lim
n→+∞

tn = 0 and

lim
n→+∞

hn = h ∈ Rn.

I Function f is called Fréchet directionally differentiable at x ∈ D
being Gâteaux directionally differentiable at x and fulfilling

lim
t→0+

sup
h∈Rn,‖h‖=1

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′+(x; h)

∥∥∥∥ = 0.
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Requirement of continuous linearity is removed from the definition of
Gâteaux directional differentiability.

Proposition
If a function f is Hadamard directionally differentiable at x then f ′+(x; ·) is
a continuous function.
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Counterexample

Consider a positively homogeneous function g on Rn. Then,

∀t > 0 ∀h ∈ Rn 1

t
(g(th)− g(0)) =

1

t
g(th) = g(h)

Hence, g′+(0; h) = g(h) for each h ∈ Rn. Thus, g is Fréchet directionally
differentiable at the origin.
Particularly,

F(x1, x2) = 0 whenever x2 6= 0,

= |x1| whenever x2 = 0.

F is positively homogenous, therefore, it is Fréchet directionally
differentiable at the origin. But, F is discontinuous and, hence, its
directional derivative at origin F′+(0; ·) = F is discontinuous.
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Fréchet and Hadamard directional differentiability possess useful
equivalent definitions.

I Function f is Fréchet directionally differentiable at x ∈ D if and only
if it is Gâteaux directionally differentiable at x and fulfills

lim
t→0+

sup
h∈B

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′+(x; h)

∥∥∥∥ = 0

for each bounded set B ⊂ Rn.

I Function f is Hadamard directionally differentiable at x ∈ D if and
only if it is Gâteaux directionally differentiable at x, f′+(x; ·) is a
continuous function and fulfills

lim
t→0+

sup
h∈K

x+th∈D

∥∥∥∥1

t
(f(x + th)− f(x))− f ′+(x; h)

∥∥∥∥ = 0

for each compact K ⊂ Rn.
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Directional differentiability of a function

In finite dimension we have the following scheme:

Hadamard dir. diff. =⇒ Gâteaux dir. diff.
⇓

Fréchet dir. diff. ↗↗

Hadamard dir. diff. possesses continuous directional derivative.

There is no linearity. Thus, we have no reasonable equivalent to gradient.
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Hadamard differentiability tangentially to a set

The concept of directional differentiability is limited by the assumption
that f ′+(x; h) must exist for all h ∈ Rn. With intention to relax the
requirement, the concept of Hadamard directional differentiability
tangentially to a set was developed, cf. [5], [3]. Unfortunately, the
definition slightly differs due book to another. Therefore, we present a
definition covering both of them.
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Hadamard differentiability tangentially to a set

We define the Bouligand tangent cone
(also contingent cone, Bouligand contingent cone)
to A ⊂ Rn at x ∈ Rn by

T(x ; A) =

{
h ∈ Rn :

there is a sequence an ∈ A, tn > 0,
lim

n→+∞
tn = 0, lim

n→+∞
1
tn

(an − x) = h

}
.

The contingent cone is the limsup in Kuratowski sense

T(x ; A) = K−lim sup
t→0+

1

t
(A− x).
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Hadamard differentiability tangentially to a set

G ⊂ D ⊂ Rn, H ⊂ Rn be sets and f : D→ Rm be a function.

I Function f is called Hadamard directionally differentiable at x ∈ D
tangentially to (G,H) if there is a function
f ′H(x, · ; G,H) : T(x ; G) ∩ T(x ; H)→ Rm fulfilling

lim
n→+∞

1

tn
(f(x + tnhn)− f(x)) = f ′H(x, h ; G,H)

for all sequences tn ∈ R, tn > 0, hn ∈ Rn, x + tnhn ∈ G,
lim

n→+∞
tn = 0 and lim

n→+∞
hn = h ∈ T(x ; H). (Of course, h ∈ T(x ; G)

according to the definition of the contingent cone.)

I Function f is called Hadamard differentiable at x ∈ D tangentially to
(G,H) being Hadamard directionally differentiable at x ∈ D
tangentially to (G,H) and if T(x ; G) ∩ T(x ; H) is a double-cone and
f ′H(x,−h ; G,H) = −f ′H(x, h ; G,H) for all h ∈ T(x ; G) ∩ T(x ; H).
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Hadamard differentiability tangentially to a set

Connection between Hadamard directional differentiability tangentially to
(G,H) and directional differentiability.

Proposition
Let f : D→ Rm be Hadamard directionally differentiable at x tangentially
to (G,H) and h ∈ T(x ; G) ∩ T(x ; H).
Then, the function f is directionally differentiable at x in the direction h if
and only if there is a εh > 0 such that x + th ∈ A for all 0 < t < εh.
In such a case, we have f ′+(x; h) = f ′H(x, h ; G,H).

Proposition
If a function f is Hadamard directionally differentiable at x tangentially to
(G,H) then f ′H(x, · ; G,H) is a continuous function on T(x ; G)∩T(x ; H).
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Hadamard differentiability tangentially to a set

We possess an equivalent definition.

I Function f is Hadamard directionally differentiable at x ∈ D
tangentially to (G,H) if and only if f ′H(x, h ; G,H) exists for all
h ∈ T(x ; G) ∩ T(x ; H) and

lim
t→0+
ε→0+

sup
h∈K,‖ξ‖≤ε
x+t(h+ξ)∈G

∥∥∥∥1

t
(f(x + t(h + ξ))− f(x))− f ′H(x, h ; G,H)

∥∥∥∥ = 0

for all compacts K ⊂ T(x ; G) ∩ T(x ; H).
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Contingent derivative of a set-valued mapping

Another difficulties arise, if f is a set-valued mapping between two
topological vector spaces. Such a case appears very naturally, for
instance in a stochastic optimization theory.
Let us consider an optimization problem

ϕ(x) = max {f(u; x) : u ∈ Ux}

depending on a parameter x ∈ X ⊂ Rp, Ux ⊂ Rn. The set of all
ε-optimal solutions

ψ(x; ε) = {u ∈ Ux : f(u; x) ≥ ϕ(x)− ε} , ε > 0

is of our interest. The mappings is naturally set-valued.
Considering set-valued mappings for purpose of Delta Theorem, one
needs a generalization of Hadamard derivative. A convenient one is called
contingent derivative and its definition can be found in any monograph
on set-valued functions; e.g. in [1], [2].
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Contingent derivative of a set-valued mapping

f : Rn → 2Rm

be a set-valued function, x ∈ Rn and y ∈ Rm.

I Contingent derivative of f at (x, y) is defined as a set-valued
function ∇f(x, y ; ·) : Rn → 2Rm

with the property:

z ∈ ∇f(x, y ; h)⇐⇒ (0, h, z) ∈ clo (Df(x, y)) ,

where Df(x, y) = {(t, h, z) : t > 0, h ∈ Rn, y + tz ∈ f(x + th)}.
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Contingent derivative of a set-valued mapping

The contingent derivative is connected with Hadamard directional
differentiability tangentially to a set.

Proposition
G ⊂ D ⊂ Rn, H ⊂ Rn and x ∈ D. Let a function f : D→ Rm be
Hadamard directionally differentiable at x tangentially to (G,H).
Define a set-valued function F : Rn → 2Rm

such that

F (v) = {f(v)} if v ∈ G,
= ∅ if v 6∈ G.

Hence,

∇F (x, f(x); h) = {f ′H(x, h ; G,H)} if h ∈ T(x ; G) ∩ T(x ; H) ,

= ∅ whenever y 6= f(x),

= ∅ whenever h 6∈ T(x ; G) , y ∈ Rm.
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Limits in Kuratowski sense

For indexed sets At ⊂ Rn, t > 0, ’lim’, ’limsup’ and ’liminf’ in Kuratowski
sense are

K−lim sup
t→0+

At =

{
x ∈ Rn :

there is a sequence atn ∈ Atn , tn > 0,
lim

n→+∞
tn = 0, lim

n→+∞
atn = x

}
,

K−lim inf
t→0+

At =

{
x ∈ Rn :

there is a selection at ∈ At, t > 0,
lim

t→0+
at = x

}
.

If both ’limits’ coincide we speak about the limit in Kuratowski sense and
set

K− lim
t→0+

At = K−lim sup
t→0+

At = K−lim inf
t→0+

At .

Let us mention that all limits in Kuratowski sense are closed sets.
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An agreement:

y → x means that y tends to x ,

y → x+ means that y tends to x and y > x ,

y → x− means that y tends to x and y < x ,

y → x∗ means that y tends to x and y 6= x .
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Tangent cones

Bouligand tangent cone
(also contingent cone, Bouligand contingent cone)
to A ⊂ Rn at x ∈ Rn is

T(x ; A) =

{
h ∈ Rn :

there is a sequence an ∈ A, tn > 0,
lim

n→+∞
tn = 0, lim

n→+∞
1
tn

(an − x) = h

}
.

The Bouligand tangent cone is the limsup in Kuratowski sense

T(x ; A) = K−lim sup
t→0+

1

t
(A− x).

Clarke tangent cone to A ⊂ Rn at x ∈ Rn is

TC (x ; A) = K− lim inf
y→x,y∈A

t→0+

1

t
(A− y).
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Normal cones

Prenormal cone (also Regular normal cone, Fréchet normals ) to A ⊂ Rn

at x ∈ Rn is

N̂(x ; A) =

{
h ∈ Rn :

for each sequence an ∈ A, an 6= x, an → x,

lim supn→+∞
h>(an−x)
‖an−x‖ ≤ 0

}
.

For ε ≥ 0,
Set of ε-normals to A ⊂ Rn at x ∈ Rn is

N̂ε(x ; A) =

{
h ∈ Rn :

for each sequence an ∈ A, an → x,

lim supn→+∞
h>(an−x)
‖an−x‖ ≤ ε

}
.

Of course, N̂0(x ; A) = N̂(x ; A).
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Normal cones

Normal cone to A ⊂ Rn at x ∈ Rn is

N(x ; A) = K−lim sup
y→x
ε→0+

N̂ε(y ; A).

If A is closed then

N(x ; A) = K−lim sup
y→x

N̂(y ; A).
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Tangent and Normal cones

Always,

TC (x ; A) ⊂ T(x ; A) ,

N(x ; A) ⊃ N̂(x ; A) ,

v ∈ N̂(x ; A) ⇐⇒ ∀w ∈ T(x ; A) v>w ≤ 0,

N(x ; A) = T(x ; A)∗,

N(x ; A)∗ ⊃ T(x ; A) .

Hence analogically, Clarke normal cone is defined by

NC (x ; A) = TC (x ; A)∗.

Clarke normal cone fulfills

NC (x ; A)∗ = TC (x ; A) .
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Tangent and Normal cones

For a convex set C ⊂ Rn

T(x ; C ) = clo ({w ∈ Rn : ∃λ > 0 such that x + λw ∈ C}) ,
N(x ; C ) = N̂(x ; C ) =

{
v ∈ Rn : ∀c ∈ C v> (c − x) ≤ 0

}
,

N̂ε(x ; C ) =
{

v ∈ Rn : ∀c ∈ C v> (c − x) ≤ ε ‖c − x‖
}
.
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Tangent and Normal cones

Let a function f : Rn → Rm be Hadamard differentiable at x ∈ Rn. Then,

T(x ; graph (f)) =

{(
∇f (x)> h

h

)
: h ∈ Rn

}
,

N̂(x ; graph (f)) =

{(
w

−∇f (x) w

)
: w ∈ Rm

}
,

T(x ; epi (f)) =

{(
y
h

)
: h ∈ Rn, y ≥ ∇f (x)> h

}
,

N̂(x ; epi (f)) =

{(
w

−∇f (x) w

)
: w ∈ Rm, w ≤ 0

}
.
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