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Differentiability of a function

Differentiability of a function

Consider a function f : D — R™, where D C R".
Then, the derivative of f at a point x € D in a direction h € R" is defined
by

1
f'(x;h) = tlin}) : (f(x + th) — f(x)), whenever the limit exists.

Let us denote D, = {h € R" : f'(x; h) exists}. Hence,
» D is a double-cone, i.e. ah € D} whenever & € R and h € D/,.

» The function f'(x; -) is homogeneous on I, (a double-cone
function), i.e. f'(x; ah) = af’(x; h) for each « € R, h € .

» For each h € D, there is an § > 0 such that x + th € D for all
t € [-9,9]
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Differentiability of a function

Differentiability of a function

» Function f is called differentiable at a point x € D if f'(x; h) exists
for each h € R".

» Function f is called Gateaux differentiable at x € D if f is
differentiable at x and f’(x; -) is a continuous linear function on R".

» Function f is called Hadamard differentiable at x € D if f is
differentiable at x and f'(x; -) is a linear function on R" fulfilling
. 1 ,
fm = (F(x+ taha) — F09) = /(x:h)
for all sequences t, € R, t, # 0, h, € R", x + t,h, € D,
lim t,=0and |lim h,=hegR".

n——+o00 n——+o00
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Differentiability of a function

Differentiability of a function

» Function f is called boundedly differentiable at x € D being
differentiable at x and fulfilling

L (fx+ th) — £()) — F(x: h)H =0.

lim  sup
t—0 hern, ||h)=1
x+theD

» Function f is called Fréchet differentiable at x € D being Gateaux
differentiable at x and fulfilling

Lt th) — () - F(x: h)H -0

lim  sup
t—0 hern, ||h)=1
x+theD
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Differentiability of a function

Consider a homogeneous function g on R". Then,

Ve#£0Vh e R (g(th) - £(0)) = ;&(th) = g(h)

Hence, g’(0; h) = g(h) for each h € R". Thus, g is boundedly
differentiable at the origin.
Particularly,

F(x1,x2) = 0 whenever xp # 0,

= x1 whenever xo = 0.

F is homogenous, therefore, it is boundedly differentiable at the origin.
But, F is discontinuous and, hence, its derivative at origin F/(0;-) = F is
discontinuous.
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Differentiability of a function

Bounded, Fréchet and Hadamard differentiability possess useful
equivalent descriptions.

» Function f is boundedly differentiable at x € D if and only if it is
differentiable at x and fulfills

lim sup
t—0 hes
x+thelD

% (f(x+ th) — f(x)) — f'(x; h)H =0

for each bounded set B C R".

» Function f is Fréchet differentiable at x € D if and only if it is
Gateaux differentiable at x and fulfills

lim sup
t—0 hes
x+theD

% (f(x + th) — f(x)) — f'(x; h)H =0

for each bounded set B C R".
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Differentiability of a function

» Function f is Hadamard differentiable at x € D if and only if it is
Gateaux differentiable at x and fulfills

lim sup
t—0 hek
x+theD

% (f(x+ th) — f(x)) — f'(x; h)H =0

for each compact K C R".
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Differentiability of a function

Differentiability of a function

In finite dimension we have the following scheme:

Hadamard diff. =  Gateaux diff. =~ = differentiability

v

Fréchet diff. = boundedly diff. 7"

If f is Gateaux, Hadamard or Fréchet differentiable then the gradient

Lol o G
IO I
W) o B

possesses the property

f'(x;h) = VF(x) " h.
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Directional differentiability of a function

Directional differentiability of a function

Consider again a function f : D — R™, where D C R". Then, the
directional derivative of f at a point x € D in a direction h € R" is
defined by

1
' (x;h) = IirgJr . (f(x + th) — f(x)), whenever the limit exists.
t—

Let D, = {h € R" : f/ (x;h) exists} denote the definition region of
(% ).
Hence,

» DD}, is a cone, i.e. ah € D}, whenever a > 0and h e, .

» The function /_(x; -) is positively homogeneous on I}, (a cone
function), i.e. f/, (x; ah) = af’ (x; h) for each « > 0, h € D], .

» For each h € D, there is an § > 0 such that x + th € D for all
t € [0,4].
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Directional differentiability of a function

Directional differentiability of a function

» Function f is called Gateaux directionally differentiable at a point
x € D if f/, (x; h) exists for each h € R".

» Function f is called Hadamard directionally differentiable at x € D if
f is Gateaux directionally differentiable at x and

lim = (F(x + tahn) — F(x)) = £ (x; h)

n—+oo t,

for all sequences t, > 0, h, € R", x + t,h, € D, IiT t, =0 and
n—-—+0oo
lim h,=heR".

n—+o00
» Function f is called Fréchet directionally differentiable at x € D

being Gateaux directionally differentiable at x and fulfilling

1
lim  sup ||=(f(x+ th)—f(x))—fﬁr(x;h)H =0.
-
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Directional differentiability of a function

Requirement of continuous linearity is removed from the definition of
Gateaux directional differentiability.

Proposition
If a function f is Hadamard directionally differentiable at x then f’_(x;-) is
a continuous function.
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Directional differentiability of a function

Consider a positively homogeneous function g on R". Then,
.1 1
vt>0vheR" - (g(th) - g(0)) = g(th) = g(h)

Hence, g/, (0; h) = g(h) for each h € R". Thus, g is Fréchet directionally
differentiable at the origin.
Particularly,

F(x1,x2) = 0 whenever x; # 0,

= |xi| whenever x; = 0.

F is positively homogenous, therefore, it is Fréchet directionally
differentiable at the origin. But, F is discontinuous and, hence, its
directional derivative at origin F/_(0;-) = F is discontinuous.
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Directional differentiability of a function

Fréchet and Hadamard directional differentiability possess useful
equivalent definitions.

» Function f is Fréchet directionally differentiable at x € D if and only
if it is Gateaux directionally differentiable at x and fulfills

1
i —(f th) — f —f' (x;h)|| =
i, sup |6k ah) 000 )| =0
x+theD

for each bounded set B C R".

» Function f is Hadamard directionally differentiable at x € D if and
only if it is Gateaux directionally differentiable at x, f/_(x;-) is a
continuous function and fulfills

; 1 e M| —
t|_|>r(r)]+ sup ?(f(x—i— th)—f(x))—er(x,h)H =0
x+theD

for each compact K C R".
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Directional differentiability of a function

Directional differentiability of a function

In finite dimension we have the following scheme:

Hadamard dir. diff. =  Gateaux dir. diff.

I
Fréchet dir. diff. Y4

Hadamard dir. diff. possesses continuous directional derivative.

There is no linearity. Thus, we have no reasonable equivalent to gradient.
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Hadamard differentiability tangentially to a set

Hadamard differentiability tangentially to a set

The concept of directional differentiability is limited by the assumption
that f/_(x; h) must exist for all h € R". With intention to relax the
requirement, the concept of Hadamard directional differentiability
tangentially to a set was developed, cf. [5], [3]. Unfortunately, the
definition slightly differs due book to another. Therefore, we present a
definition covering both of them.
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Hadamard differentiability tangentially to a set

Hadamard differentiability tangentially to a set

We define the Bouligand tangent cone
(also contingent cone, Bouligand contingent cone)
to ACR" at x € R" by

| there is a sequence a, € A, t, > 0,
T(x;A)=qheR": IiT th =0, IiT L(am—x)=h
n—-+oo n——4oo "

The contingent cone is the limsup in Kuratowski sense

1
T(x;A) = K—Iitm zip ?(A —x).
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Hadamard differentiability tangentially to a set

Hadamard differentiability tangentially to a set

GcDcCR" HcCR" besets and f : D — R™ be a function.

» Function f is called Hadamard directionally differentiable at x € D
tangentially to (G, H) if there is a function
fiu(x,-; G, H) : T(x; G) N T(x; H) — R™ fulfilling

1
IiT o (f(x + tahn) — f(x)) = fiy(x, h; G,H)
for all sequences t, € R, t, > 0, h, € R", x+t,h, € G,

lim t,=0and IiT h, = h € T(x;H). (Of course, h € T(x;G)

n—-4o00
according to the definition of the contingent cone.)

» Function f is called Hadamard differentiable at x € D tangentially to
(G, H) being Hadamard directionally differentiable at x € D
tangentially to (G, H) and if T(x; G) N T(x; H) is a double-cone and
fiy(x,—h; G, H) = —fy(x,h; G,H) for all h € T(x; G) N T(x; H).
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Hadamard differentiability tangentially to a set

Hadamard differentiability tangentially to a set

Connection between Hadamard directional differentiability tangentially to
(G,H) and directional differentiability.
Proposition

Let f : D — R™ be Hadamard directionally differentiable at x tangentially
to (G,H) and h € T(x; G) N T(x; H).

Then, the function f is directionally differentiable at x in the direction h if
and only if there is a €, > 0 such that x +th € A for all 0 < t < gp.

In such a case, we have ' (x;h) = fi;(x,h; G, H).

Proposition

If a function f is Hadamard directionally differentiable at x tangentially to
(G, H) then fiy(x,-; G,H) is a continuous function on T(x; G) N'T(x; H).
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Hadamard differentiability tangentially to a set

Hadamard differentiability tangentially to a set

We possess an equivalent definition.

» Function f is Hadamard directionally differentiable at x € D
tangentially to (G, H) if and only if fy(x, h; G,H) exists for all
h € T(x; G) N T(x;H) and

lim  sup
IO heke|i<e
=0t fehte)ec

1 (f(x+ t(h+ &) — f(x)) = f(x, h; G, H)H =0

for all compacts K C T(x; G) N T(x; H).
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Contingent derivative of a set-val

Contingent derivative of a set-valued mapping

Another difficulties arise, if f is a set-valued mapping between two
topological vector spaces. Such a case appears very naturally, for
instance in a stochastic optimization theory.

Let us consider an optimization problem

©(x) = max {f(u;x) : u € Uy}

depending on a parameter x € X C RP, U, C R". The set of all
e-optimal solutions

v(xe) ={u €Uy : f(u;x) > p(x) —¢e}, e >0

™

is of our interest. The mappings is naturally set-valued.

Considering set-valued mappings for purpose of Delta Theorem, one
needs a generalization of Hadamard derivative. A convenient one is called
contingent derivative and its definition can be found in any monograph
on set-valued functions; e.g. in [1], [2].
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Contingent derivative of a set-val

Contingent derivative of a set-valued mapping

f:R" — 28" be a set-valued function, x € R" and y € R™.

» Contingent derivative of f at (x, y) is defined as a set-valued
function Vf(x, y;-) : R" — 2R with the property:

z € Vf(x,y;h) < (0, h, z) € clo (Df(x,y)),

where Df(x,y) = {(t,h,z) : t >0,h € R",y + tz € f(x + th)}.
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Contingent derivative of a set-val

Contingent derivative of a set-valued mapping

The contingent derivative is connected with Hadamard directional
differentiability tangentially to a set.
Proposition

GCDcCR", HcCR" andx €D. Let a functionf : D — R™ be
Hadamard directionally differentiable at x tangentially to (G, H).
Define a set-valued function F : R" — 28" such that

F(v) = {f(v)} ifvegG,
= 0 ifvegG.
Hence,
VFE(x,f(x);h) = {fy(x,h; G,H)} ifh € T(x;G)NT(x;H),

() whenever y # f(x),
= () wheneverh & T(x;G), y € R™.
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Limits in Kuratowski sense

For indexed sets Ay C R", t > 0, 'lim’, 'limsup” and 'liminf" in Kuratowski

sense are
. . thereis asequence a, € Ay, tq >0,
K=limsupA: = qx€eR lim t,=0, lim a =x )
t—0+ n—-+o0 n—+4oo
there is a selection a; € A, t > 0,
K*|Imlcht = «xeR" lim 2 = x .
t—0+ t—0+ t

If both 'limits’ coincide we speak about the limit in Kuratowski sense and
set

K—lim Ay, = K-limsupA; = K—Iliminf A;.
t—0+ t—0+ t—0+

Let us mention that all limits in Kuratowski sense are closed sets.
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y — X means that y tends to x,
y — x+ means that y tends to x and y > x,
Yy — X— means that y tends to x and y < x,
Yy — X% means that y tends to x and y # x.
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Tangent cones

Bouligand tangent cone
(also contingent cone, Bouligand contingent cone)
to ACR" at xe R" is

. there is a sequence a, € A, t, > 0,
T(x;A) =qheR": “T th =0, Iirp %(an—x):h

The Bouligand tangent cone is the limsup in Kuratowski sense

1
T(x; A) = K—Ii:‘n gip ;(A —x).

Clarke tangent coneto AC R" at x e R" is

Te(x; A) = K—liminf (A—y).
et
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Normal cones

Prenormal cone (also Regular normal cone, Fréchet normals ) to A C R"
atx e R"is

limsup,_ o h (2 —) <0

;N for each sequence a, € A, a,, # X, an, — X,
N(x;A)_{heR”: E n € A an 7,3y }
an—x]

For e > 0,
Set of e-normalsto ACR" at x e R" is

nx)

N for each sequence an €A a, — X,
N.(x;A) =< heR" hT (a .
lim Supn~>+oo m <e

Of course, No(x; A) = N(x; A).
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Normal cones

Normal coneto AC R" at x € R" is

N(x;A) = K—lim supﬁa()/?A)-
e
If Ais closed then
N(X;A) = K—Ilim supN(y;A)-
y—X
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Tangent and Normal cones

Always,
Te(x;A)  C T(x;A),
NexiA) o NkxiA),
veN(x;A) < VYweT(x;A) v w<Oo,
N(x;A) = T(x;A),

N(x; A" D  T(x;A).
Hence analogically, Clarke normal cone is defined by
Ne(x;A) = Tc(x;A)"
Clarke normal cone fulfills

Ne(x; A)Y = Te(x; A).
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Tangent and Normal cones

For a convex set C C R"

T(x;C) = clo({weR" : 3IX >0 suchthat x4+ Aw € C}),
N(x; C) =N(x; C) = {veR":Vce C v'(c—x)<0},
Ne(x; C) = {veER":VceC v (c—x)<ellc—x|}.
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Tangent and Normal cones

Let a function f : R" — R™ be Hadamard differentiable at x € R". Then,

(77) v}
< Vf(x >:W€Rm}’
(
(

T(x; graph (f))

N(x; graph (f)) =

o<

) heR", y>Vf(x)' }

{
{
T(x;epi(f)) = {
{

N(x;epi(f)) = weRT, W§0}.

Vf

Petr Lachout
General conception of derivative



@ J.— P. Aubin, H. Frankowska: Set-Valued Analysis. Birkhauser,
Boston, 1990.

@ Averbukh, V.I., Smolyanov, O.G.: The theory of directional
differentiation in linear topological spaces. Russian Mathematical
Survey 22,6(1967), 201-258.

@ Averbukh, V.I., Smolyanov, O.G.: The various definitions of
derivative in linear topological spaces. Russian Mathematical Survey
23,4(1968), 67-113.

[d G. Beer: Topologies on Closed and Closed Convex Sets. Kluwer
Academic Publishers, Dordrecht, 1993.

@ Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization
Problems. Springer-Verlag, New York, 2000.

Petr Lachout
General conception of derivative



=)

Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear
Optimization: Theory and Examples. Springer-Verlag, New York,
2000.

Clarke, F.H.: Optimization and nonsmooth analysis. John Wiley &
Sons, New York, 1983.

Deimling, K.: Nonlinear functional analysis. Springer, Berlin, 1985.

King, A.J., Wets, R. J-B: Epi-consistency of convex stochastic
programs. Stochastics and Stochastics Reports 34(1991), 83-92.

) & &

Mordukhovich, Boris S.: Variational Analysis and Generalized
Differentiation |.+I1.. Springer, Berlin, 2006.

Petr Lachout
General conception of derivative



@ Rockafellar, R.T.: Directional differentiability of the optimal value
function in a nonlinear programming problem. Mathematical
Programming Study 21(1984), 213-226.

@ Rockafellar, Tirrell; Wets, Roger J.-B.: Variational Analysis.
Springer-Verlag, Berlin, 1998.

@ Rubinstein, R.Y., Shapiro, A.: Discrete Event Systems: Sensitivity
Analysis and Stochastic Optimization by the Score Function Method.
John Wiley & Sons, Chichester, 1993.

& Shapiro, A.: On concepts of directional differentiability. J. of
Optimization Theory and Applications 66(1990), 477-487.

@ van der Vaart, AW., Wellner, J.A.: Weak Convergence and
Empirical Processes. Springer, New York, 1996.

Petr Lachout
General conception of derivative



	Differentiability of a function
	Directional differentiability of a function
	Hadamard differentiability tangentially to a set
	Contingent derivative of a set-valued mapping
	Limits in Kuratowski sense
	Tangent cones
	Normal cones
	Basic properties

	References

