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Abstract

A basis of the space of Spin(9)-invariant translation-invariant continuous valuations on
the octonionic plane is presented in terms of invariant differential forms. Furthermore,
the canonical algebra structure on this space is determined in terms of generators and
explicit relations. As a result, the Principal kinematic formula on the octonionic plane is
computed by means of our basis. A bi-product of the notion of octonion-valued forms,
upon which our construction heavily depends, is a new simple algebraic formula for
the canonical Spin(9)-invariant 8-form. Finally, motivated by our results, we conjecture
a version of the Hodge-Riemann bilinear relations for smooth translation-invariant val-
uations.

Zusammenfassung

Eine Basis des Raums aller Spin(9)-invarianten translationsinvarianten stetigen Bewer-
tungen in der oktonionischen Ebene wird durch invariante Formen konstruiert. Gleich-
zeitig ist das kanonische Produkt von solchen Bewertungen durch die Menge seiner
Erzeuger und explizite Relationen beschrieben. Anschließend wird die kinematische
Hauptformel in der oktonionischen Ebene bewiesen. Ein Nebenprodukt unserer Kon-
struktion ist eine neue Formel für die kanonische Spin(9)-invariante 8-Form. Schließlich
wird eine Vermutung für die Hodge-Riemannschen bilinearen Relationen für glatte
translationsinvariante Bewertungen aufgestellt.
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Introduction

Classical Integral Geometry

Of central importance to convex and integral geometry is the notion of intrinsic volumes.
The study of these fundamental functionals goes back to ancient mathematics. In fact,
they generalize the natural quantities of volume, surface area and mean width, assigned in
an intuitive way to any solid geometric figure, to a compact convex set in an arbitrary
spatial dimension.

The intrinsic volumes can be defined in several equivalent ways. First, according
to the famous Steiner formula, the volume of an ε-neighbourhood of a compact convex
set in the n-dimensional Euclidean space is a polynomial in ε of degree at most n. Its
coefficients are proportional to the intrinsic volumes. Second, the k-th intrinsic volume
is the average (in a precise sense) k-dimensional volume of the orthogonal projection to
a generic k-dimensional subspace. Third, for sets with sufficiently smooth boundaries,
the intrinsic volumes localize to certain curvature integrals. Finally, as we shall discuss
below, the intrinsic volumes can be characterized implicitly, collecting their essential
properties. Notice that it follows from either of these descriptions that, appropriately
normalized, µn is just the Lebesgue measure while µ0 = χ is the Euler characteristic.

Already the equivalence of the different definitions is highly non-trivial and makes
the intrinsic volumes worth attention and deeper study. Over the years, this led to
the discovery of striking relations these fundamental objects satisfy among each other.
They are basically of two kinds: equalities and inequalities. The former are called kine-
matic formulas and are of central importance to numerous disciplines of both theoretical
and applied mathematics. If µ0, . . . , µn are the intrinsic volumes and SO(n) is the group
of rigid motions of the n-dimensional Euclidean space equipped with the Haar mea-
sure dg, they can be stated as follows:∫

SO(n)
µk(K ∩ gL)dg = ∑

i+j=n+k
ck

i,j µi(K)µj(L), (1)

for any two convex bodies (i.e. compact convex sets) K, L and some (explicitly known)
constants ck

i,j. Of particular interest is the special case k = 0, the so-called Principal kine-
matic formula. The kinematic formulas were studied in various degrees of generality by
Santaló, Blaschke, Federer, and Chern in the first half of the twentieth century. In fact,
many other important integral-geometric formulas, such as those of Crofton, Poincaré,
Steiner, and Weyl, can be obtained from (1). As for the latter kind of relations, they
include the isoperimetric inequalities, bounding (weighted) ratios of intrinsic volumes
by their values on the Euclidean unit ball, as well as the (in fact much more stronger)
Aleksandrov–Fenchel inequalities. Also their importance extends far beyond convexity.

From the convex-geometrical point of view it is important that the k-th intrinsic
volume is a continuous SO(n)-invariant valuation, i.e. it fulfils

µk(K) + µk(L) = µk(K ∪ L) + µk(K ∩ L) (2)
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for any convex bodies K, L such that K ∪ L and K ∩ L are also convex. Famously, these
properties already characterize µk up to a normalizing constant. Moreover, according
to the remarkable theorem of Hadwiger, any continuous SO(n)-invariant valuation is
in fact a linear combination of the intrinsic volumes. Hadwiger’s result already implies
(1), leaving, however, the constants ck

i,j unspecified. Luckily, they can be determined
using the so-called template method, i.e. by plugging in balls of variable radii.

The aforedescribed connection between the description of the vector space of in-
variant continuous valuations and the kinematic formulas gives us the first hint that
algebra of valuations may be important to integral geometry in general. In fact, its role
in temporary integral geometry is crucial.

Alesker Theory and Algebraic Integral Geometry

A major aim of integral geometry is to extend the validity of the kinematic formulas (1)
to a more general setting. This problem was treated many times during the second half
of the twentieth century and reasonable progress has been achieved. Nonetheless, a
more conceptual approach was missing. Things changed dramatically at the turn of the
millennium with the work of Semyon Alesker. His revolutionary algebraic approach
to the theory of valuations proved to be the key to understanding integral geometry.
In a series of seminal articles [3–12], Alesker literally turned the subject of valuation
theory upside down, first, introducing a natural product of valuations (in fact this was
just one of the whole array of algebraic structures that eventually emerged), second,
extending the notion of valuations from Euclidean spaces to smooth manifolds.

At the very heart of Alesker’s breakthrough lies his solution of McMullen’s con-
jecture on the structure of the space of translation-invariant continuous valuations,
namely, the salient Irreducibility theorem. This deep result turned out to have extremely
broad consequences, far beyond the conjecture of McMullen.

One of the most important implications Alesker’s theory has on integral geometry
is its structuralization. Namely, let G ⊂ SO(n) be a compact subgroup acting transi-
tively on the sphere Sn−1. Then the Alesker product turns the space ValG of G-invariant
translation-invariant continuous valuations into an associative, commutative, unital al-
gebra of finite dimension. The strength of this result, usually referred to as the Abstract
Hadwiger-type theorem, is fully revealed once the classification of such groups is recalled:
There are six infinite series

SO(n),

U
(n

2

)
, SU

(n
2

)
,

Sp
(n

4

)
, Sp

(n
4

)
U(1), Sp

(n
4

)
Sp(1),

and three exceptions

G2 ⊂ SO(7), Spin(7) ⊂ SO(8), Spin(9) ⊂ SO(16).

Remarkably, the four rows correspond to the four normed division algebras of reals R,
complex numbers C, quaternions H, and octonions O, respectively. Therefore, a finite basis
of ValG and, consequently, the kinematic formulas analogous to (1) exist not only in the
case G = SO(n) but for any G from this list. To put it differently, the classical integral
geometry of intrinsic volumes is in fact only an element of a much broader picture.

It quickly turned out that the spaces of invariant valuations in the non-classical
cases may be in general truly complicated and, in particular, the template method is no
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longer sufficient to unfold the unknown constants in the kinematic formulas. Remark-
ably, a more sophisticated tool is available by the multiplicative structure on valuations.
A quarter-century prior to Alesker’s discovery of the product, Nijenhuis [107] made the
following (non-trivial) observation: If the intrinsic volumes are renormalized properly,
then all the constants in (1) become 1. He speculated that there might exist some alge-
braic explanation of this fact. However, it took more than three decades until Fu [63],
having Alesker’s perspective of valuations in his arsenal, clarified this phenomenon in
an elegant and illuminating way indeed. Bernig and Fu [30] then promptly generalized
this result into their striking Fundamental theorem of algebraic integral geometry, asserting
that the knowledge of the algebra of invariant valuations is essentially equivalent to
the knowledge of the constants appearing in the respective kinematic formulas.

Nonetheless, the task of describing the algebra of invariant valuations turns out to
be notably difficult and involved in general and the same holds true for actually trans-
forming the algebra structure into the kinematic formulas. In spite of a great effort and
a variety of deep and beautiful results, the problem of understanding the valuation al-
gebras remains widely open. Let us briefly review what has been achieved. First, vari-
ous bases of the space of U(n)-invariant valuations on Cn = R2n were introduced and
kinematic formulas were proven in certain special cases by Park [109], Tasaki [133,134],
and Alesker [5]. A real breakthrough came with the fundamental paper [31] of Bernig
and Fu who, using Fu’s previous elegant description [63] of the algebra ValU(n), man-
aged to prove kinematic formulas in the n-dimensional Hermitian space in their full
generality. Second, the modification of the algebra structure and kinematic formulas
to the special unitary group SU(n) were found by Bernig [24] who later also fully re-
solved two of the exceptional cases, G2 and Spin(7) in [26]. Third, the dimensions of the
valuation algebras in all the three quternionic series were computed by Bernig in [28].
However, an explicit description of the algebra and the kinematic formulas are known
only in the first non-trivial case of the quaternionic plane H2 and Sp(2)Sp(1), thanks
to Bernig and Solanes [33,34]. Finally, it is the goal of our thesis to describe the algebra
of Spin(9)-invariant valuations and to compute the Principal kinematic formula on the
octonionic plane O2.

Octonion-Valued Forms and the Spin(9)-invariant 8-Form

There are multiple ways of representing valuations. In fact, most of the commonly
used pictures generalize, in some way, one of the equivalent definitions of the intrinsic
volumes we recalled. For our purpose, it will be particularly convenient to regard the
Spin(9)-invariant valuations as certain invariant smooth differential forms that are then
‘evaluated’ on a convex body by integrating over the collection of its outer normals.
Notice that this extends the curvature-integral definition of the intrinsic volumes.

A general guiding principle when working with the group Spin(9) and related ob-
jects, such as subgroups, representations, invariants, etc., turns out to be to keep in
mind its close relationship to the octonions. In fact, much of the complexity of various
expressions can be then ‘wrapped up’ in the underlying octonionic structure. From this
reason, it is perhaps not surprising that the Spin(9)-invariant differential forms repre-
senting Spin(9)-invariant valuations are best to be understood, although being real in
the end, as being composed of forms with values in O. As anticipated, this point of
view simplifies the resulting expressions drastically, however, one has to be very care-
ful here since the octonions are not commutative and, even worse, not associative. And
of course, neither are octonion-valued forms. In particular, special attention has to be
paid to particular ordering of various products. Still, we shall see that these obstruc-
tions are very often worth to struggle with.
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On our way to the description of Spin(9)-invariant valuations, we found another
interesting application of the aforedescribed principle. Namely, it is a well-known and
remarkable fact, first observed by Brown and Gray [43], that there exists a unique (up
to scaling) Spin(9)-invariant form of degree 8 on the octonionic plane. The following
elegant description of this canonical invariant is due to Berger [23]:

Ψ =
∫

OP1
π∗` ν` d`, (3)

where OP1 is the octonionic projective line, i.e. the set of certain distinguished 8-planes
in O2 that is preserved by the group Spin(9), π` : O2 → ` is the orthogonal projection,
ν` is the volume form on ` ∈ OP1, and d` is the canonical Spin(9)-invariant measure.
Interestingly, algebraic formulas for Ψ appeared only recently in works of Castrillón
López et al. [45, 46], and Parton and Piccini [110]. They show that the 8-form is a
complicated object indeed: In the standard basis, it possesses 702 terms that were only
computed explicitly with computer assistance.

Using the notion of octonion-valued forms, we were able to prove a new explicit
algebraic formula for the Spin(9)-invariant 8-form. Namely, considering the octonionic
coordinate 1-forms dx, dy on O2 and their (octonionic) conjugates dx, dy, we first put

Ψ40 = ((dx ∧ dx) ∧ dx) ∧ dx, Ψ13 = ((dx ∧ dy) ∧ dy) ∧ dy,

Ψ31 = ((dy ∧ dx) ∧ dx) ∧ dx, Ψ04 = ((dy ∧ dy) ∧ dy) ∧ dy.

Then it is the first main result of our thesis that

Theorem A (Published in [91]). The form

Ψ8 = Ψ40 ∧Ψ40 + 4 Ψ31 ∧Ψ31 − 5
(
Ψ31 ∧Ψ13 + Ψ13 ∧Ψ31

)
+ 4 Ψ13 ∧Ψ13 + Ψ04 ∧Ψ04

is a non-trivial real multiple of the Spin(9)-invariant 8-form Ψ on O2.

Let us emphasize that the proof of the previous statement is only based on rather
elementary octonion-algebraic considerations, in particular, the role of combinatorics
is eliminated significantly. Moreover, the proposed description of the 8-form Ψ allows
us to explicitly determine its 702 terms in the standard basis easily by hand.

Spin(9)-Invariant Valuations

Let us now turn back to Spin(9)-invariant valuations on the octonionic plane. The first
attempt to study the space ValSpin(9) was made by Alesker [13]. First of all, he discussed
several natural examples of such valuations, in particular:

Tk(K) =
∫

OP1
µk(π`K)d`, 0 ≤ k ≤ 8, (4)

where the notation is the same as above. Second, he found a much less trivial exam-
ple of a 2-homogeneous valuation, the so-called octonionic pseudovolume. However, as
Alesker pointed out, neither a classification of Spin(9)-invariant valuations nor the di-
mension of ValSpin(9) was known to him. The latter question was recently answered by
Bernig and Voide [35]. In fact, they showed not only

dim ValSpin(9) = 143 (5)

but also they computed dimensions of all homogeneous subspaces. The authors further
constructed yet another natural example of a 2-homogeneous invariant valuation and
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established its relation to the octonionic pseudovolume. Let us point out that (5) was
remarkably achieved without the explicit knowledge of the space.

The aim of our thesis is to compute an explicit basis of ValSpin(9) and to determine
the algebra structure on this space. As anticipated in the previous paragraph, invariant
differential forms will be made use of to this end. Let us describe our method in more
detail. It is in fact another extremely useful implication of the Irreducibility theorem
that each Spin(9)-invariant valuation is of the form

K 7→ a voln(K) +
∫

nc(K)
ω, (6)

where a is a constant, voln is the Lebesgue measure, ω is a Spin(9)-invariant form
on the sphere bundle O2 × S15 and nc(K) is its (Lipschitz) submanifold consisting of
unit normals to the body K. This thus reduces the problem of describing invariant
valuations to describing invariant differential forms. However, this correspondence
is far from being one-to-one and therefore to describe a basis, more work needs to be
done. Luckily, a powerful theoretical tool for this purpose was found by Bernig and
Bröcker [29] to be based on applying certain second-order differential operator.

The aforedescribed approach has yet another crucial advantage. Dual to the Alesker
product is the so-called Bernig-Fu convolution. Both these products are commutative,
associative, distributive and graded with respect to the degree of homogeneity. In fact,
ValSpin(9) equipped with the former is isomorphic to the same space equipped with the
latter. But there still is a difference: In general, the convolution is much easier to com-
pute. In particular, there is a truly simple formula for the Bernig-Fu convolution in the
representation (6) that does not involve any more information than needed for com-
puting the basis. Moreover, although the Fundamental theorem of algebraic integral
geometry relates the kinematic formulas of type (1) to the Alesker product in general,
rather than convolution, the particular case of Principal kinematic formula can be still
deduced from the knowledge of the convolution entirely.

Following these guidelines, we first find the algebra of Spin(9)-invariant forms on
the sphere bundle. Due to the fact that Spin(9) is transitive on spheres, this boils down
to describing alternating forms on a single tangent space that inherit invariance under a
smaller group, namely Spin(7). This first pillar of our construction is completed by ex-
tending invariant theory of this group which allows us to describe the invariant forms
in terms of octonion-valued forms, much in the spirit of Theorem A. Then, as outlined
above, one needs to differentiate these forms in order to describe a basis for the respec-
tive valuations. To this end, Cartan’s apparatus of moving frames allows us to stick
to our local picture and to compute differentials in a single point only. This completes
the theoretical part of the construction and the rest is then achieved by computation in
coordinates. The outcome is the second main result of our thesis:

Theorem B. As a graded algebra,

ValSpin(9) ∼= R[t, s, v, u1, u2, w1, w2, w3, x1, x2, y, z]/I ,

where the generators are of the following degrees

1 2 3 4 5 6 7 8

t s v u1, u2 w1, w2, w3 x1, x2 y z

and I is an explicitly known ideal generated by 93 independent elements.
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Furthermore, explicit knowledge of the forms representing the generators allows
us to compute an explicit (monomial) basis of the algebra ValSpin(9). According to the
Fundamental theorem of algebraic integral geometry, we can consequently determine
the Principal kinematic formula on the octonionic plane with respect to this basis. Finally,
the valuations (4) are expressed in terms of our basis as an application.

Hodge-Riemann Bilinear Relations

Our results strongly confirm what is anticipated by (5): The algebra ValSpin(9) is indeed
a complicated object and equally complicated is the integral geometry on the octonionic
plane. This fact, however, should be viewed as an advantage as it is certainly reason-
able to hope that there might be some structures involved which, having been hidden
behind the simplicity of the other cases, might be revealed here. We shall see why there
is a good reason to believe that this is indeed the case.

The Alesker product on smooth translation-invariant valuations, i.e. those that can
be expressed as (6), has in fact many more, beautiful and fundamental, properties than
we have so far listed. Interestingly, many of them have counterparts in cohomology
of compact Kähler manifolds. This is a fascinating phenomenon that has, nonetheless,
never been explicitly explained.

First of all, it is a classical result of Hadwiger that the only n-homogeneous smooth
translation-invariant valuations of degree n are multiples of the Lebesgue measure.
Consequently, induced by the Alesker product is a non-degenerate pairing (φ · ψ)n that
returns this proportionality factor. Furthermore, the multiplication by the first intrinsic
volume µ1 is the Lefschetz map, i.e. its appropriate powers are bijections. Like in the
theory of Kähler manifolds, such properties are of central importance for valuations.

There is one more important result of cohomology on Kähler manifolds which, we
believe, admits a counterpart for valuations, namely Hodge-Riemann bilinear relations.
In analogy to the Kähler original, let us call a valuation φ of degree k primitive if

φ · µn−2k+1
1 = 0. (7)

Our computations for Spin(9)-invariant valuations show that the induced pairing

Q(φ, ψ) = (φ · ψ · µn−2k
1 )n, (8)

when restricted to primitive k-homogeneous valuations, is positive or negative definite,
depending on the parity of k. This is precisely in analogy with the Kähler Hodge-
Riemann relations. However, a closer look at a recent work [32] of Bernig and Hug,
which allows us to explicitly compute (8) for k = 1, shows that there must be also a
dependence on the parity of the valuation φ.

All in all, let even valuations have parity 0 and odd valuations parity 1, and let us
also consider complex valued valuations. Then it is the third main result of our thesis
that we propose the following

Conjecture C. For any non-zero primitive smooth k-homogeneous valuation φ of parity s,

(−1)k+s Q(φ, φ) > 0. (9)
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Chapter 1

Algebraic Integral Geometry

In the opening chapter, both classical and modern aspects of integral geometry and
the theory of valuations on convex bodies will be discussed. Albeit roughly, we aim
to follow the historical development in order to capture an increasing significance of
various algebraic constructions to these areas of mathematics.

Throughout the whole chapter, we shall assume that V is a finite-dimensional (real)
Euclidean vector space with dim V = n.

1.1 Valuations on Convex Bodies

To begin with, let us review the very basics of valuations on convex bodies. A particular
emphasis will be placed on an important collection of examples, the so-called intrinsic
volumes. Our general references are standard: [72, 88, 121].

1.1.1 Convex Bodies

Definition 1.1. A non-empty compact convex subset K ⊂ V is called a convex body. The
set of all convex bodies in V is denoted K(V) or simply by K.

Example 1.2. The following sets belong to K:
(a) the closed unit ball B,
(b) any (convex) polytope, i.e. convex hull of finitely many points {x1, . . . , xN} ⊂ V, in
particular any one-point set {x}, x ∈ V.

The set K is naturally equipped with a binary operation, the so-called Minkowski
addition, defined for K, L ∈ K as

K + L = {x + y ; x ∈ K, y ∈ L}. (1.1)

Notice that Minkowski addition is clearly associative as well as commutative, in other
words, it makes K into an abelian semigroup. Similarly, one defines scaling of a convex
body K by λ ∈ R as

λK = {λx ; x ∈ K}. (1.2)

Again λK ∈ K clearly. We write −K = (−1)K. Further, we denote K + x = K + {x},
the translate of K ∈ K by x ∈ V. Observe that

K + L =
⋃
x∈L

(K + x) (1.3)
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and so, for ε ≥ 0,

Kε = K + εB =
⋃

x∈K

(εB + x) (1.4)

is the (closed) ε-neighbourhood of K ∈ K.
There is a natural topology on K, induced by the so-called Hausdorff metric that is

defined for K, L ∈ K as follows:

dH(K, L) = inf{ε > 0 ; K ⊂ Lε, L ⊂ Kε}. (1.5)

An important property of the metric is expressed by the Blaschke selection theorem. For a
contemporary proof as well as for a discussion on other topological aspects of the space
(K, dH) we refer to [121], §1.8.

Theorem 1.3 (Blaschke [37], §18.I). Each bounded sequence in K has a subsequence that
converges to an element of K.

Remark 1.4. It is well known that although the metric dH depends a priori on the choice
of the Euclidean structure on V, the resulting topology does not (see [103]). And in fact,
there are even more equivalent metrics on K (see [130]).

1.1.2 Valuations

Definition 1.5. A functional µ : K → R is called a valuation if

µ(K) + µ(L) = µ(K ∪ L) + µ(K ∩ L) (1.6)

holds for any K, L ∈ K whenever K ∪ L ∈ K.

Remark 1.6. Notice that if K ∪ L ∈ K, then K ∩ L 6= ∅ and hence K ∩ L ∈ K as well.

In other words, valuations are finitely additive measures on convex bodies. The notion
of a valuation dates back to Dehn’s solution [52] of Hilbert’s third problem [81]. Namely,
constructing a scissors-congruence-invariant valuation on polytopes that takes distinct
values on a cube and a tetrahedron of equal volume, Dehn showed that these solids are
not scissors congruent (see also §8.6 of [88] and references therein). Before we list a first
couple of examples, let us mention certain generalizations of this concept.

First, the notion of valuations on convex bodies can be extended by replacing R

in Definition 1.5 with a general abelian semigroup A. In this setting, the plus signs
in (1.6) stand for the semigroup multiplication. The most important non-scalar cases
are Minkowski valuations where A = K (see e.g. [1, 95, 96, 108, 122–126, 138]), or tensor
valuations where A is a quotient of the tensor algebra T(V), typically the symmetric
algebra (see the collection [135] as well as numerous references therein).

Second, other domains thanK have been considered, with (1.6) being appropriately
modified. Examples include function spaces [16, 48, 97, 106], lattice polytopes [39, 98, 101],
or other sets more resembling a convex body, in particular smooth polyhedra (touched
upon briefly in §1.2.3 below).

Example 1.7. The following functionals are valuations (in the sense of Definition 1.5):
(a) restriction of any Borel measure on V to K, in particular the Lebesgue measure voln;
(b) the Euler characteristic defined by χ(K) = 1, K ∈ K;
(c) K 7→ #(K ∩ Γ), where Γ is a Z-lattice in V and # stands for the cardinality.
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Definition 1.8. A valuation µ is said to be
(a) translation invariant if µ(K + x) = µ(K) for any K ∈ K and x ∈ V;
(b) continuous if it is so with respect to the Hausdorff metric.
The set of all translation-invariant continuous valuations is denoted by Val(V) or Val.

It is readily verified (see e.g. [121], Theorem 1.8.20) that voln is continuous and
thus an element of Val. χ ∈ Val is obvious. On the contrary, the valuation defined in
Example 1.7 (c) is clearly neither translation invariant nor continuous. In what follows,
we shall deal entirely with valuations that do enjoy both of these properties.

It follows at once from the linear nature of the defining conditions that Val carries a
natural vector-space structure. As for its dimension, one has

dim Val(V) =

{
2 if dim V = 1,
∞ if dim V ≥ 2.

(1.7)

The former is an easy exercise (see e.g. [15], Proposition 3.0.1), the latter follows from a
certain more involved characterisation result discussed below.

It turns out that, in spite of being infinite-dimensional in general, the space Val is
remarkably structured. The basic pillar underlying a full array of further constructions
is the McMullen grading:

Definition 1.9. µ ∈ Val is said to be k-homogeneous, k ∈ N0, if µ(λK) = λkµ(K) holds
for any λ > 0 and K ∈ K. The corresponding subspace of Val is denoted by Valk.

Theorem 1.10 (McMullen [99]). Let n = dim V as usual. Then

Val =
n⊕

k=0

Valk . (1.8)

Up to the present, only certain classes of valuations have been described explicitly.
With respect to the degree of homogeneity, the following three cases are settled: First,
since tK → {0} in the Hausdorff topology as t→ 0, it is easy to see that

Proposition 1.11. Val0 = span{χ}.

Second, we have the deep theorem due to Hadwiger:

Theorem 1.12 (Hadwiger [76]). Valn = span{voln}.

Remark 1.13. In its original version [76], p. 79, Hadwiger’s theorem characterizes vol
as the unique (up to scaling) n-homogeneous translation-invariant valuation on poly-
topes. This is, however, clearly equivalent to the statement above if we take into account
that polytopes are dense in K (see e.g. [121], Theorem 1.8.16).

Third, Valn−1 is in a certain (precisely described) one-to-one correspondence with the
set of classes of continuous functions on the sphere Sn−1 modulo adding a linear func-
tional. This was first shown for n = 2 by Hadwiger [74, 75] and later on generalized
to any dimension by McMullen [100]. In particular, provided n ≥ 2, we therefore have
dim Val = dim Valn−1 = ∞.

Other classification results all require additional assumptions. Simple valuations,
vanishing on convex bodies of dimension less then n (the dimension of a convex body
is defined to be the dimension of its affine hull), are an important instance resolved by
Klain [86] and Schneider [120]. Last but not least, finite-dimensional subspaces of Val
consisting of valuations fulfilling an extra invariant property will be, rather extensively,
discussed below.
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1.1.3 The Intrinsic Volumes

Besides continuity and translation invariance, the Lebesgue measure has one more re-
markable and fundamental feature. It is a notorious fact that voln is actually invariant
under all rigid motions of the Euclidean space V, i.e. under the Lie group

SO(V) = SO(V)n V, (1.9)

where V is regarded as the abelian group of translations. The same is obviously true
for the constant valuation χ but there are more elements of Val with this property,
interpolating thus, in certain sense, χ and voln. Historically, the role such valuations
have played in convex and integral geometry has been crucial.

One possible starting point and perhaps the most illustrative way to define these
quantities is via the so-called Steiner formula (see e.g. [88], §9.2, or [121], §4.2). See also
the monograph [69] for a more general context of tube formulas.

Theorem 1.14 (Steiner formula). For any K ∈ K and ε > 0,

voln(Kε) =
n

∑
k=0

ωk µn−k(K) εk. (1.10)

Remark 1.15. The spirit of the Steiner formula is well illuminated in a simple particular
case n = 2 when K is a triangle (see [72], Fig. 6.2).

Definition 1.16. The via (1.10) defined functionals µk : K → R, 0 ≤ k ≤ n, are called
the intrinsic volumes.

It is almost immediate (see also [72], p. 105) that the intrinsic volumes inherit from
voln its valuation property, continuity and rigid-motion invariance, as well as that µk is
k-homogeneous. Further, one can easily see that µ0 = χ and µn = voln: just set K = {0}
or send ε→ 0, respectively, in (1.10).

To manifest the attribute intrinsic, let us recall that if ι : V → W is an isometric
embedding into a Euclidean space, dim W = N, and µ̃k are the intrinsic volumes on W,
then ι∗µ̃k = µk, 0 ≤ k ≤ n, and ι∗µ̃k = 0, n + 1 ≤ k ≤ N (see e.g. [72], Proposition 6.7).
In particular, for any k-dimensional convex body K one has µk(K) = volk(K). This also
shows that none of the functionals µk, 0 ≤ k ≤ n, vanishes identically.

As anticipated, the intrinsic volumes can be in fact defined in a number of other
equivalent ways. First, recall the so-called Kubota formulas:

µk(K) =
[

n
k

] ∫
Grk(V)

volk(πEK)dE, (1.11)

πE is the orthogonal projection to E ∈ Grk(V), volk is the Lebesgue measure on E, and
dE is the unique SO(V)-invariant probability measure on Grk(V). Second, one has the
Crofton formulas:

µk(K) =
[

n
k

] ∫
Grn−k(V)

χ(K ∩ E)dE, (1.12)

where dE is the unique SO(V)-invariant measure on Grn−k(V) with

dE
{

F ∈ Grn−k(V) ; F ∩ B
}
= ωn−k,

where B is the unit ball in V (see [88], §6). Concernig the normalizing constants
[

n
k

]
,

the so-called flag coefficients, let us postpone their precise definition to §4.5.2 below.
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Important Remark 1.17. Observe that the argument of χ in (1.12) may be the empty
set. Here and everywhere else the standard convention is adhered to: We put

µ(∅) = 0, µ ∈ Val . (1.13)

Finally, µk is characterized as the unique k-homogeneous rigid-motion-invariant
continuous valuation that agrees with volk on k-dimensional convex bodies (vol0 = χ)
as expressed by the famous Hadwiger theorem:

Theorem 1.18 (Hadwiger [76], §6.1.10). Let µ be a continuous SO(V)-invariant valuation
on K. Then there are constants α0, . . . , αn ∈ R such that µ = ∑n

k=0 αkµk.

For a modern proof of this classical result as well as for (1.11) and (1.12) derived as
its consequences, see §9 of [88]. The Hadwiger theorem has in fact very strong impli-
cations on integral geometry, going far beyond the Kubota and the Crofton formulas.
This will be discussed in the following section.

1.1.4 Kinematic Formulas

Remarkable integral relations are well known to exist among the intrinsic volumes.
Namely, of central importance to numerous disciplines of both theoretical and applied
mathematics are the so-called kinematic formulas, studied in various settings and de-
grees of generality by Blaschke, Chern, Federer, or Santaló (see [88], §10, and [121],
§4.4):

Theorem 1.19 (Blaschke kinematic formulas). For any 0 ≤ k ≤ n and K, L ∈ K,∫
SO(V)

µk(K ∩ gL)dg =
n

∑
i,j=1

ck
i,jµi(K)µj(L). (1.14)

Theorem 1.20 (Additive kinematic formulas). For any 0 ≤ k ≤ n and K, L ∈ K,∫
SO(V)

µk(K + gL)dg =
n

∑
i,j=1

dk
i,jµi(K)µj(L). (1.15)

Here dg is the Haar probability measure on SO(V) and dg is the product measure of
the Haar probability measure and the Lebesgue measure on SO(V)n V.

The existence of kinematic formulas is a consequence of the Hadwiger character-
ization theorem as follows: It is not difficult to verify that the left-hand side of both
(1.14) and (1.15) is a continuous SO(V)-invariant valuation in both arguments K and
L. The constants ck

i,j and dk
i,j appearing in the sums on the right can be then determined

explicitly (in terms of the flag coefficients, see §2.3 in [27]) using the so-called template
method, i.e. by plugging in origin-centered balls of variable radii.
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1.2 Smooth Valuations

Let us now proceed to study the important class of valuations that are in certain precise
sense smooth. Later on, we shall see that such an assumption allows them to carry
remarkable algebraic structures. Also, it will turn out that in fact all the valuations
we come into contact with are smooth. As usual, let V be an n-dimensional Euclidean
space.

1.2.1 The Klain Embedding

Clearly, any µ ∈ Val admits a (unique) decomposition into even and odd parts:

µ(K) =
1
2
[µ(K) + µ(−K)] +

1
2
[µ(K)− µ(−K)] .

In other words, the grading (1.8) can be refined as follows:

Val = Val+⊕Val− =
⊕
σ=±

0≤k≤n

Valσ
k , (1.16)

where Val± = {µ ∈ Val ; µ(−K) = ±µ(K) for all K ∈ K} is the subspace of even / odd
valuations, and Val±k = Valk ∩Val±.

An important and useful description of even valuations was given by Klain [87].
Let µ ∈ Valk(V) and E ∈ Grk(V). By Theorem 1.12, the restriction µ|E ∈ Valk(E) is
a multiple of the (k-dimensional) Lebesgue measure on E. Denote the proportionality
factor by Klµ(E). Continuity of µ then clearly implies continuity of the so-called Klain
function

Klµ : Grk(V)→ R : E 7→ Klµ(E) (1.17)

of µ. The induced linear mapping µ 7→ Klµ, when restricted to Val+k , is an embedding:

Theorem 1.21 (Klain [87]). Let µ ∈ Val+k . If Klµ = 0, then µ = 0.

There is a counterpart theorem for odd valuations proven by Schneider [120]. How-
ever, for the construction of the Schneider embedding is slightly more technical and, as
we shall see later, all valuations we shall work with are in fact even, we do not go into
details here. Instead, we refer to §3.3 of [27] for a lucid exposition.

Example 1.22. Since the Lebesgue measure is even, it follows at once that µk ∈ Val+k .
Further, it is immediate that Klµk ≡ 1 on Grk(V).

1.2.2 Alesker’s Irreducibility Theorem

For coherence of our review, let us recall that it is an easy consequence of the Blaschke
selection theorem 1.3 and the McMullen decomposition (1.8) that Val is a Banach space
with respect to

‖µ‖Val = sup{|µ(K)| ; K ∈ K, K ⊂ B}. (1.18)

It is clear that (1.16) is then a decomposition of Val into closed subspaces. Now, since
GL(V) maps line segments to line segments, the defining action of the Lie group GL(V)
clearly extends from V to K. This extension then naturally induces a continuous repre-
sentation of GL(V) on the Banach space Val as follows:

(g · µ)(K) = µ(g−1K), g ∈ GL(V), µ ∈ Val, K ∈ K. (1.19)

Notice that g · µ ∈ Val is readily verified. It is also immediate that this action preserves
both degree and parity of a valuation. And, in fact,
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Theorem 1.23 (Alesker [4]). For each k and σ, the GL(V)-module Valσ
k is irreducible.

Remark 1.24. Recall that in this context irreducibility means that the (possibly infinite-
dimensional) Banach spaces Valσ

k do not admit any proper closed invariant subspaces
(see also [136], §1.1.1).

The importance of the Irreducibility theorem 1.23 is extraordinary. In fact, Alesker’s
achievement was one of the milestones, if not the starting point itself, of modern valu-
ation theory and it relatively quickly crystallized into a whole variety of algebraic tools
that changed the view of valuations and integral geometry once and for all. The first
consequence (and in fact Alesker’s original motivation, see also [3]) was an affirmative
answer to the conjecture of P. McMullen:

Corollary 1.25 (Alesker’s solution [4] of McMullen’s conjecture [100]). The valuations

K 7→ ψA(K) = voln(K + A), A ∈ K, (1.20)

span a dense subspace of Val.

Remark 1.26. The original statement of the conjecture mentioned the so-called mixed
volumes instead. These valuations are, however, expressible as linear combinations of
valuations (1.20), and vice versa (see [121], Theorem 5.1.7).

One may also wish to consult Alesker’s lecture notes [15].

1.2.3 Smooth Valuations and the Normal Cycle

To illustrate another important implication of the Irreducibility theorem, let us recall
the notion of smooth valuations.

Definition 1.27 (Alesker [8]). A valuation µ ∈ Val is called smooth if the mapping g 7→
g · µ from the Lie group GL(V) to the Banach space Val is infinitely differentiable.

It is well known that the GL(V)-invariant subspace Val∞ of smooth valuations must
be dense in Val (see e.g. [136], §1.6). Importantly, there is an equivalent and much more
explicit description of Val∞ based on the following geometric construction: Consider
the sphere bundle SV = V × Sn−1 over V, then

Definition 1.28. The normal cycle of a convex body K ∈ K is defined as

nc(K) = {(x, v) ∈ SV ; 〈v, y− x〉 ≤ 0 for all y ∈ K}. (1.21)

The notion of normal cycle dates back to work of Wintgen [142] and Zähle [143,144],
it was also studied extensively by Fu [58–62]. Remarkably, this concept extends far
beyond convexity as the class of sets admitting some version of (1.21) is much broader
than K, including e.g. sets of positive reach, the so-called WDC sets (a good source of
reference here is the recent monograph [113]), or smooth manifolds, spanning hence a
bridge to Alesker’s groundbreaking Theory of valuations on manifolds [9–12, 18].

It is well known that nc(K) ⊂ SV is a naturally oriented Lipschitz submanifold of
dimension n− 1 (see [59]). It therefore makes sense to regard it as a current, acting on
Ωn−1(SV) by integration. Crucially, thus viewed, it has the valuation property (1.5)
and, in fact, the Irreducibility theorem implies

Theorem 1.29 (Alesker, Fu [9, 18]). µ ∈ Val is smooth if and only if there exist a ∈ R and
ω ∈ Ωn−1(SV), the latter invariant under translations in V, such that, for any K ∈ K,

µ(K) = a voln(K) +
∫

nc(K)
ω. (1.22)
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We shall indicate the translation invariance by superscript tr (not to be confused
with the trace). Further, let us denote the valuation corresponding to the second factor
of (1.22) by [[ω]]. This defines the (linear) mapping

Ωn−1(SV)tr → Val∞ : ω 7→ [[ω]] =
∫

nc( · )
ω, (1.23)

that is graded with respect to the natural bi-grading of Ω•(SV):

[[ω]] ∈ Valk if ω ∈ Ωk,n−1−k(SV)tr, 0 ≤ k ≤ n− 1. (1.24)

1.2.4 The Rumin Differential and the Kernel Theorem

Theorem 1.29 can be also rephrased as follows: The mapping

R×Ωn−1(SV)tr → Val∞ : (a, ω) 7→ a voln +[[ω]]

is well defined and onto. A natural question then is: What is the kernel of this map? This
clearly shrinks to: When is [[ω]] (identically) zero? Let us recall here an elegant and
extremely useful answer due to Bernig and Bröcker [29], the so-called Kernel theorem.

The sphere bundle carries a natural contact structure encoded in the 1-form

α(x,v)(Z) = 〈v, dπ(Z)〉, Z ∈ X(SV), (1.25)

where π : SV → V is the bundle projection, that distinguishes the vertical forms

Ω•v(SV) = {ω ∈ Ω•(SV) ; ω ∧ α = 0}. (1.26)

The quotient algebra of horizontal forms is then given by

Ω•h(SV) = Ω•(SV)/Ω•v(SV). (1.27)

As usual, the notation Ωv and Ωh extends also to subspaces of Ω•.

Lemma 1.30 (Rumin [116]). For any ω ∈ Ωn−1(SV), there exists a unique ξ ∈ Ωn−2
h (SV)

such that d(ω + α ∧ ξ) ∈ Ωn
v(SV).

Definition 1.31. Keeping the notation of Lemma 1.30, we define the Rumin differential

Dω = d(ω + α ∧ ξ). (1.28)

Example 1.32. Clearly, Dω = 0 if ω ∈ Ωn−1
v (SV).

Theorem 1.33 (Bernig, Bröcker [29]). Let 0 ≤ k ≤ n− 1 and ω ∈ Ωk,n−1−k(SV)tr. Then
(a) if k = 0, then [[ω]] = 0 if and only if ω is exact;
(b) if k > 0, then [[ω]] = 0 if and only if Dω = 0.
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1.3 G-Invariant Valuations

Another striking fact that emerges from Alesker’s theory is the fundamental observa-
tion that the classical integral geometry of intrinsic volumes, as exposed in §1.1.3 and
§1.1.4 above, is in fact only an element of a much broader picture. As Alesker revealed,
the key attribute of the group of rotations that may seem unspectacular at a first glance
but that causes the classical kinematic formulas to actually exist is its transitive action
on the sphere. It is well known that there are more groups with such a property, admit-
ting thus the existence of kinematic formulas. Of course, to exist does not necessarily
mean to be known explicitly. However, the Irreducibility theorem gives rise to a sophisti-
cated algebraic apparatus by means of which general kinematic formulas can be always
obtained, at least in principle.

1.3.1 Abstract Hadwiger-Type Theorem

For the rest of the chapter, we shall live in the standard Euclidean space V = Rn, i.e.
have K = K(Rn) and Val = Val(Rn). Let G ⊂ SO(n) be a compact subgroup. By

ValG = Val(Rn)G = {µ ∈ Val ; µ(gK) = µ(K) for all K ∈ K and g ∈ G}, (1.29)

we denote the subspace of G-invariant valuations. The McMullen grading becomes

ValG =
n⊕

k=0

ValG
k , where ValG

k = ValG ∩Valk . (1.30)

Theorem 1.34 (Alesker1 [3,11]). dim ValG < ∞ if and only if G acts transitively on the unit
sphere Sn−1. If this is the case, then ValG ⊂ Val∞.

Remark 1.35. Groups of this nature are widely known from works of A. Borel [38] and
Montgomery and Samelson [104]: There are six infinite series

SO(n),

U
(n

2

)
, SU

(n
2

)
,

Sp
(n

4

)
, Sp

(n
4

)
U(1), Sp

(n
4

)
Sp(1),

and three exceptions

G2 ⊂ SO(7), Spin(7) ⊂ SO(8), Spin(9) ⊂ SO(16).

Although the notation we use is standard, definitions of all the listed groups will be
recalled in the sequel (see §2.2 and §3.1). For now, let us only mention that the groups
are divided such that the four rows correspond to the four normed division algebras: the
reals R, the complex numbers C, the quaternions H, and the octonions O, respectively.

Alesker’s result is sometimes referred to as Abstract Hadwiger-type theorem: For any
G from the list, there is a (finite) basis of ValG and hence kinematic formulas analogous
to (1.14) and (1.15) exist for precisely the same reason as in the classical case G = SO(n).
Nonetheless, in order to actually obtain the kinematic formulas, one has to deal with

1Alesker proved the if part in [3] and announced the only if part of the theorem in [11]. To the best
of our knowledge, a proof of the latter first appeared in Bernig’s survey [27]. An alternative proof of the
former is due to Fu [63].
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two (in general highly non-trivial) tasks: to find a basis of ValG, and to determine the
unknown constants. The latter will be discussed below. As for the former, let us outline
two possible techniques, especially the first one being particularly convenient for our
later purpose.

By the second part of Theorem 1.34, any G-invariant valuation of degree k < n is
represented by a smooth differential form in the sense of (1.22) – (1.24). Averaging over
the (compact) group G, there is no loss of generality in assuming that the differential
form is G invariant as well (with respect to the diagonal action on the sphere bundle).
In other words, it is enough to consider the forms from Ω•(SRn)G, i.e. invariant under
the group

G = G n Rn ⊂ SO(n) = SO(Rn), (1.31)

acting on the sphere bundle SRn as follows:

g = (g, x) : (y, v) 7→ (gy + x, gv) (1.32)

Observe that the action is clearly transitive.

Proposition 1.36. α ∈ Ω(SRn)G.

Proof. Since dg = (gdy, gdv), this follows at once from (1.25) and G ⊂ SO(n).

Proposition 1.37. For any ω ∈ Ωn−1(SRn)G one has Dω ∈ Ωn
v(SRn)G. Moreover there is

a unique ξ ∈ Ωn−2
h (SRn)G such that Dω = d(ω + α ∧ ξ).

Proof. Let ξ ∈ Ωn−2
h (SRn) be such that Dω = d(ω + α ∧ ξ) and take any g ∈ G. By

Proposition 1.36, the following form is vertical:

g∗Dω = g∗d(ω + α ∧ ξ) = d(g∗ω + g∗α ∧ g∗ξ) = d(ω + α ∧ g∗ξ),

and hence equal to Dω. From uniqueness of ξ it then follows that g∗ξ = ξ.

If the group G contains the element − id, then any G-invariant valuation is even.
This is true for almost all the groups listed above, except SU(2m + 1), m ∈ N, and
G2. In fact, as Bernig showed in [24] and [26], respectively, the hypothesis − id ∈ G is
not necessary, as all G-invariant valuations are even also in these two remaining cases.
Altogether, one has the following result, whose conceptual understanding is, however,
still missing:

Theorem 1.38 (Bernig [26]). If G acts transitively on Sn−1, then ValG ⊂ Val+.

In particular, any k-homogeneous G-invariant valuation is uniquely represented by its
(G-invariant) Klain function on Grk(R

n).

1.3.2 Algebraic Structures on G-Invariant Valuations

Let us now proceed to review some of the important algebraic structures on the space
ValG whose existence is implied by the Irreducibility theorem 1.23. Besides the original
articles, we refer to §3 of the survey [27]. Let us emphasize that although it is enough
for us to consider the case of G-invariant valuations, versions of all of the algebraic
operations and statements we list below are in fact available in much greater generality,
namely on the whole (infinite-dimensional) space Val∞ (cf. §5.2 below).

First, there is the natural Alesker product that turns ValG into a graded algebra and
has in fact all the nice properties one can imagine. It is based on a simple geometric
construction. Let ∆K be the diagonal embedding of K ∈ K(Rn) into R2n = Rn ×Rn.
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Theorem 1.39 (Alesker [8]). Let A, B ∈ K have smooth boundaries with positive curvature.
Then

(ψA · ψB)(K) = vol2n(∆K + A× B), K ∈ K, (1.33)

defines a commutative associative distributive continuous graded product on ValG with unit χ.

Second, there is a remarkable duality on ValG, the so-called Alesker-Fourier transform,
induced by the operation of taking the orthogonal complement. Recall from Theorem
1.38 that ValG ⊂ Val+.

Theorem 1.40 (Alesker [5]). There exists a linear isomorphism F : ValG → ValG such that
(a) F2 = id,
(b) F ValG

k = ValG
n−k,

(c) F(χ) = voln.
In terms of Klain functions, F of µ ∈ ValG

k is given by

KlFµ(E) = Klµ(E⊥), E ∈ Grn−k(R
n). (1.34)

Third, having a product and a Fourier-type transform at our disposal, it is natural
to think of the convolution given by

φ ∗ ψ = F(Fφ ·Fψ), φ, ψ ∈ ValG . (1.35)

The question is, however, whether a formula analogous (1.33) is available. Remark-
ably, Bernig and Fu [30] showed that the answer is indeed affirmative and in fact the
geometric meaning of the convolution is particularly simple, and that, moreover, an
equally simple formula exists in terms of invariant differential forms. Hence, let us take
the liberty to follow Alesker [14] and Wannerer [139, 140] and talk about the Bernig-
Fu convolution. In order to recall the result here, let us first establish some notation.
Namely, we define a linear operator ∗1 on Ω•(SRn) as follows: For ηV ∈ Ωk(Rn) and
ηS ∈ Ωl(Sn−1), let

∗1(ηV ∧ ηS) = (−1)(
n−k

2 )(∗VηV) ∧ ηS, (1.36)

where ∗V is the standard Hodge star operator on Ω•(Rn). Then

Theorem 1.41 (Bernig, Fu [30]). Let A, B ∈ K be as in Theorem 1.39. Then

ψA ∗ ψB = ψA+B (1.37)

defines the convolution on ValG, i.e. a commutative associative distributive continuous graded
product on ValG with unit voln that satisfies (1.35). Furthermore, for ω, τ ∈ Ωn−1(SRn)G,

[[ω]] ∗ [[τ]] =
[[
∗−1

1 (∗1ω ∧ ∗1Dτ)
]]

. (1.38)

Remark 1.42.
(a) The Bernig-Fu convolution is graded by the codegree of a valuation, i.e.

ValG
n−k ∗ValG

n−l ⊂ ValG
n−(k+l) . (1.39)

(b) A formula for the Alesker product analogous to (1.38) was proven by Alesker and
Bernig [17]. However, at the top of the operations of (1.38), it involves fibre integration
which makes it much more difficult to use in practise, in comparison with (1.38).
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We shall also need the following related statement that is certainly well known:

Proposition 1.43. For any ω, τ ∈ Ωn−1(SRn)G,

D
(
∗−1

1 (∗1ω ∧ ∗1Dτ)
)
= ∗−1

1 (∗1Dω ∧ ∗1Dτ). (1.40)

Proof. First, as d ∗1 = (−1)n ∗1 d (see [29], Proposition 4.1) and d(Dτ) = 0, one has

d
(
∗−1

1 (∗1ω ∧ ∗1Dτ)
)
= ∗−1

1 (∗1dω ∧ ∗1Dτ).

Let ξ ∈ Ωn−2(SRn) be such that Dω = d(ω + α ∧ ξ). Then ∗−1
1 (∗1(α ∧ ξ) ∧ ∗1Dτ) is

clearly vertical and since

d
(
∗−1

1 (∗1ω ∧ ∗1Dτ) + ∗−1
1 (∗1(α ∧ ξ) ∧ ∗1Dτ)

)
= ∗−1

1 (∗1dω ∧ ∗1Dτ) + ∗−1
1 (∗1d(α ∧ ξ) ∧ ∗1Dτ)

= ∗−1
1 (∗1Dω ∧ ∗1Dτ)

is vertical as well, the proof is finished.

Fourth, the algebra ValG equipped with either of the two multiplicative structures
we discussed (clearly, (ValG, ·, χ) and (ValG, ∗, voln) are isomorphic as unital algebras)
satisfies the so-called Alesker-Poincaré duality. Namely, let us recall the definition of the
Alesker-Poincaré pairing on ValG:

pd : ValG×ValG → R : (φ, ψ) 7→ (φ · ψ)n, (1.41)

where for µ ∈ ValG, (µ)n voln is its n-homogeneous component. Then

Theorem 1.44 (Alesker [8]). The pairing pd is perfect, i.e. non-degenerate, on ValG.

Important for us is the following observation:

Lemma 1.45 (Bernig, Fu [30]). For any φ, ψ ∈ ValG
k ,

(Fφ) · ψ = φ · (Fψ). (1.42)

As a consequence, one has

Proposition 1.46. For any φ, ψ ∈ ValG,

pd(φ, ψ) = (φ ∗ ψ)0, (1.43)

where for µ ∈ ValG, (µ)0 χ is its 0-homogeneous component.

Proof. Consider φ = ∑n
i=0 φi and ψ = ∑n

j=0 ψj with φi, ψi ∈ Vali. According to (1.42),

(φ · ψ)n =
n

∑
i=0

(φi · ψn−i)n =
n

∑
i=0

(φi ·F2ψn−i)n =
n

∑
i=0

(Fφi ·Fψn−i)n =
n

∑
i=0

(
F(φi ∗ ψn−i)

)
n

=
n

∑
i=0

(φi ∗ ψn−i)0 = (φ ∗ ψ)0.
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Finally, ValG satisfies two versions of the hard Lefschetz property. Let L and Λ be the
linear operators on ValG given by

L : ValG
k → ValG

k+1 : φ 7→ φ · µ1, (1.44)

and

Λ : ValG
k → ValG

k−1 : φ 7→ φ ∗ µn−1. (1.45)

Remark 1.47. Clearly, G ⊂ SO(n) yields ValSO(n) ⊂ ValG, in particular, µ1, µn−1 ∈ ValG.

Theorem 1.48 (Alesker [5, 6], Bernig and Fu [30]).
(a) For 0 ≤ k ≤ n

2 , the following map is an isomorphism:

Ln−2k : ValG
k → ValG

n−k . (1.46)

In particular, L : ValG
k → ValG

k+1 is injective if k < n
2 and surjective if k > n

2 − 1.
(b) For n

2 ≤ k ≤ n, the following map is an isomorphism:

Λ2k−n : ValG
k → ValG

n−k . (1.47)

In particular, Λ : ValG
k → ValG

k−1 is injective if k > n
2 and surjective if k < n

2 + 1.

Remark 1.49. The two parts of the previous theorem are obviously equivalent to each
other via the Alesker-Fourier transform.

Corollary 1.50. Let bk = dim ValG
k . Then bk = bn−k and

1 = b0 ≤ b1 ≤ · · · ≤ bb n
2 c = bd n

2 e ≥ · · · ≥ bn−1 ≥ bn = 1. (1.48)

In fact, one always has b1 = bn−1 = 1:

Proposition 1.51 (Alesker [8]). ValG
1 = span{µ1} and ValG

n−1 = span{µn−1}.

1.3.3 Fundamental Theorem of Algebraic Integral Geometry

Importance of the multiplicative structures introduced in the previous section was fully
revealed when it turned out that a beautiful and intimate relation, usually referred to as
the Fundamental theorem of algebraic integral geometry (FTAIG), exist between them and
the kinematic formulas:

Theorem 1.52 (Bernig, Fu [30]). Let φ1, . . . , φN be a basis of ValG and let M be the matrix of
the Alesker-Poincaré pairing in this basis, i.e.

Mi,j = pd(φi, φj), 1 ≤ i, j ≤ N. (1.49)

Then for any 1 ≤ i ≤ N and K, L ∈ K, one has∫
G

φi(K ∩ gL)dg =
N

∑
j,k=1

(M−1)j,k (φi · φj)(K) φk(L), (1.50)

and ∫
G

φi(K + gL)dg =
N

∑
j,k=1

(M−1)j,k (φi ∗ φj)(K) φk(L), (1.51)

where dg is the Haar probability measure on G and dg is the product measure of the Haar
probability measure and the Lebesgue measure on G = G n Rn.
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According to the FTAIG, knowledge of the Alesker product on ValG is equivalent
to knowledge of the Blaschke kinematic formulas (1.50) while the Bernig-Fu convolution
is related, in precisely the same manner, to the additive kinematic formulas (1.51). In this
sense, the two collections of formulas are dual to each other, the duality being induced
by the Alesker-Fourier transform.

To conclude, let us point out that an important instance of (1.50), the Principal kine-
matic formula

∫
G

χ(K ∩ gL)dg =
N

∑
j,k=1

(M−1)j,k φj(K) φk(L), (1.52)

can be also achieved solely by means of the Bernig-Fu convolution as knowledge of the
convolution is sufficient to determine the Alesker-Poincaré pairing by virtue of (1.43).

1.3.4 A Review of Achieved Results and Open Problems

The contents of the preceding three sections together establish a program whose ideal
outcome would be the complete set of explicit kinematic formulas corresponding to all
of the listed groups with transitive action on a sphere. However, in spite of the whole
array of deep and beautiful results achieved over the past decade, this ultimate goal
remains far from being completely understood and solved. To be more precise, let us
review the most important results and highlight the questions that remain open.

As we have seen, a crucial step in each case is to unfold at least one of the two
reincarnations of the canonical multiplicative structure on the space of invariant valu-
ations. Discussing the other aspects of the surveyed results as well, let us particularly
focus on the algebra structure, as this will establish a suitable context to put the results
of our thesis in.

First, the prototypical case. According to classical Theorem 1.18, the space ValSO(n)

is spanned by the intrinsic volumes. As for the algebra structure, it follows at once
from Theorem 1.48 that each intrinsic volume must be in fact a non-trivial multiple of
a suitable power of either µ1 or µn−1, depending whether with respect to the product
or the convolution. I.e.,

Theorem 1.53 (Hadwiger [76], Alesker [8]).

ValSO(n) = span{µ0, . . . , µn} ∼= R[t]/(tn+1), (1.53)

It is then only a matter of careful treatment of scaling factors to reconstruct the classical
kinematic formulas (1.14) and (1.15) by means of the FTAIG (see e.g. §2.3.4 of [19]).

Second, the Hermitian case G = U(n) has been studied extensively and turned out
to be much more complicated and (thus) interesting. First of all, the inequalities (1.48)
are no longer trivial:

Theorem 1.54 (Alesker [4]). For 0 ≤ k ≤ 2n, dim ValU(n)
k = 1 +

⌊
min{k,2n−k}

2

⌋
.

Further, various bases of ValU(n) were introduced and kinematic formulas were proven
in certain special cases by Park [109], Tasaki [133, 134], and Alesker [5]. A crucial step
towards systematic understanding of Hermitian integral geometry was then made by

Theorem 1.55 (Fu [63]). Let t, s be of formal degree 1, 2, respectively. As graded algebras,

ValU(n) ∼= R[t, s]/( fn+1, fn+2), (1.54)
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where fk = fk(t, s) are the polynomials formally given by

log(1 + tx + sx2) =
∞

∑
k=0

fk(t, s)xk. (1.55)

The general effort culminated in a seminal article [31], where Bernig and Fu introduced
Hermitian analogue of the intrinsic volumes and performed a remarkable synthesis of
all previously known fragments of knowledge, resulting in determination of explicit
kinematic formulas in an n-dimensional Hermitian space in their full generality.

Fourth, the case of the special unitary group turned out not to be very different: As
shown by Bernig [24], in addition to the U(n)-invariant valuations there are two or four
extra generators in degree n, depending on parity of n, responsible for rather cosmetic
changes in the resulting kinematic formulas. See also [7,25] for earlier results on n = 2.

Fifth, Bernig [26] also fully resolved two of the exceptional cases, G2 and Spin(7).
For both groups, a geometric basis was introduced, and kinematic formulas as well as
the algebra structure were determined explicitly, the latter shown to be as follows:

Theorem 1.56 (Bernig [26]). Let t, v, u be of formal degree 1, 3, 4, respectively. Then

ValG2 ∼= R[t, v]/(t8, t2v, v2 + 4t6) (1.56)

and

ValSpin(7) ∼= R[t, u]/(t9, u2 − t8, ut). (1.57)

Sixth, integral geometry of the first non-trivial symplectic group G = Sp(2)Sp(1) is
well explored thanks to Bernig and Solanes [33, 34]. It is in contrast with the preceding
cases that the algebra of Sp(2)Sp(1)-invariant valuations is truly complicated: One has

Theorem 1.57 (Bernig, Solanes [34]). Let t, s, v, u be of degree 1, 2, 3, 4, respectively. Then

ValSp(2)Sp(1) ∼= R[t, s, v, u]/I , (1.58)

where I is the ideal generated by

tk4, tn4, k2n3 −
63
32

π2t3k2 +
743
24

πt2n3,

t3n3, k2k4 −
49
4

π2t4k2, k2n4, n2
3 +

27
14

π4t6 − 33435
896

π3t4k2,

t5k2, k4n3, n3n4,

k2
4 − π4t8, k4n4, n2

4 − 864π4t8,

with

k2 = −12πt2 + 56s,

k4 = −5
2

π2t4 − 16πt2s + 160s2 − 105
2

tv,

n3 = −63π2t3 + 378πts− 630v,

n4 = −2340π2t4 + 17280πt2s− 11520s2 − 31500tv + 10080u.

In higher ranks and also in the cases of Sp(n)U(1) and Sp(n), however, the problem of
determining kinematic formulas remains almost completely open for the ‘only’ piece
of information currently available here are Bernig’s combinatorial formulas [28] for the
Betti numbers, i.e. the dimensions of ValG

k . A glimpse at the first few cases (see Table
2 in [28] for n ≤ 5) foreshadows that it will presumably be a challenge to understand
quaternionic integral geometry. In particular it might be a long way towards a closed
description of the valuation algebras à la Theorem 1.55.

Finally, the last exceptional octonionic case G = Spin(9) is the subject of this thesis
and will be discussed thoroughly in Chapter 4.
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Chapter 2

Octonionic Geometry

2.1 The Algebra of Octonions

The mathematics of octonions is truly essential to our thesis and underlies, literally,
all the problems we discuss. Let us, therefore, begin the second chapter with a careful
review of their basic algebraic properties. For our purpose, we believe, this is best to be
done in a more general context of normed division algebras as this approach naturally
provides us with room for discussing the genealogy of the octonions as well.

2.1.1 Normed Division Algebras

What follows is classical and very clearly explained e.g. in §6 of [79] where the reader
is referred for a reference.

Definition 2.1. A normed division algebra is a Euclidean vector space A equipped with
a bilinear product that admits a unit 1 ∈ A and satisfies, for any x, y ∈ A,

|xy|2 = |x|2 |y|2 . (2.1)

Remark 2.2. An obvious consequence of (2.1) is that A has no zero divisors:

if xy = 0, then x = 0 or y = 0. (2.2)

As usual for unital algebras, we naturally identify R with the subalgebra R · 1 ⊂ A.
Further, we denote ImA = 1⊥. Then we have A = R⊕ ImA and with this respect we
define the real and imaginary part, and the conjugation of x ∈ A respectively as

Re(x) = 〈x, 1〉, (2.3)
Im(x) = x− Re(x), (2.4)

x = Re(x)− Im(x). (2.5)

(2.4) and (2.5) can be easily inverted as follows:

Re(x) =
1
2
(x + x), (2.6)

Im(x) =
1
2
(x− x), (2.7)

and so x ∈ R if and only if x = x and similarly x ∈ ImA if and only if x = −x. It is
also obvious that the conjugation is a linear involution on A.

For w ∈ A, consider the linear operators

Rw : x 7→ xw and Lw : x 7→ wx (2.8)
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of right and left multiplication on A (notice that the product may not be commutative).
Polarizing the central identity (2.1), it is not difficult to conclude (see [79], p. 103) that

R∗w = Rw and L∗w = Lw, (2.9)

as well as

RwRz + RzRw = LwLz + LzLw = 2〈w, z〉 id . (2.10)

As an immediate consequence of (2.9), one has

〈x, y〉 = Re(xy) = Re(xy) = 〈x, y〉 (2.11)

and, since 〈xy, z〉 = 〈xy, z〉 = 〈y, x z〉 = 〈yz, x〉 = 〈z, y x〉 holds for any z ∈ A, also

xy = y x. (2.12)

In particular,

|x|2 = xx = xx (2.13)

and therefore each non-zero x ∈ A has a (unique) multiplicative inverse x−1 = 1
|x|2

x.

Recall that Definition 2.1 does not require A to be associative either. Still, a weaker
form of associativity is always guaranteed in a normed division algebra. Consider the
associator A×A×A → A given by

[x, y, z] = (xy)z− x(yz). (2.14)

It is easily verified (in [79], Lemma 6.11, for instance) that this is an alternating trilinear
map. Consequently, the important Moufang identities hold:

Theorem 2.3 (Moufang [105]). Any elements x, y, z of a normed division algebra A satisfy

x(y(xz)) = (xyx)z, (2.15)
((zx)y)x = z(xyx), (2.16)
(xy)(zx) = x(yz)x. (2.17)

Remark 2.4. Notice that no more additional brackets are needed in the expressions xyx
and x(yz)x as the corresponding associators vanish.

Clearly, the associator is also trivial when (at least) one of its variables is real. This
fact, first, has the following consequence:

[x, y, z] = [Im(x), y, z] = −[x, y, z], (2.18)

second, can be in fact strengthened by induction into

Theorem 2.5 (Artin1 [145]). In a normed division algebra, any subalgebra generated by two
elements is associative.

Remark 2.6. Observe that such a subalgebra is in fact generated by imaginary parts of
the respective elements: for any x ∈ A one has

x = Re(x) Im(x)0 + Im(x), (2.19)

where we put 00 = 1 if necessary. Therefore, it also equals to the subalgebra generated
by the two elements and their conjugates.

Remark 2.7. For a clear exposition of the previous two theorems see also [119], §III.1.
1Emil Artin was given credit for this result by his student Max Zorn who published it in [145].
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2.1.2 The Hurwitz Theorem

We have seen that the compatibility condition (2.1), without any further assumptions,
impose quite non-trivial restrictions on the algebraic structure of a normed division
algebra. It turns out that such a feature is indeed exclusive and in fact, there are essen-
tially just four spaces it is innate to. More precisely,

Theorem 2.8 (Hurwitz [82]). If A is a normed division algebra, then dimA ∈ {1, 2, 4, 8}.

Theorem 2.9 (Robert [115], Hurwitz [83]). Any two normed division algebras of the same
dimension are isomorphic.

Remark 2.10. These two results together are usually referred to as the Hurwitz theorem.2

Representatives of the four (thus non-empty) isomorphism classes were very well
known already prior to the Hurwitz theorem. First and trivially, one has the reals R.
Second, there are the complex numbers C, whose two-dimensional algebraic representa-
tion goes back independently to Hamilton [77] and Gauss (see [114], §I.8). Third, after
almost a decade of unsuccessful struggle towards a normed division algebra in three
dimensions, Hamilton eventually realized that his efforts can only meet with success
when ‘admitting, in some sense, a fourth dimension’ (see [78], p. 108), discovering thus
the algebra H of quaternions (see also [90]). Finally, not long after, the eight-dimensional
octonions O appeared in works of Graves [68] and Cayley (see [47], p. 127).

Let us remark that both parts of the Hurwitz theorem were, nonetheless, originally
stated in terms of existence and uniqueness, respectively, of n-square formulas. That
these could be interpreted concerning the norms of the algebras R, C, H and O was
only realized by Dickson [54].

Historically, the Hurwitz theorem has had a number of relatives. Although they are
not, strictly speaking, directly relevant to our work, let us mention at least some of these
results here. First, as for an ancestor, it was shown independently by Frobenius [57]
and C. S. Pierce3 [111] that any associative unital algebra without zero divisors must be
isomorphic to one of R, C and H. Proceeding to descendants, Albert [2] strengthened
the Hurwitz theorem remarkably by showing that it in fact holds true even when the
norm (2.1) does not necessarily come from an inner product. Finally, from a deep and
fundamental topological result of Bott [40], the so-called Periodicity theorem, Bott and
Milnor [41] and independently Kervaire [85] were able to deduce that general algebras
with no zero divisors can (and as we have seen they really do) only exist in dimensions
1, 2, 4 and 8. Nota bene, there are in fact much more of them than just the four normed
division ones (see [21, 22]). For an excellent systematic account on the aforementioned
as well as many related developments, see Part B of the Collection [55].

2.1.3 The Octonions

We conclude the first part of this chapter by presenting an explicit model for the four
normed division algebra. As we shall see, this very much resembles Matryoshka. Let
us begin with the ‘outer doll’ - the octonions.

As a Euclidean space, O is just R8 equipped with the standard inner product. Let us
denote the standard orthonormal basis by 1, e1, e2, . . . , e7 and let us define the algebra
structure on O as follows:

2Eugène Robert, a student of Adolf Hurwitz, proved the assertion of Theorem 2.9 in his dissertation
[115]. Hurwitz’ Article [83] was published a decade later, containing an explicit reference to the thesis.

3Charles Sanders Pierce published this result as an Appendix to his father Benjamin Pierce’s work
[111].
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(a) 1 is the unit: 12 = 1 and 1ei = ei1 = ei, 1 ≤ i ≤ 7,
(b) ei’s are imaginary units: e2

i = −1, 1 ≤ i ≤ 7,
(c) eiej = −ejei, 1 ≤ i < j ≤ 7, and
(d) e1+ie2+i = e4+i, e2+ie4+i = e1+i, e4+ie1+i = e2+i, 1 ≤ i ≤ 7.

In (d) the indices must be read modulo 7, i.e. e.g. e1e2 = e4, e7e2 = e6, et cetera. Observe
that Im O = span{e1, . . . , e7}. Further, it will be sometimes convenient to denote e0 = 1.

Remark 2.11. A useful mnemonic for the array of rules (d) is the following table

1 2 3 4 5 6 7
2 3 4 5 6 7 1
4 5 6 7 1 2 3

that can be easily completed once we remember the first column. Others may prefer
the so-called Fano plane (see e.g. [20], p. 152) or the circle diagram that is (to the best
of our knowledge) due to Günaydin and Gürsey (see [73], Figure 1).

It is straightforward to check that such a product is indeed compatible, in the sense
of (2.1), with the standard Euclidean structure, recovering thus the famous Degen eight-
square formula [51] (see also [54]). It is also immediately seen that the algebra is neither
commutative nor associative. As for the latter, consider for instance

(e1e2)e3 = e4e3 = −e6 = −e1e5 = −e1(e2e3).

Nonetheless, recall that because of being a normed division algebra, O still possesses
numerous non-trivial algebraic structures and properties as listed above. In this con-
nection, let us emphasize the role of equations (2.10) and of the Moufang identities
(2.15) - (2.17): they are not only extremely useful when computing within O but, since
they provide one with almost the only tool for doing so, they very often exhibit the
power to literally shape the octonionic geometry. We believe that a careful reader may
observe this phenomenon multiple times within the text.

2.1.4 The Quaternions, the Complex Numbers, and the Reals

Let us now recognize the remaining three normed division algebras as subalgebras of
O. First, consider the 4-dimensional subspace span{1, e2, e2, e4} ⊂ O. It follows directly
from the definition of the octonionic algebra in §2.1.3 that this is actually a subalgebra,
it is normed division, and hence the Hurwitz theorem issues the permit to define

H = span{1, e1, e2, e4}. (2.20)

Observe that the algebra H of quaternions is generated by two elements and thus it is
associative by Theorem 2.5. Clearly, H is still non-commutative however. Notice also
that our choice of the inclusion H ⊂ O is far from unique. Second, one possible choice
to define the (commutative) complex numbers is C = span{1, e1}. Finally, one has the
reals R = span{1}.

Remark 2.12. Later on, the following easy observation will be useful: For any x ∈ O\R,
the subalgebra S ⊂ O generated by x is isomorphic to C. Indeed, S is equivalently
generated by Im(x) 6= 0 (see also Remark 2.6), and so

e1 7→
1

|Im(x)| Im(x)

defines an isomorphism C→ S .
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2.2 Some Spin Groups Related to the Octonions

2.2.1 Clifford Algebras and Spin Groups

It is well known that the (connected) groups SO(n) are not simply connected for n ≥ 3
but rather their fundamental groups are π1(SO(n)) ∼= Z2. In other words, associated
with each of these groups is its universal two-sheeted covering group, commonly la-
belled Spin(n). There is a unified construction through which all the Spin groups can
be constructed. It mimics the fact that every rotation composes of a finite number of
reflections. We shall briefly recall the concept here, following §9 and §10 of [79].

Let n ≥ 3 be an integer. The Clifford algebra is by definition the quotient

C(n) = T(Rn)/I (2.21)

by the ideal I ⊂ T(Rn) generated by {x⊗ x+ |x|2 ; x ∈ Rn}. This is a unital associative
algebra of dimension 2n. It comes equipped with the canonical automorphism x 7→ x̃
extended from the involution x 7→ −x on Rn by multilinearity.

Consider further the subset C∗(n) ⊂ C(n) of invertible elements. Obviously, C∗(n)
forms a group. Observe that in particular Rn\{0} ⊂ C∗(n) since x2 = − |x|2 yields

x−1 = − 1

|x|2
x, 0 6= x ∈ Rn. (2.22)

Definition 2.13. One defines

Spin(n) = {a ∈ C∗(n) ; a = x1x2 · · · x2r, r ∈N0, xi ∈ Rn, |xi| = 1}. (2.23)

Remark 2.14. The empty product (r = 0) in (2.23) stands for a = 1, the unit.

One has x⊗ y+ y⊗ x + 2〈x, y〉 ∈ I and thus the Clifford product xy is symmetric or
skew-symmetric if x, y ∈ Rn are collinear or perpendicular, respectively. Consequently,
if 0 6= y ∈ Rn,

x 7→ −yxy−1, x ∈ Rn, (2.24)

is nothing else but the reflection in the hyperplane y⊥. (2.24) then extends to the twisted
adjoint representation Ãd : C∗(n)→ GL(C(n)) : a 7→ Ãda defined by

Ãda(x) = ãxa−1, x ∈ C(n). (2.25)

It is easily seen that for any a = x1 · · · x2r ∈ Spin(n), Ãda(Rn) ⊂ Rn and Ãda|Rn ∈ O(n)
with det(Ãda|Rn) = (−1)2r = 1. In fact, one can show with a little effort that Ãd, thus
viewed, is the covering homomorphism, i.e. the sequence

1→ Z2 → Spin(n) Ãd−→ SO(n)→ 1 (2.26)

is exact. In this context, Ãd is also referred to as the vector representation of Spin(n).
It turns out that each Clifford algebra is isomorphic to one or two copies of a matrix

algebra over either R, C, or H. This isomorphism then descends to another canon-
ical representation of Spin(n), the spin representation. Depending on the anatomy of
the maternal Clifford algebra, this representation is either irreducible or a sum of two
irreducible ones, and it is always faithful. See [79], §11, [20], §2.3 and §2.4, and [56], §1.5.

Remarkably, while the spin groups for n ≤ 6 are just classical matrix groups (cf.
Cartan’s or exceptional isomorphisms), in higher dimensions they are intimately related to
the octonions. The particular cases n = 7, 8, 9 relevant to us were worked out (carefully
indeed) in §14 of [79] and will be recalled in the following sections.
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2.2.2 The Group Spin(9)

Let us begin with n = 9. For it will be very convenient for our purpose, let us adopt the
image of Spin(9) under its (faithful) spin representation as the definition of the group.
To see that this description fits into the general framework outlined in the previous
section, we refer the reader to Lemma 14.77 of [79]. As anticipated, it is natural to
identify the 16-dimensional spin module with the octonionic plane O2.

Definition 2.15. We define Spin(9) to be the subgroup of GL(O2) generated by{(
r Rx

Rx −r

)
; r ∈ R, x ∈ O, r2 + |x|2 = 1

}
. (2.27)

Notice that the generators act on O2 blockwise and from the left, as 2-by-2 block
operators. Formulas for determinants of such operators are well known. Namely, since
the two blocks Rx and −r in the lower row commute, according to [128], Theorem 3,

det
(

r Rx
Rx −r

)
= det(−r2 − RxRx) = det(− id) = 1. (2.28)

Thus, as Spin(9) obviously preserves the standard inner product〈(
x0
x1

)
,
(

y0
y1

)〉
= 〈x0, y0〉+ 〈x1, y1〉 (2.29)

on O2, one has Spin(9) ⊂ SO(O2) = SO(16) in fact. Let us now show what we antici-
pated in the opening chapter:

Proposition 2.16. Spin(9) acts transitively on S15 ⊂ O2.

Proof. First, for any x ∈ O, |x| = 1 we have(
x
0

)
=

(
0 Rx

Rx 0

)(
0 1
1 0

)(
1
0

)
.

Second, if x, y ∈ O satisfy |x|2 + |y|2 = 1 and y 6= 0, we can write

(
x
y

)
=

(
0 R y

|y|

R y
|y|

0

)( |y| R yx
|y|

R xy
|y|
− |y|

)(
1
0

)

It may perhaps illuminate more of the structure of Spin(9) and it will be useful for
us to introduce a different generating set as follows:

Lemma 2.17. Spin(9) is generated by{(
Rz 0
0 Rz

)
; z ∈ O, |z| = 1

}
∪
{(

cos(t) sin(t)
sin(t) − cos(t)

)
; t ∈ [0, 2π)

}
. (2.30)

Proof. First, the generators (2.30) can be obviously expressed in terms of (2.27): observe(
Rz 0
0 Rz

)
=

(
0 Rz

Rz 0

)(
0 1
1 0

)
.

As for the other direction, assume we are given r ∈ R and x ∈ O with r2 + |x|2 = 1. The
case x ∈ R is trivial so assume otherwise. Choose t ∈ [0, 2π) such that r = cos(t) and
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z ∈ O, |z| = 1 such that x = sin(t)z2. Notice that the latter is possible since, according
to Remark 2.12, the subalgebra of O generated by x is isomorphic to C. Then(

Rz 0
0 Rz

)(
cos(t) sin(t)
sin(t) − cos(t)

)(
Rz 0
0 Rz

)
=

(
cos(t)RzRz sin(t)(Rz)2

sin(t)(Rz)2 − cos(t)RzRz

)
=

(
cos(t) sin(t)Rz2

sin(t)Rz2 − cos(t)

)
=

(
r Rx

Rx −r

)
.

The following description of the Lie algebra of Spin(9) is well known (see [45], §2.1).
Consider the following nine elements of the generating set (2.27):

Ii =

(
0 Rei

Rei 0

)
, 0 ≤ i ≤ 7, and I8 =

(
1 0
0 −1

)
, (2.31)

where e0, . . . , e7 is the standard orthonormal basis of O, and denote Ii,j = IiIj. Then

Lemma 2.18. The set {Ii,j ; 0 ≤ i < j ≤ 8} is a basis for the Lie algebra spin(9) of Spin(9).

Proof. First of all, the relations I2
i = id and Ii,j = −Ij,i, i 6= j, are easily shown, the

latter using (2.10). Consequently, as I∗i = I−1
i ∈ SO(16), one has Ii = I∗i and, for i 6= j,

Ii,j = −(Ii,j)
−1 = −(Ii,j)

∗ ∈ so(16).

Observe that the set in question is linearly independent as it can be orthonormalized
with respect to the Frobenius inner product (see [110], Proposition 8): First, for i < j,

tr(Ii,jI∗i,j) = tr(IiIjIjIi) = tr(id) = 16.

Second, for i < j < k, the inner product is

tr(Ii,jI∗i,k) = tr(IiIjIkIi) = tr(IiIiIjIk) = tr(IjIk) = − tr(IkIj) = − tr(IjIk)

and hence trivial. Similarly, for i, j, k, l distinct, one has

tr(Ii,jI∗k,l) = tr(IiIjIlIk) = tr(IjIlIkIi) = − tr(IiIjIlIk) = 0.

Further, it is immediate to verify

[Ii,j, Ik,l ] =


0 if {i, j} ∩ {k, l} = ∅,
−2 Ij,l if i = k, j 6= l,
2 Ij,k if i = l, j 6= k.

(2.32)

Therefore, span{Ii,j ; 0 ≤ i < j ≤ 8} is a 36-dimensional subalgebra of so(16).
To finish the proof is to show that the corresponding one-parameter subgroups

gi,j(t) = exp(t Ii,j) = cos(t) id+ sin(t)Ii,j

lie in Spin(9). First, for 0 ≤ i ≤ 7, since

Ii,8 =

(
0 Rei

Rei 0

)(
1 0
0 −1

)
=

(
0 −Rei

Rei 0

)
,
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one has

gi,8(t) =
(

cos(t) − sin(t)Rei

sin(t)Rei cos(t)

)
=

(
cos(t) Rsin(t)ei

Rsin(t)ei
− cos(t)

)(
1 0
0 −1

)
∈ Spin(9)

by (2.27). Second, for 0 ≤ i < j ≤ 7, since

Ii,j =

(
0 Rei

Rei 0

)(
0 Rej

Rej 0

)
=

(
Rei Rej 0

0 Rei Rej

)
,

the one-parameter subgroups are

gi,j(t) =
(

cos(t) + sin(t)Rei Rej 0
0 cos(t) + sin(t)Rei Rej

)
=

(
Rei 0
0 Rei

)(Rxi,j(t)
0

0 Rxi,j(t)

)

where we denoted xi,j(t) = cos(t)ei + sin(t)ej ∈ O. Observe that |ei| =
∣∣xi,j(t)

∣∣ = 1.
Then gi,j(t) ∈ Spin(9) by (2.30).

Let us give one more equivalent definition of the group Spin(9), this time by more
geometric means. We refer to [20] for details. In analogy to the other normed division
algebras, we define the octonionic projective line OP1 to be the set of octonionic lines

`a =

{(
x
xa

)
∈ O2 ; x ∈ O

}
, a ∈ O,

`∞ =

{(
0
x

)
∈ O2 ; x ∈ O

}
.

(2.33)

OP1 is an 8-dimensional submanifold of Gr8(O2), naturally diffeomorphic to S8. Over
this base, the octonionic Hopf fibration S7 ↪→ S15 → S8 is modelled as follows: a point of
the total space S15 ⊂ O2 is projected to the octonionic line it belongs (observe that there
is always such a line as well as two distinct lines meet only at the origin). Clearly, the
fibre over ` ∈ OP1 then equals S15 ∩ ` = S7. Now,

Proposition 2.19. Spin(9) maps octonionic lines to octonionic lines.

Proof. This is easy to verify once we have the generating set (2.30). First, according to
the Moufang identity (2.16), for z ∈ O, |z| = 1, we have(

Rz 0
0 Rz

)(
x
xa

)
=

(
xz

(xa)z

)
=

(
xz

(((xz)z)a)z

)
=

(
xz

(xz)(zaz)

)
.

Second, let us abbreviate c = cos(t) and s = sin(t), and observe that(
c s
s −t

)(
x
xa

)
=

(
cx + sxa
sx− cxa

)
=

(
x(c + sa)

x(c + sa)(c + sa)−1(s− ca)

)
,

assuming c + sa 6= 0. The remaining cases of `∞ or c + sa = 0 are obvious.

At the same time, Spin(9) preserves the total space S15 ⊂ O2. Hence the group
elements may be viewed as symmetries of the octonionic Hopf fibration. In fact,

Theorem 2.20 (Gluck, Warner, Ziller [66]). The group of symmetries of the octonionic Hopf
fibration is preciely Spin(9), i.e.

Spin(9) = {g ∈ O(O2) ; g` ∈ OP1 for any ` ∈ OP1}. (2.34)
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2.2.3 The Group Spin(8)

It is clear from the abstract point of view of §2.2.1 that the spin groups are naturally
embedded into each other. In this connection it turns out that O2 is the spin module
for Spin(8) ⊂ Spin(9) as well. However, while being irreducible under the latter, it
decomposes into two irreducible components under the action of the former. Let us
again identify Spin(8) with its image under the spin representation. See Theorem 14.19
in [79] for consistency with (2.23). Also, it will soon become apparent that the natural
inclusion Spin(8) ⊂ Spin(9) is preserved in this picture.

Definition 2.21. We define

Spin(8) =
{(

g+ 0
0 g−

)
; g± ∈ O(O), g+(xy) = g−(x)g0(y) for all x, y ∈ O

}
, (2.35)

where we denote

g0(y) = g−(1) g+(y). (2.36)

The vector representation ρ0, positive spin representation ρ+, and negative spin represen-
tation ρ− of Spin(8) are defined as follows:

ρσ :
(

g+ 0
0 g−

)
7→ gσ, σ = 0,+,−. (2.37)

Observe that these irreducible representations are all 8-dimensional, however mutually
non-equivalent (see [79], Theorem 14.3). Remarkably, they are still related to each other
by means of the so-called triality principle. We shall return to this in §2.2.4 below.

Proposition 2.22. For any z ∈ O with |z| = 1,
(

Rz 0
0 Rz

)
∈ Spin(8).

Proof. Let x, y, z ∈ O. By (2.16) one has

Rz(x)
[

Rz(1)Rz(y)
]
= (xz)(zyz) = (((xz)z)y)z = (xy)z = Rz(xy).

As one may observe from (2.32), span{Ii,j ; 0 ≤ i < j ≤ 7} is a (28-dimensional)
subalgebra of spin(9). We have seen in the previous section that the corresponding one-
parameter subgroups gi,j(t), 0 ≤ i < j ≤ 7, all lie in the intersection of the generating
set (2.30) with Spin(8) (see Proposition 2.22). Therefore, the subalgebra is in fact spin(8)
and the one-parameter subgroups generate Spin(8) which is thus seen to be a subgroup
of Spin(9). Also, the following version of Lemma 2.17 holds:

Lemma 2.23. Spin(8) is generated by{(
Rz 0
0 Rz

)
; z ∈ O, |z| = 1

}
. (2.38)

Remark 2.24. It is now easily seen what would require some thought using (2.36) only:

ρ0 :
(

Rz 0
0 Rz

)
7→ LzRz, (2.39)

and so it follows from (2.17) that ρ0 is a representation indeed.

To conclude, recall that Spin(9) acts transitively also on OP1. In this connection,

31



Theorem 2.25. One has Spin(8) = Stab`0 Spin(9). Equivalently Spin(9)/Spin(8) ∼= OP1.

Proof. Clearly, Spin(8) ⊂ Stab`0 Spin(9) is a closed subgroup. Therefore the projection
π : Spin(9)/Spin(8) → OP1 : g Spin(8) 7→ g`0 is a surjective smooth map of smooth
manifolds that moreover commutes with the action of Spin(9) which is clearly transi-
tive on the source space. According to the Equivariant rank theorem (see [94], Theorem
7.25), π is a submersion. Ehresmann’s lemma (see e.g. [42], p. 84) then implies that π
is a fibration. Since

dim Spin(9)− dim Spin(8) = 36− 28 = 8 = dim OP1,

it must be in fact a covering map. Now the claim follows from the fact that OP1 ∼= S8

is simply connected and π is thus necessarily a diffeomorphism.

2.2.4 The Triality Principle

Let us now briefly explain one possible view of triality, an important phenomenon that
is fundamental and unique to the Lie group Spin(8). For general reference see [20],
§2.4, and [65], §20.3.

First of all, associated to Spin(8) is the following symmetric Dynkin diagram:

α1 α2

α3

α4.

In particular, there is a ‘rotational’ symmetry fixing the root α2 and sending α1, α3, α4
to α3, α4, α1, respectively. This transformation induces clearly an automorphism of the
corresponding Cartan subalgebra which then extends to an outer automorphism of the
whole spin(8) (see [65], pp. 338 and 498) and it lifts, finally, to an outer automorphism
τ of Spin(8).

By means of the inverse Cartan matrix, the fundamental weights λi for Spin(8) are
λ1
λ2
λ3
λ4

 =
1
2


2 2 1 1
2 4 2 2
1 2 2 1
1 2 1 2




α1
α2
α3
α4

 .

Therefore, if ρ is an irreducible representation with highest weight ∑4
i=1 kiλi, for some

ki ∈ N0, then k4λ1 + k2λ2 + k1λ3 + k3λ4 is the highest weight of the (irreducible) re-
presentation ρ ◦ τ.

Finally, it is well known that the fundamental weights are the highest weights for
the vector representation ρ0, adjoint representation Ad, and positive and negative spin
representations ρ± of Spin(8), respectively. Thus, in particular, the triality automorphism
τ rotates ρ0, ρ+, ρ− and fixes Ad in the following sense:

ρ0 ◦ τ ∼= ρ+, ρ+ ◦ τ ∼= ρ−, ρ− ◦ τ ∼= ρ0, and Ad ◦ τ ∼= Ad . (2.40)

This can be made fairly explicit in terms of the octonions - see (14.27) in [79]. Namely,
in the language of the previous section, for (g0, g+, g−) ∈ Spin(8), meaning that(

g+ 0
0 g−

)
∈ Spin(8)
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and g0 is as in (2.36), one has

τ : (g0, g+, g−) 7→ (g′+, g′−, g0), (2.41)

where for g ∈ SO(O) we denote

g′(x) = g(x), x ∈ O. (2.42)

2.2.5 The Group Spin(7)

As in the two previous cases, we define the group Spin(7) as the image under its spin
representation, this time an 8-dimensional one. This choice at first distorts the natural
inclusion Spin(7) ⊂ Spin(8), later on, however, we shall identify a copy of Spin(7) in
the groups discussed above. Lemma 14.61 of [79] justifies the following

Definition 2.26. We define

Spin(7) = {g ∈ O(O) ; g(xy) = χg(x)g(y) for all x, y ∈ O}, (2.43)

where we denote

χg(x) = g
(

x · g−1(1)
)

. (2.44)

Remark 2.27. Strictly speaking, our definition of Spin(7) differs from the conventions
used in Harvey’s monograph [79]. Namely, Harvey requires g(xy) = g(x)χg(y) with
χg(y) = g(g−1(1) · y) in place of (2.43). However, it is not difficult to see that the two
resulting (spin) modules are equivalent via the isomorphism (2.42).

Repeating, essentially, the proof of Proposition 2.22 above, it is easily seen that left
multiplication by an imaginary octonion of unit length is an element of Spin(7). In fact,

Lemma 2.28 ([79], Lemma 14.66). Spin(7) is generated by

{Lu ; u ∈ Im O, |u| = 1}. (2.45)

Remark 2.29. In the conventions of [79], one gets Ru in (2.45) instead.

Clearly, det(R1) = det(L1) = det(id) = 1. In fact, since S7 ⊂ O is connected, one
has det(Rx) = det(Lx) = 1 for all x ∈ O with |x| = 1. In particular, Spin(7) ⊂ SO(O).
Further, for u ∈ Im O with |u| = 1,

χLu = −LuRu ∈ SO(O) and χLu(1) = 1. (2.46)

Therefore, (2.44) defines a Spin(7)-representation on O that has two irreducible factors:
the trivial representation R and the vector representation Im O.

Let us conclude this section by explaining why the group Spin(7) is relevant to our
work at all (see [79], Theorem 14.79):

Theorem 2.30. One has Spin(9)/Spin(7) ∼= S15. More precisely, for p =

(
1
0

)
∈ S15 ⊂ O2,

Stabp Spin(9) =
{(

χg 0
0 g

)
; g ∈ Spin(7)

}
. (2.47)
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Proof. Let H ∼= Spin(7) be the group on the right-hand side of (2.47). By (2.46), we have
H{p} = {p}. It only remains to show H ⊂ Spin(9). Indeed, if so, then, repeating the
argument of the proof of Theorem 2.25, we obtain that the projection Spin(9)/H → S15

is actually a diffeomorphism. We prove a stronger statement, namely, that H ⊂ Spin(8)
in fact. By Lemma 2.28, H is generated by{(

−LuRu 0
0 Lu

)
; u ∈ Im O, |u| = 1

}
.

The proof will be finished once we show that each generator fulfils the condition (2.35).
To this end, take x, y ∈ O and observe that, by (2.17),

Lu(x)
[

Lu(1)
(
− LuRu(y)

)]
= −(ux)(uuyu) = −(ux)(yu) = −LuRu(xy).

Corollary 2.31. As a decomposition into irreducible Spin(7)-modules,

O2 ∼= R⊕ Im O⊕O. (2.48)

Corollary 2.32. The isotropy representation of Stabp Spin(9) ∼= Spin(7) at p =

(
1
0

)
∈ S15

decomposes into irreducible modules as

TpS15 ∼= Im O⊕O. (2.49)

2.3 Invariant Theory of Spin(7)

Later on, Spin(9)-invariant valuations will be studied by means of certain invariant
differential forms (see §1.2.3 and §1.3.1). As we shall see, they are in fact determined
in a single point and the Spin(9)-invariance thus descends to that under the stabilizer.
To this end, the goal of the section that follows is to study invariants of both spin and
vector representation of the group Spin(7).

2.3.1 The Cayley Calibration

We begin by introducing an invariant object that is fundamental to the group Spin(7),
in that sense that the amount of information it carries is equivalent to knowledge the
group itself. We refer to [80], §IV.1.C.

Definition 2.33. Let w, x, y, z ∈ O. The triple cross product is defined as

x× y× z =
1
2
[
(xy)z− (zy)x

]
. (2.50)

Then we define the Cayley calibration as

Φ(w, x, y, z) = 〈w, x× y× z〉. (2.51)

Remark 2.34. In [80], slightly different conventions are used. Namely,

1
2
[
x(yz)− z(yx)

]
appears on the right-hand side of (2.50) instead, modifying the definition (2.51) of Φ
accordingly. In fact, this choice is that of the anti-self-dual Cayley calibration while in
our case Φ is self-dual with respect to the standard Hodge star operator (see also [117],
Remark 5.29).
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An alternative description will be often useful:

Proposition 2.35. For any w, x, y, z ∈ O one has

Φ(w, x, y, z) = 〈w, (xy)z〉 − 〈w, x〉〈y, z〉+ 〈w, y〉〈x, z〉 − 〈w, z〉〈x, y〉. (2.52)

Proof. Observe that an easy consequence of (2.10) and (2.11) is

wz + zw = RwRz(1) + RzRw(1) = 2〈w, z〉1 = 2〈w, z〉.

Using this and (2.10) in its original version, one gets

2x× y× z− (xy)z = −(zy)x
= (yz)x− 2〈y, z〉x
= −(yx)z− 2〈y, z〉x + 2〈x, z〉y
= (xy)z− 2〈y, z〉x + 2〈x, z〉y− 2〈x, y〉z,

hence

x× y× z = (xy)z− 〈y, z〉x + 〈x, z〉y− 〈x, y〉z,

and (2.52) follows by taking the inner product with w.

Proposition 2.36. The Cayley calibration is multilinear, alternating, and Spin(7) invariant:

Φ ∈
[∧

4(O)∗
]Spin(7)

. (2.53)

Proof. Multilinearity is obvious. As for the alternating property, observe at first that the
triple cross product is itself alternating:

x× y× x = 0,

x× y× y =
1
2

(
x |y|2 − |y|2 x

)
= 0,

x× x× z = −x× z× x = 0.

Then it remains to show Φ(x, x, y, z) = 〈x, x× y× z〉 = 0 where mutual orthogonality
of x, y, z may be assumed. To this end, by (2.52),

Φ(x, x, y, z) = 〈x, (xy)z〉 = 〈xz, xy〉 = |x|2 〈z, y〉 = 0.

Finally, to prove Spin(7)-invariance, according to Lemma 2.28 and (2.52), it is enough
to show the following holds if u ∈ Im O, |u| = 1:

〈uw, [(ux)(uy)](uz)〉 = −〈uw, [u(xy)u](uz)〉
= −〈Lu(w), LuLxyLuLu(z)〉
= 〈Lu(w), LuLxy(z)〉
= 〈w, (xy)z〉,

the first two equalities following (2.17) and (2.15), respectively.

In fact, as anticipated above and shown e.g. in [117], §9,

Theorem 2.37.

Spin(7) = {g ∈ GL(O) ; g∗Φ = Φ}. (2.54)

Remark 2.38. In the sense of Proposition 2.36 and Theorem 2.37, the version of Spin(7)
discussed in Remark 2.27 is compatible with the anti-self-dual Cayley calibration.
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2.3.2 Two Classical First Fundamental Theorems

After we introduced a particular yet important instance, let us now proceed to more
systematic study of Spin(7)-invariants. We shall adopt the language of the standard
references [92] and [112] (in the latter, see in particular §3.2, §9.1, and §11). It is again
assumed throughout that V is a finite-dimensional real vector space.

Let R[V] be the ring of polynomials on V, i.e. functions V → R that are polynomial
in coordinates with respect to a basis of V. Observe that the notion is independent of a
particular choice of basis. Let G be a group. If V is also a G-module, we denote

R[V]G = {p ∈ R[V] ; g∗p = p for any g ∈ G}, (2.55)

the subring of G-invariants. Naturally, R[V]G =
⊕

d≥0 R[V]Gd is graded by the degree
of homogeneity. Further, via the common procedures of polarization and restitution,
respectively, knowledge of

⊕
d≥0 R[V]Gd is equivalent to that of R[Vd]Gmulti, the space of

multilinear G-invariant polynomials on Vd = V ⊕ · · · ⊕ V (d-times). More generally,
if V = V1 ⊕ · · · ⊕Vn is a sum of submodules, R[V]G determines and is determined by
R[Vd1

1 ⊕ · · · ⊕Vdn
n ]Gmulti, di ≥ 0.

According to the terminology of H. Weyl [141], a result describing a set of gener-
ating elements for either R[V]G or its multilinear equivalents is usually referred to as
the First fundamental theorem (FFT). The Second fundamental theorem (SFT) then specifies
which relations the generators satisfy among each other.

Let us turn our attention to the case G = Spin(7). First, consider the spin module
V = O. As Spin(7) ⊂ SO(8), the inner product on O is clearly a Spin(7)-invariant.
Another invariant we have encountered is the Cayley calibration that was studied in
the previous section. Remarkably, there are no others:

Theorem 2.39 (Schwarz [127]). Let m ≥ 0. R[Om]
Spin(7)
multi is spanned by products of

〈xk1 , xk2〉, 1 ≤ k1 < k2 ≤ m,
Φ(xk1 , xk2 , xk3 , xk4), 1 ≤ k1 < · · · < k4 ≤ m.

Second, consider the vector module V = Im O. Since Spin(7) acts here just like
SO(Im O) = SO(7), the FFT is classical in this case (see e.g. [112], §11.2.1):

Theorem 2.40. Let l ≥ 0. R
[
(Im O)l]Spin(7)

multi = R
[
(Im O)l]SO(7)

multi is spanned by products of

〈uj1 , uj2〉, 1 ≤ j1 < j2 ≤ l,

det(uj1 , . . . , uj7), 1 ≤ j1 < · · · < j7 ≤ l,

Remark 2.41. Let us normalize the determinant such that

det(e1, . . . , e7) = 1 (2.56)

holds for the standard basis of Im O introduced in §2.1.3.

2.3.3 The First Fundamental Theorem for the Isotropy Representation

For our purpose, however, the two FFTs alone are not completely sufficient. What we
shall need is their generalization (one may also say interpolation), namely the FFT for
the Spin(7)-module Im O⊕O. Later on, this fact will be explained carefully, for now,
the decompositions (2.48) and (2.49) may perhaps serve as a rough argument. For we
are not aware that such a result has appeared in the literature, we shall prove the FFT
here. The following two simple but important observations are in the background of
our construction:
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Proposition 2.42. The linear mapping Im O→ End(O) : u 7→ Lu is Spin(7) equivariant.

Proof. This follows at once from Definition 2.26. In fact, let u ∈ Im O and g ∈ Spin(7).
Then for any x ∈ O one has

Lχg(u)(x) = χg(u) · x = χg(u) · g(g−1(x)) = g
(

u · g−1(x)
)
= g ◦ Lu ◦ g−1(x),

and thus Lχg(u) = g ◦ Lu ◦ g−1.

Proposition 2.43. The linear map Π : O⊗O→ Im O given by

Π(x⊗ y) = xy− yx (2.57)

is Spin(7) equivariant.

Proof. According to Lemma 2.28, it is enough to show equivariance under Lu, u ∈ Im O,
|u| = 1. Using the Moufang identity (2.17), this is straightforward:

Π(ux⊗ uy) = (ux)(uy)− (uy)(ux) = −u(xy− yx)u = −u [Π(x⊗ y)] u.

Thus, according to (2.46), Π ◦ (Lu ⊗ Lu) = χLu ◦Π, as desired.

Remark 2.44. Together with the isomorphisms End(O) ∼= O⊗O∗ ∼= O⊗O, the former
being canonical, the latter induced by the (standard) inner product, the previous two
propositions describe a Spin(7)-equivariant embedding of the vector module Im O into
a tensor power of the (defining) spin module O. This is the initial step of the general
strategy towards invariant theory of a general representation outlined in §6.8 of [112].

For brevity, let us denote

Pl,m = R
[
(Im O)l ⊕Om

]Spin(7)

multi
(2.58)

for the rest of this section. Also, we hope it may increase readability that we adhere to
the following rule: the letter u will always refer (within this section) to an element of
the first, while x to an element of the second factor of Im O⊕O.

Lemma 2.45. The map Fl,m : Pl−1,m+2 → Pl,m given by

(Fl,m p)(u1, . . . , ul , x1, . . . , xm) =
7

∑
i=0

p(u1, . . . , ul−1, ulei, ei, x1, . . . , xm), (2.59)

for some positively oriented orthonormal basis e0, . . . , e7 of O, is well defined, linear, and onto.

Proof. First, let f0, . . . , f7 be another positively oriented basis of O, i.e. fi = ∑7
j=0 Ai,jej

for some (Ai,j)7
i,j=0 ∈ SO(8). Then

7

∑
i=0

p(u1, . . . , ul−1, ul fi, fi, x1, . . . , xm) =
7

∑
i,j,k=0

Ai,j Ai,k p(u1, . . . , ul−1, ulej, ek, x1, . . . , xm)

=
7

∑
j,k=0

(AT A)j,k p(u1, . . . , ul−1, ulej, ek, x1, . . . , xm)

=
7

∑
j,k=0

δj,k p(u1, . . . , ul−1, ulej, ek, x1, . . . , xm)
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=
7

∑
j=0

p(u1, . . . , ul−1, ulej, ej, x1, . . . , xm)

and so (2.59) is independent of the choice of basis. Second, Fl,m p is clearly multilinear.
Third, let us show that it is Spin(7) invariant. For any g ∈ Spin(7) ⊂ SO(8) we have

(Fl,m p)
(
χg(u1), . . . , χg(ul), g(x1), . . . , g(xm)

)
=

7

∑
i=0

p
(

χg(u1), . . . , χg(ul−1), χg(ul)g(g−1(ei)), g(g−1(ei)), g(x1), . . . , g(xm)
)

=
7

∑
i=0

p
(

χg(u1), . . . , χg(ul−1), g(ul g−1(ei)), g(g−1(ei)), g(x1), . . . , g(xm)
)

=
7

∑
i=0

p
(

u1, . . . , ul−1, ul g−1(ei), g−1(ei), x1, . . . , xm

)
= (Fl,m p)(u1, . . . , ul , x1, . . . , xm),

since g−1(e0), . . . , g−1(e7) is a positively oriented orthonormal basis of O. Altogether,
we showed that Fl,m is a well-defined mapping.

Linearity of Fl,m is obvious, so let us, finally, show Fl,m is onto. For q ∈ Pl,m we put

p(u1, . . . , ul−1, y, z, x1, . . . , xm) =
1

16
q(u1, . . . , ul−1, yz− zy, x1, . . . , xm),

y, z ∈ O. Clearly, p ∈ Pl−1,m+2 and since

(Fl,m p)(u1, . . . , ul , x1, . . . , xm) =
1
16

7

∑
i=0

q
(

u1, . . . , ul−1, (ulei)ei − ei(ulei), x1, . . . , xm

)
=

1
16

7

∑
i=0

q(u1, . . . , ul−1, 2ul , x1, . . . , xm)

=
1
8

7

∑
i=0

q(u1, . . . , ul−1, ul , x1, . . . , xm)

= q(u1, . . . , ul , x1, . . . , xm),

we in fact have Fl,m p = q.

By induction, one immediately arrives at the following

Corollary 2.46. The linear map Gl,m : P0,m+2l → Pl,m given by

Gl,m = Fl,m ◦ Fl−1,m+2 ◦ · · · ◦ F1,m+2l−2 (2.60)

is onto. Explicitly,

(Gl,m p)(u1, . . . , ul , x1, . . . , xm) =
7

∑
i1,...,il=0

p(u1ei1 , ei1 , . . . , uleil , eil , x1, . . . , xm). (2.61)

We can finally proceed to the statement and proof of the First fundamental theorem:
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Theorem 2.47. Pl,m is spanned by products of appropriate numbers of the following functions:

〈uj1 , uj2〉, 1 ≤ j1 < j2 ≤ l,

det(uj1 , . . . , uj7), 1 ≤ j1 < · · · < j7 ≤ l,

〈Luj1
· · · Lujr

(xk1), xk2〉, 0 ≤ r ≤ 7, 1 ≤ j1 < · · · < jr ≤ l, 1 ≤ k1 < k2 ≤ m,

Φ(xk1 , xk2 , xk3 , xk4), 1 ≤ k1 < · · · < k4 ≤ m,
Φ(ujxk1 , xk2 , xk3 , xk4), 1 ≤ k1 < · · · < k4 ≤ m, 1 ≤ j ≤ l,

where the usual convention ui ∈ Im O and xi ∈ O is employed, such that each of the variables
u1, . . . , ul , x1, . . . , xm occurs exactly once.

Remark 2.48. It is natural to ask about the relations among these generators, in other
words, for the corresponding Second fundamental theorem. In this connection, let us
recall that while the classical SFT for the vector Spin(7)-module is relatively simple (see
[141], §II.17), things are much more complicated in the case of the spin representation as
studied by Schwarz [127]. Either of these invariant theories is included in the invariant
theory for the isotropy representation we are interested in and it is therefore logical to
expect serious difficulties in obtaining an analogous result in our case. No attempt in
this direction has, however, been made.

Proof. Let p ∈ P0,m+2l be a product of

〈xk1 , xk2〉, 1 ≤ k1 < k2 ≤ m + 2l,
Φ(xk1 , xk2 , xk3 , xk4), 1 ≤ k1 < · · · < k4 ≤ m + 2l.

According to Theorem 2.39 and Corollary 2.46, Gl,m p ∈ Pl,m and furthermore, the latter
space is spanned by elements of this type. It is evident from its definition that the map
Gl,m merges the factors of p into (possibly branched) ‘chains’ by plugging uei in some
factor, ei in another, and summing over i (see (2.59)). Observe that the number of x’s
in any such chain is necessarily even. Let us investigate which chains in general occur
in Gl,m p. We shall distinguish four cases. All summations are taken from 0 to 7 if not
stated otherwise for the rest of the proof.
(a) First, there are chains containing no x, i.e. elements of Pr,0, for r ≥ 1. According to
Theorem 2.40, these must be polynomials in inner products and determinants on Im O.
(b) Second, there are chains without Φ that contain two x’s:

∑
i1,...,ir

〈xk1 , eir〉〈ujr eir , eir−1〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉, r ≥ 0, (2.62)

where for r = 0 we have 〈xk1 , xk2〉. Using the decomposition a = ∑i〈a, ei〉ei into an
orthonormal basis of O, (2.62) can be rewritten as follows:

∑
i1,...,ir

〈xk1 , eir〉〈ujr eir , eir−1〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉

= ∑
i1,...,ir

〈ujr〈xk1 , eir〉eir , eir−1〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉

= ∑
i1,...,ir−1

〈ujr xk1 , eir−1〉〈ujr−1 eir−1 , eir−2〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉

= ∑
i1,...,ir−1

〈ujr−1〈ujr xk1 , eir−1〉eir−1 , eir−2〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉
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= ∑
i1,...,ir−2

〈ujr−1(ujr xk1), eir−2〉〈ujr−2 eir−2 , eir−3〉 · · · 〈uj2 ei2 , ei1〉〈uj1 ei1 , xk2〉

...
= 〈Luj1

· · · Lujr
(xk1), xk2〉. (2.63)

Let us explain why there is no loss of generality in assuming r ≤ 7. Suppose r = 8.
Since dim Im O = 7, the following skew-symmetrization must be identically trivial:

∑
π∈S8

sgn(π) Lujπ(1)
· · · Lujπ(8)

= 0. (2.64)

By (2.10) we have LuLv + LvLu = −2〈u, v〉 id for u, v ∈ Im O and thus, since the parity
of a permutation equals the parity of the number of transpositions it consists of, for any
π ∈ S8, one has

sgn(π) Lujπ(1)
· · · Lujπ(8)

= Luj1
· · · Luj8

+ pπ(uj1 , . . . , uj8), (2.65)

where pπ is some End(O)-valued polynomial in inner products and compositions of
at most seven (at most six, in fact) left multiplications. Then, summing (2.65) over all
permutations and making use of (2.64) gives us

0 = ∑
π∈S8

sgn(π) Lujπ(1)
· · · Lujπ(8)

= 8! Luj1
· · · Luj8

+ ∑
π∈S8

sgn(π) pπ(uj1 , . . . , uj8),

i.e. Luj1
· · · Luj8

expressed in terms of inner products and at most seven Ls. By induction,
the same statement extends to all r ≥ 8. Similarly we may assume that j1 < · · · < jr
and k1 < k2 in (2.63). Notice also that any chain without Φ that contains more than two
x’s decomposes into the chains that we have already encountered.
(c) Due to higher complexity of the other cases, let us formalize the reductive method
we used in part (b). Namely, let us introduce an equivalence relation on Ps,r as follows:
we put p ∼ q if p− q is expressible in the invariants considered in parts (a) and (b). For
instance, (2.52) implies

Φ(xk1 , xk2 , xk3 , xk4) ∼ 〈xk1 , (xk2 xk3)xk4〉. (2.66)

Similarly, the following consequence of (2.66) and (2.10) holds:

Φ(xk1 , ujxk2 , xk3 , xk4) ∼ 〈xk1 , ((ujxk2)xk3)xk4〉
∼ −〈xk1 , ((ujxk3)xk2)xk4〉
∼ −Φ(xk1 , ujxk3 , xk2 , xk4)

= Φ(xk1 , xk2 , ujxk3 , xk4),

(2.67)

and extends to other pairs of entries by skew-symmetry.
Consider now a chain in Gl,m p with precisely one Cayley calibration and two x’s. In

this case, however, we have, for some r ≥ 1,

∑
i1,...,ir

〈ujr eir , eir−1〉 · · · 〈uj2 ei2 , ei1〉Φ(uj1 ei1 , eir , xk1 , xk2)

= ∑
i

Φ(Luj1
· · · Lujr

(ei), ei, xk1 , xk2)

∼∑
i

Φ(ei, ei, Lujr
· · · Lujr

(xk1), xk2)

= 0,
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where the same procedure as to obtain (2.63), and the relation (2.67) were used, respec-
tively. As for one Cayley calibration and four x’s, one possibility is

∑
i1,...,ir

〈xk1 , eir〉〈ujr eir , eir−1〉 · · · 〈uj2 ei2 , ei1〉Φ(uj1 ei1 , xk2 , xk3 , xk4)

= Φ
(

Luj1
· · · Lujr

(xk1), xk2 , xk3 , xk4

)
,

for r ≥ 0. In general we could get, through the same mechanism, left multiplications in
other entries of Φ as well but this is redundant because of (2.67). Furthermore, if r = 2,

2Φ
(

xk1 , uj1(uj2 xk2), xk3 , xk4

)
∼ Φ

(
xk1 , uj1(uj2 xk2), xk3 , xk4

)
+ Φ

(
xk1 , uj2(uj1 xk2), xk3 , xk4

)
= Φ

(
xk1 , uj1(uj2 xk2) + uj2(uj1 xk2) + [uj1 , uj2 , xk2 ] + [uj2 , uj1 , xk2 ], xk3 , xk4

)
= Φ

(
xk1 , (uj1 uj2)xk2 + (uj2 uj1)xk2 , xk3 , xk4

)
= −2〈uj1 , uj2〉Φ(xk1 , xk2 , xk3 , xk4)

∼ 0.

By induction this easily extends also to r > 2 and we may thus assume r ≤ 1.
(d) Finally, let us redefine the equivalence relation introduced above by including also
the two new kinds of invariants obtained in part (c) of the proof. Then, observe that
Φ(xk1 × xk2 × xk3 , xk4 , xk5 , xk6) ∈ P0,6 and so, by Theorem 2.39,

Φ(xk1 × xk2 × xk3 , xk4 , xk5 , xk6) ∼ 0.

Using this, consider the following chain, admissible in Gl,m p, containing two Φ’s:

∑
i

Φ(ujei, xk1 , xk2 , xk3)Φ(ei, xk4 , xk5 , xk6)

= ∑
i
〈ujei, xk1 × xk2 × xk3〉〈ei, xk4 × xk5 × xk6〉

= −∑
i
〈ei, uj(xk1 × xk2 × xk3)〉〈ei, xk4 × xk5 × xk6〉

= −〈uj(xk1 × xk2 × xk3), xk4 × xk5 × xk6〉
= −Φ(uj(xk1 × xk2 × xk3), xk4 , xk5 , xk6)

∼ −Φ(xk1 × xk2 × xk3 , ujxk4 , xk5 , xk6)

∼ 0.

Now it is easily seen by induction that any chain containing more that one Φ is in fact
expressible in terms of the invariants introduced above. This completes the proof.

2.4 Moving Spin(9)-Frames

2.4.1 La Méthode de Repère Mobil

Later on we shall take advantage of differentiating invariant differential forms via the
so-called Method of moving frames which is one of the numerous ingenious techniques
invented by Élie Cartan. Let us now recall this concept, not in its full generality of the
so-called Cartan geometries, but rather from the perspective of Klein’s Erlangen program
where a ‘geometry’ is regarded as a homogeneous space of its symmetry group by the
stabilizer of a point. §3 of the monograph [129] will serve us as a reference.
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Let G be a Lie group and g its Lie algebra. Consider the standard actions Lg, Rg, and
Adg = LgRg−1 of G on itself. The key notion here is that of the so-called Maurer-Cartan
form. This is the canonical g-valued differential 1-form on G defined as follows:

ωg(Xg) = (Lg−1)∗(Xg), g ∈ G, X ∈ X(G). (2.68)

It is easily shown that ω is left G invariant, i.e.

L∗gω = ω, g ∈ G, (2.69)

is right G contravariant in the following sense:

R∗gω = (Adg−1)∗ ω = (Lg−1)∗(Rg)∗ ω, g ∈ G, (2.70)

and satisfies the important Maurer-Cartan equation

dω(X, Y) = −[ω(X), ω(Y)], X, Y ∈ X(G). (2.71)

In the special case when G is a subgroup of GL(m, R) and g is the corresponding
Lie subalgebra of gl(m, R), we can write

ωg = g−1dg. (2.72)

(2.71) then becomes, entrywise,

dωij(X, Y) = −
m

∑
k=1

[ωik(X)ωkj(Y)−ωik(Y)ωkj(X)] = −
m

∑
k=1

ωik ∧ωkj(X, Y) (2.73)

which is often abbreviated as

dω = −ω ∧ω. (2.74)

Moreover, (2.70) can be rewritten in terms of matrix multiplication as follows:

R∗gω = g−1ωg, g ∈ G. (2.75)

Let us point out that a generic matrix in g ⊂ gl(m, R) has dim g independent entries
while the other m2 − dim g are uniquely determined as linear combinations of them.
Viewed in this light, the Maurer-Cartan form may be regarded as a collection of dim g
left-invariant differential 1-forms on G whose differentials are expressed back in these
forms themselves, in accordance to the Maurer-Cartan equation. This is the decisive
feature of Cartan’s approach turning the Maurer-Cartan form into a powerful tool for
studying various geometric aspects of manifolds of the form M ∼= G/H, where H ⊂ G
is a closed subgroup.

Remark 2.49. In the special case when M is a finite-dimensional vector space and H ⊂
GL(M), the group of symmetries G = H n M can be identified with the subbundle of
the frame bundle over M corresponding to the reduction of the structure group to H.
So much for the label ‘moving frames’.

2.4.2 Invariant Differential Forms on a Homogeneous Space

Let us recall the standard procedure by virtue of which invariant differential forms are
constructed on a homogeneous space. For reference see [137], §3, and [94], §21.

Let G be a Lie group with a transitive action on a smooth manifold M. Fix a point
p ∈ M and denote H = Stabp G. Then M ∼= G/H. Consider further the corresponding
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projection π : G → M : g 7→ g(p). Recall that π is a smooth submersion. Clearly, it
intertwines the actions of G and H on G and M as follows:

πLg = gπ, g ∈ G, (2.76)
π Adh = hπ, h ∈ H. (2.77)

The corresponding pullback and pushforward maps commute accordingly.

Lemma 2.50. Let β ∈ Ωk(M)G. Then the form β̃ = π∗β ∈ Ωk(G) is
(a) left G invariant:

(Lg)
∗ β̃ = β̃, g ∈ G, (2.78)

(b) right H invariant:

(Rh)
∗ β̃ = β̃, h ∈ H, (2.79)

(c) horizontal:

Xyβ̃ = 0, X ∈ ker π∗ ⊂ X(G). (2.80)

Conversely, assume β̃ ∈ Ωk(G) satisfies (2.78) – (2.80). Then there is a unique β ∈ Ωk(M)G

with β̃ = π∗β.

Proof. First, take an arbitrary β ∈ Ωk(M)G and put β̃ = π∗β. Obviously, β̃ ∈ Ωk(G). To
show (2.78), according to (2.76) and invariance of β, for any g ∈ G one has

L∗g β̃ = L∗gπ∗β = π∗g∗β = π∗β = β̃.

Similarly, to show (2.79), using (2.78), (2.77) and invariance of β, for any h ∈ H,

R∗h−1 β̃ = R∗h−1 L∗h β̃ = R∗h−1 L∗hπ∗β = Ad∗h π∗β = π∗h∗β = π∗β = β̃.

Finally, to see (2.80), take X ∈ ker π∗. Then, for any X(2), . . . , X(k) ∈ X(G),

(Xyβ̃)
(

X(2), . . . , X(k)
)
= β̃

(
X, X(2), . . . , X(k)

)
= (π∗β)

(
X, X(2), . . . , X(k)

)
= β

(
π∗X, π∗X(2), . . . , π∗X(k)

)
= 0.

Conversely, consider β̃ ∈ Ωk(G) with (2.78) – (2.80). Let us construct βp ∈
∧k(Tp M)∗

as follows: For any Y(1)
p , . . . , Y(k)

p ∈ Tp M we put

βp

(
Y(1)

p , . . . , Y(k)
p

)
= β̃e

(
X(1)

e , . . . , X(k)
e

)
,

where X(j)
e ∈ TeG are such that π∗X

(j)
e = Y(j)

p . Notice that there is no ambiguity in the
definition thanks to (2.80). Thus, we have π∗βp = β̃e. Observe also that for any h ∈ H,

(h∗βp)
(

Y(1)
p , . . . , Y(k)

p

)
= βp

(
h∗π∗X

(1)
p , . . . , h∗π∗X

(k)
p

)
= βp

(
π∗(Adh)∗X

(1)
p , . . . , π∗(Adh)∗X

(k)
p

)
= β̃e

(
(Adh)∗X

(1)
p , . . . , (Adh)∗X

(k)
p

)
= Ad∗h β̃e

(
X(1)

p , . . . , X(k)
p

)
= β̃e

(
X(1)

p , . . . , X(k)
p

)
= βp

(
Y(1)

p , . . . , Y(k)
p

)
,

(2.81)
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where (2.77) as well as the invariance assumptions (2.78) and (2.79) were made use of.
Now we smoothly distribute βp over the whole M by the action of G. Namely, for any
q ∈ M, there is gq ∈ G with gq(q) = p. Put

βq = g∗q βp ∈
∧

k(Tq M)∗. (2.82)

Notice that gq is not unique: Let g̃q ∈ G with g̃q(q) = p, then g̃q = hgq for some h ∈ H.
However, it is seen at once from (2.81) that there is no ambiguity in (2.82) either:

(hgq)
∗βp = g∗q h∗βp = g∗q βp.

Clearly, β ∈ Ωk(M)G as it is invariant from the construction. Let us, finally, show that
β has the desired property π∗β = β̃. According to (2.76) and (2.78) we indeed have

π∗βq = π∗g∗q βp = L∗gq
π∗βp = L∗gq

β̃e = β̃g−1
q

for any q ∈ M and, as we have seen, for any g−1
q ∈ π(−1)(q). Obviously, β must be

unique with this property due to the surjectivity of π∗.

The previous lemma gives us a one-to-one correspondence between invariant forms
on the homogeneous space M and properly invariant horizontal forms on the group G.
In other words, a differential form on G built of entries of the Maurer-Cartan form ω
(which is automatically left G invariant) descends to an invariant form on M if and
only if it is horizontal and invariant under H acting on ω by (2.70). Recall that when G
is a matrix group, this action simplifies into (2.75).

2.4.3 Invariant Differential Forms on the Sphere Bundle SO2

Let us now describe in more detail how the general apparatus recalled in the preceding
two sections applies to the case of

Spin(9) = Spin(9)n O2. (2.83)

As usual, we freely identify O2 = R16 via the standard basis of O. Also, we shall take
advantage of using the following index conventions throughout the rest of this chapter:

x =



x0
0
...

x7
0

x0
1
...

x7
1


∈ R16 and A =



A0,0
0,0 · · · A0,7

0,0 A0,0
0,1 · · · A0,7

0,1
...

...
...

...
A7,0

0,0 · · · A7,7
0,0 A7,0

0,1 · · · A7,7
0,1

A0,0
1,0 · · · A0,7

1,0 A0,0
1,1 · · · A0,7

1,1
...

...
...

...
A7,0

1,0 · · · A7,7
1,0 A7,0

1,1 · · · A7,7
1,1


∈ gl(16, R).

First of all, Spin(9) can be viewed as a subgroup of GL(17, R) as follows:

Spin(9) =
{(

g x
0 1

)
; g ∈ Spin(9), x ∈ O2

}
. (2.84)

The corresponding Lie algebra is then

spin(9) =
{(

A x
0 0

)
; A ∈ spin(9), x ∈ O2

}
⊂ gl(17, R). (2.85)
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Let us denote the blocks of the Maurer-Cartan form on Spin(9) in the following way:

ω =

(
ϕ θ
0 0

)
, (2.86)

i.e. in a point g =

(
g x
0 1

)
, we have

ϕg = g−1dg, (2.87)

θg = g−1dx. (2.88)

From now on, let us specialize our discussion to a particular homogeneous space,
namely, to the sphere bundle SO2 = O2 × S15 over the octonionic plane. The standard
action of Spin(9) on SO2

(
g x
0 1

)
: (y, v) 7→ (gy + x, gv) (2.89)

is transitive according to Proposition 2.16. Let us fix the point p = (0, E0) ∈ SO2, where

E0 =

(
1
0

)
∈ S15. Then, according to Theorem 2.30,

H = Stabp Spin(9) =


χh 0 0

0 h 0
0 0 1

 ; h ∈ Spin(7)

 ∼= Spin(7), (2.90)

i.e. SO2 ∼= Spin(9)/Spin(7).

Remark 2.51. Notice that it follows from (2.46) that a general element of H is a block
diagonal matrix with blocks of size 1, 7, 8, and 1, respectively.

The projection π : Spin(9)→ SO2 is in this case given by

π

(
g x
0 1

)
=

(
g x
0 1

)
(0, E0) = (x, gE0), (2.91)

where the second factor of the image is nothing else but the first column of the matrix
g ∈ Spin(9) ⊂ SO(16).

Proposition 2.52. The 1-forms

θa
k , ϕa,0

k,0, 0 ≤ a ≤ 7, k = 0, 1, (2.92)

are horizontal in the sense of (2.80).

Proof. The differential of the projection is

π∗ = (dx, (dg)E0). (2.93)

Consider Y ∈ ker π∗ ⊂ X(Spin(9)), i.e. dx(Y) = 0 and dg(Y)E0 = 0. It then follows
from (2.87) and (2.88), the former rewritten into ϕgE0 = g−1(dgE0), that θ(Y) = 0 and
ϕ(Y)E0 = 0, respectively.
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Let us gather the horizontal forms (2.92) into five O-valued forms as follows: For
the standard orthonormal basis e0, . . . , e7 of O we define

α = θ0
0 , (2.94)

θ0 =
7

∑
a=1

eaθa
0, (2.95)

θ1 =
7

∑
a=0

eaθa
1 (2.96)

ϕ0 =
7

∑
a=1

ea ϕa,0
0,0, (2.97)

ϕ1 =
7

∑
a=0

ea ϕa,0
1,0. (2.98)

Remark 2.53.
(a) Since Spin(9) ⊂ SO(16), one has spin(9) ⊂ so(16) and thus ϕ0,0

0,0 is trivial.
(b) Observe that

θ =

(
α + θ0

θ1

)
and ϕE0 =

(
ϕ0
ϕ1

)
. (2.99)

(c) Notice that we violate, strictly speaking, the notational conventions by not includ-
ing θ0

0 in (2.95). There is a good reason for this. Namely, we shall shortly see that the
(actually real-valued) 1-form α given by (2.94) stays invariant under the right action of
H and descends, thus, to SO2. According to (2.88), one has

θ0
0 = (g−1dx)0

0 = (gTdx)0
0 = 〈gE0, dx〉

and α = θ0
0 is therefore nothing else but the pullback, under (2.91), of the contact form

on SO2 considered in §1.2.4. In this connection, let us emphasize that horizontality as
defined therein and as used here in §2.4 are two completely separate notions.
(d) The algebra of O-valued forms will be studied thoroughly in the next chapter. For
now, no product of forms (2.94) – (2.98) with each other is necessary.

Lemma 2.54. Take any h ∈ Spin(7) and denote h̃ =

χh−1 0 0
0 h−1 0
0 0 1

 ∈ H. Then

R∗h̃α = α, (2.100)

R∗h̃θ0 = χh(θ0), (2.101)

R∗h̃θ1 = h(θ1), (2.102)

R∗h̃ ϕ0 = χh(ϕ0), (2.103)

R∗h̃ ϕ1 = h(ϕ1). (2.104)

Proof. Let us for convenience also denote ĥ =

(
χh−1 0

0 h−1

)
. Then, according to (2.75),

R∗h̃ω = h̃−1ωh̃ =

(
ĥ−1 0

0 1

)(
ϕ θ
0 0

)(
ĥ 0
0 1

)
=

(
ĥ−1ϕĥ ĥ−1θ

0 0

)
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In particular, first, according to (2.99) and (2.46),

R∗h̃

(
α + θ0

θ1

)
=

(
χh 0
0 h

)(
α + θ0

θ1

)
=

(
χh(α + θ0)

h(θ1)

)
=

(
α + χh(θ0)

h(θ1)

)
,

second, according to (2.99) and Remark 2.51,

R∗h̃

(
ϕ0
ϕ1

)
= R∗h̃ ϕE0 = ĥ−1ϕĥE0 = ĥ−1ϕE0 =

(
χh 0
0 h

)(
ϕ0
ϕ1

)
=

(
χh(ϕ0)
h(ϕ1)

)
.

All in all, following the discussion of §2.4.2, one way to describe Spin(9)-invariant
differential forms on SO2 is to find such combinations of the 1-forms (2.92) that stay
invariant under the transformation (2.100) – (2.104) and descends, thus, from Spin(9)
to SO2. This will be done in Chapter 4, using the contents of §2.3. The crucial advantage
of such an approach is that the forms can be then easily differentiated by virtue of the
moving frames. In this connection, the Maurer-Cartan equation (2.74) for the Maurer-
Cartan form (2.86) on Spin(9) reads(

dϕ dθ
0 0

)
= dω = −ω ∧ω = −

(
ϕ θ
0 0

)
∧
(

ϕ θ
0 0

)
= −

(
ϕ ∧ ϕ ϕ ∧ θ

0 0

)
.

Entrywise, for 0 ≤ a, b ≤ 7 and k, l = 0, 1, one has

dθa
k = −

1

∑
j=0

7

∑
c=0

ϕa,c
k,j ∧ θc

j , (2.105)

dϕa,b
k,l = −

1

∑
j=0

7

∑
c=0

ϕa,c
k,j ∧ ϕc,b

j,l . (2.106)

However, as explained in §2.4.1, this picture will only be complete when we determine
the linear relations among the entries of ω, i.e. the relations describing the inclusion
spin(9) ⊂ gl(17, R). It is clear from (2.85) that these are precisely the defining relations
for spin(9) ⊂ gl(16, R), leading thus to relations among entries of ϕ entirely. The rest
of this chapter will be devoted to finding these equations.

2.4.4 Algebra of Extended Indices

It will be convenient to extend the set {0, 1, . . . , 7} of indices corresponding to R8 and
to equip it with certain algebraic structures naturally compatible with the algebra O.

Consider the following set of sixteen distinct formal symbols:

J = {±0,±1, . . . ,±7}, (2.107)

i.e. also 0 6= −0. We define two involutions on J . First, we put

−(±a) = ∓a, 0 ≤ a ≤ 7, (2.108)

second,

a =

{
a, if a = ±0,
−a, if a 6= ±0.

(2.109)
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We translate this notion to the standard orthonormal basis of O accordingly:

e−a = −ea, 0 ≤ a ≤ 7. (2.110)

It is then obvious that

ea = ea (2.111)

holds for any a ∈ J . Similarly we extend this to matrices A = (Aa,b)7
a,b=0 by

A−a,b = Aa,−b = −Aa,b = −A−a,−b, 0 ≤ a, b ≤ 7. (2.112)

Finally, we define a product on J : let a · b = ab be the (unique) element of J such that

eab = eaeb. (2.113)

Importantly, the identity (2.12) remains valid also within the (extended) indices:

ab = ba. (2.114)

2.4.5 The Lie Subalgebra spin(9) ⊂ gl(16, R)

Recall from Lemma 2.18 that the Lie algebra spin(9) is spanned by the following basis:

{Ii,j ; 0 ≤ i < j ≤ 8}, (2.115)

where, for 0 ≤ i ≤ 7,

Ii,8 =

(
0 −Rei

Rei 0

)
, (2.116)

and, for 0 ≤ i < j ≤ 7,

Ii,j =

(
Rei Rej 0

0 Rei Rej

)
. (2.117)

As usual, e0, . . . , e7 is the standard orthonormal basis of O.

Lemma 2.55. If A ∈ spin(9), then for all 0 ≤ a, b ≤ 7 and k, l = 0, 1 one has

Aa,b
k,l = −Ab,a

l,k , (2.118)

Aa,b
1,0 = Aba,0

1,0 , (2.119)

Aa,b
0,0 − Aba,0

0,0 = Aa,b
1,1 − Aba,0

1,1 , (2.120)
7

∑
c=0

Aac,c
1,1 = 4Aa,0

0,0. (2.121)

Proof. First, as Spin(9) ⊂ SO(16), spin(9) ⊂ so(16) which is equivalent to (2.118).
Second, if j < 8, then (Ii,j)

a,b
1,0 = 0 holds for any a, b. Thus Aa,b

1,0 = ∑7
i=0 αi,8(Ii,8)

a,b
1,0

and (2.119) follows from

(Ii,8)
a,b
1,0 = (Rei)

a,b = 〈ea, ebei〉 = 〈ebea, ei〉 = (Rei)
ba,0 = (Ii,8)

ba,0
1,0 .

Third, (Ii,8)
a,b
0,0 = (Ii,8)

a,b
1,1 = 0 for all a, b, i. Hence Aa,b

0,0 = ∑0≤i<j≤7 αi,j(Ii,j)
a,b
0,0 and

similarly for Aa,b
1,1. Then, assuming j ≤ 7, one has

(Ii,j)
a,b
0,0 − (Ii,j)

ba,0
0,0 = (Rei Rej)

a,b − (Rei Rej)
ba,0
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= 〈ea, (ebej)ei〉 − 〈ebea, ejei〉
= 〈ea, (ebej)ei〉 − 〈ea, eb(ejei)〉
= 〈ea, [eb, ej, ei]〉
= 〈ea, [eb, ej, ei]〉
= 〈ea, (ebej)ei〉 − 〈ea, eb(ejei)〉
= 〈ea, (ebej)ei〉 − 〈ebea, ejei〉

= (Rei Rej)
a,b − (Rei Rej)

ba,0

= (Ii,j)
a,b
1,1 − (Ii,j)

ba,0
1,1 ,

using (2.18) for the middle equation, and so (2.120) follows.
Finally, for 1 ≤ j ≤ 7 we can write

7

∑
c=0

(I0,j)
ac,c
1,1 =

7

∑
c=0

(Rej)
ac,c

=
7

∑
c=0
〈eaec, ecej〉

= ∑
c∈{0,j}

〈eaec, ejec〉 − ∑
c/∈{0,j}

〈eaec, ejec〉

= (2− 6)〈ea, ej〉
= 4〈ea, ej〉
= 4(Rej)

a,0

= 4(I0,j)
a,0
0,0.

Similarly, if 1 ≤ i < j ≤ 7, then 0, i, i, |ij| are pairwise distinct and

7

∑
c=0

(Ii,j)
ac,c
1,1 =

7

∑
c=0

(Rei Rej)
ac,c

=
7

∑
c=0
〈eaec, (ecej)ei〉

= ∑
c∈{0,i,j,|ij|}

〈eaec, ec(ejei)〉 − ∑
c/∈{0,i,j,|ij|}

〈eaec, ec(ejei)〉

= ∑
c∈{0,|ij|}

〈eaec, (ejei)ec〉 − ∑
c∈{i,j}

〈eaec, (ejei)ec〉+ ∑
c/∈{0,i,j,|ij|}

〈eaec, (ejei)ec〉

= (2− 2 + 4)〈ea, ejei〉
= 4〈ea, ejei〉
= 4(Rei Rej)

a,0

= 4(Ii,j)
a,0
0,0.

Altogether, ∑7
c=0(Ii,j)

ac,c
1,1 = 4(Ii,j)

a,0
0,0 holds for all 0 ≤ i < j ≤ 7 and (2.121) follows.

Corollary 2.56. Let A ∈ gl(16, R). A ∈ spin(9) if and only if the following relations hold:

Aa,b
1,0 = Aba,0

1,0 , 0 ≤ a ≤ 7, 1 ≤ b ≤ 7, (2.122)

Aa,b
0,1 = −Aab,0

1,0 , 0 ≤ a, b ≤ 7, (2.123)

Aa,a
k,k = 0, 0 ≤ a ≤ 7, k = 0, 1, (2.124)
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Aa,b
1,1 = −Ab,a

1,1, 1 ≤ a < b ≤ 7, (2.125)

Aa,0
1,1 = 2Aa,0

0,0 −
1
2 ∑

c 6=0,a
Aac,c

1,1 , 1 ≤ a ≤ 7, (2.126)

A0,a
1,1 = −2Aa,0

0,0 +
1
2 ∑

c 6=0,a
Aac,c

1,1 , 1 ≤ a ≤ 7, (2.127)

Aa,b
0,0 = −Aba,0

0,0 + Aa,b
1,1 +

1
2 ∑

c 6=0,|ba|
A(ba)c,c

1,1 , 1 ≤ b < a ≤ 7, (2.128)

Aa,b
0,0 = Aab,0

0,0 − Ab,a
1,1 −

1
2 ∑

c 6=0,|ab|
A(ab)c,c

1,1 , 1 ≤ a < b ≤ 7, (2.129)

A0,a
0,0 = −Aa,0

0,0, 1 ≤ a ≤ 7. (2.130)

Proof. For the ‘only if’ direction, it only remains to show (2.126) and (2.128). Indeed,
(2.122) is just a special case of (2.119), and the other relations then follow easily, using
skew-symmetry (2.118). Thus, first, if a 6= 0,

4Aa,0
0,0 =

7

∑
c=0

Aac,c
1,1

= Aa2,a
1,1 + Aa,0

1,1 + ∑
c 6=0,a

Aac,c
1,1

= −A0,a
1,1 + Aa,0

1,1 + ∑
c 6=0,a

Aac,c
1,1

= 2Aa,0
1,1 + ∑

c 6=0,a
Aac,c

1,1 .

Second, for 1 ≤ b < a ≤ 7,
∣∣∣ba
∣∣∣ 6= 0 and so, by (2.120),

Aa,b
0,0 = Aba,0

0,0 + Aa,b
1,1 − Aba,0

1,1

= Aba,0
0,0 + Aa,b

1,1 − 2Aba,0
0,0 +

1
2 ∑

c 6=0,ba

A(ba)c,c
1,1

= −Aba,0
0,0 + Aa,b

1,1 +
1
2 ∑

c 6=0,ba

A(ba)c,c
1,1 .

As for the ‘if’ direction, it is evident that the relations are linearly independent in
the given range of indices, in that sense that the corresponding linear functionals on
gl(16, R) are (ξ ∈ gl(16, R)∗ corresponds to the relation ξ(A) = 0). Since there are

56 + 64 + 16 + 21 + 7 + 7 + 21 + 21 + 7 = 220

of them in number, the claim follows by dimension counting.

Remark 2.57. In a generic matrix A ∈ spin(9) ⊂ gl(16, R), therefore, the 36 entries

Aa,0
0,0, 1 ≤ a ≤ 7,

Aa,0
1,0, 0 ≤ a ≤ 7,

Aa,b
1,1, 1 ≤ b < a ≤ 7,

are independent while the others are expressed in terms of them via (2.122) – (2.130).
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Chapter 3

Octonion-Valued Forms
and the Spin(9)-Invariant 8-Form

3.1 Canonical Invariant Forms

We have seen in the previous chapter (cf. Theorem 2.37) that the group Spin(7) can be
equivalently characterized as the subgroup of GL(O) stabilizing the Cayley calibration.
Furthermore, it follows easily from the First fundamental theorem 2.39 that[∧

4(O)∗
]Spin(7)

= span{Φ}. (3.1)

In this sense, the Cayley calibration is the canonical invariant 4-form of the group Spin(7).
It is well known that Spin(7) is not the only one among the groups acting transitively on
a sphere (which we listed in Remark 1.35 above) that admits such a canonical invariant
(see e.g. [36], Table 1 on p. 311). And in fact most of these groups are then precisely the
stabilizers of the respective forms.

First, corresponding to the unitary group

U(n) = {A ∈ GL(n, C) ; A∗A = id} , (3.2)

where A∗ is the (complex) conjugated transpose of the complex n by n matrix A, is the
Kähler form ω on Cn. This canonical U(n)-invariant 2-form is usually given by (see e.g.
[84], p. 31)

ω =
i
2

n

∑
j=1

dzj ∧ dzj, (3.3)

where dz1, . . . , dzn are the complex coordinate 1-forms on Cn. Notice that in this case
U(n) $ {g ∈ GL(Cn) ; g∗ω = ω}.

Remark 3.1. Only for completeness of Remark 1.35, let us recall that the special unitary
group is defined as SU(n) = {A ∈ U(n) ; det A = 1}.

Second, the (compact) symplectic group is defined as follows:

Sp(n) = {A ∈ GL(n, H) ; A∗A = id} , (3.4)

where A∗ is the (quaternionic) conjugated transpose of A. It acts on Hn from the left.
Consider the groups Sp(n)× Sp(1) and Sp(n)×U(1), where the second factors act on
Hn from the right, by multiplication by a unit quaternion and a unit complex number,
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respectively. The kernel of their action on Hn is in both cases {(id, 1), (− id,−1)} ∼= Z2.
In this connection, we define

Sp(n)Sp(1) = Sp(n)× Sp(1)/Z2 (3.5)

and similarly Sp(n)U(1). Among the symplectic groups, only the groups in the series
Sp(n)Sp(1) are big enough to admit a canonical invariant form, namely, Sp(n)Sp(1) is
the stabilizer of the Kraines 4-form on Hn defined as follows (see [93] and [118], p. 126):

Ω = ΩI ∧ΩI + ΩJ ∧ΩJ + ΩK ∧ΩK, (3.6)

where for u =

u1
...

un

 ∈Hn and v =

v1
...

vn

 ∈Hn we put

ΩI(u, v) = ∑
i
〈uie1, vi〉, ΩJ(u, v) = ∑

i
〈uie2, vi〉, ΩK(u, v) = ∑

i
〈uie4, vi〉. (3.7)

Remark 3.2. Later on we shall see (the expected and well-known fact) that the defini-
tion (3.6) of Ω is independent of the particular choice of the basis {e1, e2, e4} of Im H.

Third, similar to Spin(7) is the description of another exceptional group. Namely,
the group

G2 = {g ∈ GL(O) ; g(xy) = g(x)g(y), for all x, y ∈ O} (3.8)

of automorphisms of the octonion algebra can be equivalently defined as the stabilizer
of the associative calibration, the canonical G2-invariant 3-form on Im O given by

φ(x, y, z) = 〈x, yz〉. (3.9)

This was shown by Bryant in §2 of his seminal paper [44].
Finally, the fact that there exists a non-trivial Spin(9)-invariant 8-form Ψ on O2 that

is moreover unique up to a scaling factor was first observed by Brown and Gray [43].
Berger [23] then showed that, for some constant c1 ∈ R,

Ψ = c1

∫
OP1

π∗` ν` d`, (3.10)

where ν` is the volume form on ` ∈ OP1, π` : O2 → ` is the orthogonal projection and
d` is the Haar measure on (the naturally oriented manifold) OP1 ∼= Spin(9)/Spin(8)
(see Theorem 2.25). In spite of elegance of (3.10), it turned out that, algebraically, Ψ
is indeed a complicated object and in fact the first algebraic formulas appeared quite
recently. Namely, it is due to Castrillón López et al. [45] that, for some c2 ∈ R,

Ψ = c2

8

∑
i,j,k,l=0

ωij ∧ωik ∧ωjl ∧ωkl , (3.11)

where ωij = 〈·, Ii,j ·〉 ∈ ∧2(O2)∗ and Ii,j ∈ End(O2) are as in §2.2.2. Another interpre-
tation was given by Parton and Piccini [110] who used the computer algebra system
MATHEMATICA to compute, directly from (3.10), all 702 (!) terms of Ψ in the standard
basis and proved further that the 8-form is proportional to the fourth coefficient of the
characteristic polynomial of the matrix (ωij)

8
i,j=0. Very recently, Castrillón López et al.

[46] showed that this approach differs from (3.11) just from a combinatorial point of
view. For the fact that Spin(9) is precisely the stabilizer of Ψ, see [45], §3, and [50], §1.
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Let us summarize these results into Table 3.1. Each row corresponds to a canonical
G-invariant m-form α on V, i.e. [∧

mV∗
]G

= span{α}. (3.12)

Moreover, for G 6= U(n), one has

G = {g ∈ GL(V) ; g∗α = α} . (3.13)

G V m canonical invariant α

U(n) Cn 2 Kähler form ω

Sp(n)Sp(1) Hn 4 Kraines form Ω

G2 Im O 3 associative calibration φ

Spin(7) O 4 Cayley calibration Φ

Spin(9) O2 8 ? Ψ

Table 3.1: Canonical invariant forms

Our goal in this chapter is to give new algebraic formulas for the canonical invariant
forms other than ω. In particular we obtain a simple formula for the Spin(9)-invariant
8-form Ψ that will allow us to recover its expression in the standard basis easily by hand.

Central to our approach is the following observation: In (3.3), the real form ω is
regarded as an element of a bigger (real) algebra C⊗∧•(Cn)∗ of complex-valued forms,
equipped with the (wedge) product arising naturally on the tensor product of two (real)
algebras and with the conjugation extended from C. A natural question is: The group
U(n) is closely related to the complex numbers, so is it possible to move further along
the path R – C – H – O in order to obtain analogous formulas for the groups corre-
sponding to the other normed division algebras? As we shall see, the answer is in-
deed ‘yes’. However, particular care is required when treating forms with values in the
quaternions or octonions due to lack of commutativity and associativity, respectively.

The results of the current chapter were published in [91].

3.2 Octonion-Valued Forms

3.2.1 Alternating Forms

In this section, the algebra of (real) alternating forms will be extended by allowing them
to take values in the octonions. Basic properties of these objects will be discussed as
well as first examples. Assume throughout that V is a d-dimensional (real) vector space.

Definition 3.3. Let 0 ≤ k ≤ d. We define∧
k
OV∗ = O⊗

∧
kV∗. (3.14)

We call an element of
∧k

OV∗ an octonion-valued form of degree k on V. Further, we denote

∧•
OV∗ = O⊗

∧•V∗ = d⊕
k=0

∧
k
OV∗, (3.15)
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the graded algebra equipped with the natural product

(u⊗ ϕ) ∧ (v⊗ ψ) = (uv)⊗ (ϕ ∧ ψ). (3.16)

Notice that the real algebra
∧•

OV∗ is neither associative nor alternating. Nonethe-
less, we still find it natural to denote the product (3.16) with the same wedge symbol,
as it extends the standard wedge product on the subalgebra∧•V∗ = span{1} ⊗

∧•V∗ ⊂ ∧•OV∗.

Example 3.4. Let V = O2. We define the octonionic coordinate 1-forms dx, dy ∈ ∧1
O(O

2)∗

on O2 as

dx
(

u1
u2

)
= u1 and dy

(
u1
u2

)
= u2. (3.17)

Let e0, . . . , e7 be an orthonormal basis of O and consider the corresponding canonical
basis dx0, . . . , dx7, dy0, . . . , dy7 of

∧1(O2)∗, i.e.

dxi
(

u1
u2

)
= 〈ei, u1〉 and dyi

(
u1
u2

)
= 〈ei, u2〉.

Then

dx =
7

∑
i=0

ei ⊗ dxi and dy =
7

∑
i=0

ei ⊗ dyi (3.18)

and so it is transparent that dx and dy are octonion-valued 1-forms indeed.

From now on, the following conventions will be adhered to, regarding octonion-
valued forms. First of all, the tensor-product symbol will be omitted, i.e.

uϕ = u⊗ ϕ ∈
∧•

OV∗, (3.19)

for the sake of brevity. Further, if F : O→ O is an linear function, we define its (linear)
extension to

∧•
OV∗ by

F(uϕ) = F(u)ϕ. (3.20)

Examples of such functions we shall use are the involution, right/left multiplication by
an octonion, or the real-part operator.

Proposition 3.5. For any α ∈ ∧k
OV∗ and β ∈ ∧l

OV∗ one has

α ∧ β = (−1)kl β ∧ α. (3.21)

Proof. By linearity we may assume α = uϕ and β = vψ for some ϕ ∈ ∧kV∗, ψ ∈ ∧lV∗,
and u, v ∈ O. Then

α ∧ β = (uv)ϕ ∧ ψ = (uv)ϕ ∧ ψ = (−1)kl(v u)ψ ∧ ϕ = (−1)kl β ∧ α.

To conclude this section, let us make three simple observations that will be useful
later on. First, for any α ∈ ∧•OV∗,

α ∈
∧•V∗ if and only if Re(α) = α if and only if α = α. (3.22)

Second, for uϕ, vψ ∈ ∧•OV∗ one has

Re
(
uϕ ∧ vψ

)
= Re(uv) ϕ ∧ ψ = 〈u, v〉 ϕ ∧ ψ. (3.23)

Finally, if e0, . . . , e7 is an orthonormal basis of O, then it is a consequence of (3.23) that
for any α, β ∈ ∧•OV∗ with α = ∑i eiα

i and β = ∑i eiβ
i one has

Re(α ∧ β) =
7

∑
i=0

αi ∧ βi = Re(α ∧ β). (3.24)
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3.2.2 Differential Forms

It is straightforward to generalize the contents of the previous section to differential
forms. Let M be a d-dimensional smooth manifold. We define

Ωk
O(M) = O⊗Ωk(M) (3.25)

and

Ω•O(M) = O⊗Ω•(M) =
d⊕

k=0

Ωk
O(M), (3.26)

where the latter is turned into a (non-associative) graded algebra by means of

(u⊗ ϕ) ∧ (v⊗ ψ) = (uv)⊗ (ϕ ∧ ψ). (3.27)

Again, the tensor-product symbol is omitted and linear operators extend naturally
from both factors of the tensor product. Notice that we did not consider (although we
could) any extension from the second factor in the alternating case but it is of particular
importance here as it includes the exterior differential or pullback of a smooth map. As
for the relations (3.21) – (3.24), they obviously remain valid in the smooth setting so let
us, for simplicity, refer to them also in this more general context.

Remark 3.6. To the best of our knowledge, octonion-valued (differential) forms were
considered for the very first time in a recent paper by Grigorian [70]. Being more spe-
cialized yet more subtle, his perspective slightly differs from ours. Namely, Grigorian
considers smooth sections of the bundle

∧•(T∗M)⊗OM, where M is a 7-dimensional
smooth manifold and OM = (M×R)⊕ TM is the so-called octonion bundle equipped
fibrewise with an octonionic multiplication induced by a given G2-structure (reduction
of the frame-bundle structure group to G2). In this setting, hence, the multiplicative
structure on the target space (more precisely its imaginary part) of an octonion-valued
form may vary from point to point, unlike in our case. This allows the author to inter-
pret the torsion of the G2-structure as an Im O-valued 1-form on M (see [70] for details).

Let us mention that the presence of Grigorian’s work was revealed to us after most
of the material of this chapter was finished and it did not influence our approach at all.

3.3 Three Toy Examples

It turns out that it is more or less straightforward to rewrite the definitions of the forms
Ω, φ, and Φ given above (see also Table 3.1) in terms of quaternion- an octonion-valued
forms, respectively. For we are, nonetheless, not aware that such formulas have previ-
ously appeared in the literature, let us derive them now.

3.3.1 The Kraines 4-Form

Let us begin with the canonical Sp(n)Sp(1)-invariant 4-form on Hn. Similarly as for O,
we define quaternion-valued forms on a vector space V:∧

k
HV∗ = H⊗

∧
kV∗ ⊂

∧
k
OV∗, (3.28)

0 ≤ k ≤ d = dim V, and

∧•
HV∗ = H⊗

∧•V∗ = d⊕
k=0

∧
k
HV∗ ⊂

∧•
OV∗. (3.29)
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The inclusions correspond to H ⊂ O (cf. §2.1.4). Notice that, since H is associative,
associativity of the wedge product (3.16) is also recovered when restricting from

∧•
OV∗

to
∧•

HV∗. We shall need the following

Lemma 3.7. Let V be a vector space. For any α ∈ ∧•HV∗, we have

(Re1 Le1 + Re2 Le2 + Re4 Le4)(α) = −α− 2α. (3.30)

Proof. Without loss of generality, we may assume that α = uϕ for some u ∈ H and
ϕ ∈ ∧•V∗. Then since {1, e1, e2, e4} is an orthonormal basis of H, for any u ∈H we can
write

u = 〈1, u〉1 + 〈e1, u〉e1 + 〈e2, u〉e2 + 〈e4, u〉e4

=
1
2
[(u + u) + (e1u + u e1)e1 + (e2u + u e2)e2 + (e4u + u e4)e4]

=
1
2
(u + 4u + e1ue1 + e2ue2 + e4ue4) ,

therefore e1ue1 + e2ue2 + e4ue4 = −u− 2u and (3.30) follows.

From now on, we shall consider the vector space V = Hn. First of all, let us define,
as in Example 3.4, the quaternionic coordinate 1-forms dw1, . . . , dwn ∈

∧1
H(Hn)∗ by

dwi(u) = ui, 1 ≤ i ≤ n. (3.31)

Recall that ui is the i-th component of u ∈Hn. Then

Theorem 3.8. The Kraines form on Hn equals

Ω =
1
4

n

∑
i,j=1

dwi ∧ dwj ∧ dwj ∧ dwi. (3.32)

Remark 3.9. If we denote Ωi,j = dwi ∧ dwj, then, by (3.21), Ωi,j = −dwj ∧ dwi, and so
(3.32) takes the following symmetric form, more resembling (3.3):

Ω = −1
4

n

∑
i,j=1

Ωi,j ∧Ωi,j. (3.33)

Proof. First, for any u, v ∈Hn and 1 ≤ i ≤ n we have

2〈uie1, vi〉 = uie1vi − vie1ui

= dwi(u) e1 dwi(v)− dwi(v) e1 dwi(u)

=
[

Re1(dwi) ∧ dwi

]
(u, v)

=
[
dwi ∧ Le1(dwi)

]
(u, v),

hence

2ΩI = ∑
i

Re1(dwi) ∧ dwi = ∑
i

dwi ∧ Le1(dwi),

and similarly for ΩJ and ΩK. The Kraines form (3.6) therefore reads

1
4 ∑

i,j
dwi ∧

[
Le1(dwi) ∧ Re1(dwj) + Le2(dwi) ∧ Re2(dwj) + Le4(dwi) ∧ Re4(dwj)

]
∧ dwj
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=
1
4 ∑

i,j
dwi ∧ (Re1 Le1 + Re2 Le2 + Re4 Le4)(dwi ∧ dwj) ∧ dwj.

Further, according to Lemma 3.7 and (3.21),

Ω =
1
4 ∑

i,j
dwi ∧ (2dwj ∧ dwi − dwi ∧ dwj) ∧ dwj. (3.34)

Now, from (3.24) we have

dwi ∧ dwj − dwj ∧ dwi = 2 Re(dwi ∧ dwj)

= 2 Re(dwi ∧ dwj)

= dwi ∧ dwj − dwj ∧ dwi.

Again by (3.21), this is a real form. Let us denote it by β. Since β is moreover of even
degree, it commutes with any element of

∧•
HV∗ and hence

(2dwj ∧ dwi − dwi ∧ dwj) ∧ dwj

= 2dwj ∧ dwj ∧ dwi + 2dwj ∧ β− dwj ∧ dwi ∧ dwj − β ∧ dwj

= dwj ∧ dwj ∧ dwi + 2dwj ∧ β− dwj ∧ β− β ∧ dwj

= dwj ∧ dwj ∧ dwi.

Plugging this identity back into (3.34), the claim follows.

3.3.2 The Cayley Calibration Revisited

Let dx ∈ ∧1
O(O)∗ be the octonionic coordinate 1-form, i.e. the identity, on O.

Proposition 3.10. The Cayley calibration on O equals

Φ = − 1
24

(dx ∧ dx) ∧ (dx ∧ dx). (3.35)

Proof. Since Φ is alternating, using (2.52), one has

− 4! Φ(x1, x2, x3, x4)

= 4! Φ(x1, x4, x3, x2)

= ∑
π∈S4

sgn(π)Φ(xπ(1), xπ(4), xπ(3), xπ(2))

= ∑
π∈S4

sgn(π) 〈xπ(1)xπ(2), xπ(4)xπ(3)〉

=
1
2 ∑

π∈S4

sgn(π)
[
(xπ(1)xπ(2))(xπ(3)xπ(4)) + (xπ(3)xπ(4))(xπ(1)xπ(2))

]
= ∑

π∈S4

sgn(π) (xπ(1)xπ(2))(xπ(3)xπ(4))

=
[
(dx ∧ dx) ∧ (dx ∧ dx)

]
(x1, x2, x3, x4).

3.3.3 The Associative Calibration

Let us denote the restriction of the octonionic coordinate 1-form on O to Im O by the same
symbol, i.e. now we have dx ∈ ∧1

O(Im O)∗.
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Proposition 3.11. The associative calibration on Im O equals

φ = − 1
12

[
(dx ∧ dx) ∧ dx + dx ∧ (dx ∧ dx)

]
. (3.36)

Proof. Analogous to Proposition 3.10,

−3! φ(x1, x2, x3) = 3! φ(x1, x3, x2)

= ∑
π∈S3

sgn(π) φ(xπ(1), xπ(3), xπ(2))

= ∑
π∈S3

sgn(π) 〈xπ(1), xπ(3)xπ(2)〉

=
1
2 ∑

π∈S3

sgn(π)
[

xπ(1)(xπ(2)xπ(3))− (xπ(3)xπ(2))xπ(1)

]
=

1
2 ∑

π∈S3

sgn(π)
[

xπ(1)(xπ(2)xπ(3)) + (xπ(1)xπ(2))xπ(3)

]
=

1
2

[
(dx ∧ dx) ∧ dx + dx ∧ (dx ∧ dx)

]
(x1, x2, x3).

3.4 The Spin(9)-Invariant 8-Form

Finally, the notion of octonion-valued forms introduced in §3.2.1 will be applied, this
time in its full strength, in order to express the canonical Spin(9)-invariant 8-form Ψ
in terms of the octonionic coordinate 1-forms dx and dy on O2. Unlike in the previous
cases, the algebraic formulas for Ψ recalled in §3.1 are too complicated to be simply
transformed into the desired form. Instead, we shall independently construct a real al-
ternating 8-form on O2 that is non-trivial and Spin(9)-invariant and must be, therefore,
collinear to Ψ. The explicit proportional factor can be then determined by expressing
the form in the standard real basis (see Appendix A).

Important Remark 3.12. As we shall, for the sake of space, usually omit commas in
subscripts, let us emphasize that no product of indices in the sense of §2.4.4 is considered
at all in the current chapter.

Let us begin with a technical lemma. Let V be a general vector space. First, assume
α1, . . . , α4 ∈

∧•
OV∗ and define, for the purpose of this section,

F (α1, α2, α3, α4) = ((α1 ∧ α2) ∧ α3) ∧ α4. (3.37)

Then,

Lemma 3.13. For any α1, . . . , α8 ∈
∧•

OV∗ and u ∈ O with |u| = 1 we have

Re
[
F (Ruα1, Ruα2, Ruα3, Ruα4) ∧ F (Ruα5, Ruα6, Ruα7, Ruα8)

]
= Re

[
F (α1, α2, α3, α4) ∧ F (α5, α6, α7, α8)

]
,

(3.38)

and

Re [F (Ruα1, Ruα2, Ruα3, Ruα4) ∧ F (Ruα5, Ruα6, Ruα7, Ruα8)]

= Re [F (α1, α2, α3, α4) ∧ F (α5, α6, α7, α8)] .
(3.39)
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Proof. As the map F is multilinear, we may without loss of generality assume αi = ui ϕi
for some ui ∈ O and ϕi ∈

∧•V∗, 1 ≤ i ≤ 8. Thus, taking the Moufang identities (2.15)
and (2.17) and alternativity of O into account, we can write

[[(u u1)(u2u)](uu3)](u4u) = [[u(u1u2)u](uu3)](u4u)
= [u[(u1u2)(u(uu3))]](u4u)
= [u((u1u2)u3)](u4u)
= u[((u1u2)u3)u4]u.

Then, since Ru, Lu ∈ O(O) for |u| = 1,

〈[[(u u1)(u2u)](uu3)](u4u), [[(u u5)(u6u)](uu7)](u8u)〉 = 〈((u1u2)u3)u4, ((u5u6)u7)u8〉

and (3.38) follows from (3.23). Similarly, we have

[[(u u5)(u6u)](u u7)](u8u) = u[((u5u6)u7)u8]u = u [((u5u6)u7)u8] u,

therefore

〈[[(u u1)(u2u)](uu3)](u4u), [[(u u5)(u6u)](u u7)](u8u)〉 = 〈((u1u2)u3)u4, ((u5u6)u7)u8〉,

and (3.39) then follows from (3.23) rewritten in the form

Re (wϕ ∧ vψ) = 〈w, v〉 ϕ ∧ ψ.

We shall specialize ourselves to the case V = O2 throughout the rest of this section.
Then, one has the bi-grading

∧•
O(O

2)∗ =
⊕

k,l
∧k,l

O
(O2)∗ with respect to O2 = O⊕O.

Let us denote

Ψ40 = F (dx, dx, dx, dx),
Ψ31 = F (dy, dx, dx, dx),
Ψ13 = F (dx, dy, dy, dy),
Ψ04 = F (dy, dy, dy, dy).

Clearly, Ψk,l ∈
∧k,l

O
(O2)∗. Notice also that the definition of these 4-forms is independent

of the choice of a basis for O, since the same is true for the 1-forms dx and dy (remember
Example 3.4 above).

Let det be the determinant on O ∼= R8 such that det(e0, . . . , e7) = 1 for the standard
basis introduced in §2.1.3, and let us denote

det1 = (dx)∗ det,
det2 = (dy)∗ det .

Here the forms dx, dy : O2 → O are regarded as the projections on the first and second
factor of O2, respectively. In the following two lemmas, we present two different ways
to construct the determinants from dx and dy.

Lemma 3.14.

Ψ40 ∧Ψ40 = 8! det1, (3.40)

Ψ04 ∧Ψ04 = 8! det2. (3.41)
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Proof. Let e0, . . . , e7 be the standard orthonormal basis of O. It follows from (2.10) that

Rei Rej = −Rej Rei , 0 ≤ i < j ≤ 7.

By (3.21) and (3.22), we have

Ψ40 ∧Ψ40 = Re Ψ40 ∧Ψ40.

Thus, according to (3.23),

Ψ40 ∧Ψ40 = ∑〈((ei0 ei1)ei2)ei3 , ((ei4 ei5)ei6)ei7〉dxi0 ∧ · · · ∧ dxi7

= ∑〈Rei4
Rei5

Rei6
Rei7

Rei3
Rei2

Rei1
Rei0

(1), 1〉dxi0 ∧ · · · ∧ dxi7 ,

where the sum extends over all indices 0 ≤ i0, . . . , i7 ≤ 7, but clearly only the terms
with all indices distinct occur non-trivially. Since both factors in each term of the sum
are totally skew-symmetric, we can write

Ψ40 ∧Ψ40 = 8!〈Re4 Re5 Re6 Re7 Re3 Re2 Re1 Re0(1), 1〉dx0 ∧ · · · ∧ dx7

= 8! dx0 ∧ · · · ∧ dx7

= 8! det1,

to show (3.40). Notice that it is easily verified by direct computation that

Re4 Re5 Re6 Re7 Re3 Re2 Re1 Re0(1) = 1. (3.42)

The proof of (3.41) is completely analogous.

Remark 3.15. Let e0, . . . , e7 be the standard basis of O. Recall that ei = ±ei, eiej = ±ejei,
and that a product of two basis elements is, at most up to a sign, a member of the basis
as well. Therefore we can write

ei(ejek) = σ1ei(ekej) = σ2ek(eiej) = σ3(eiej)ek, (3.43)

where the signs σ1, σ2, σ3 = ±1 depend on i, j, k but are in general independent of each
other. The middle equality in (3.43) follows for i 6= k from (2.10) and is trivial if i = k.
All in all, a particular ordering of any product of the basis elements has effect on the
sign of the product at most. In this sense, the aforementioned relation (3.42) implies

7

∏
k=0

ek = ±1. (3.44)

Lemma 3.16.

Re Ψ40 ∧Ψ40 = −3
5

Ψ40 ∧Ψ40. (3.45)

Proof. We shall work in the standard basis again. For any 0 ≤ i ≤ 7 we denote

Ψi
40 = ∑((ei0 ei1)ei2)ei3 dxi0 ∧ dxi1 ∧ dxi2 ∧ dxi3 ,

if the sum runs over all indices with ei0 ei1 ei2 ei3 = ±ei (see Remark 3.15). Again we make
use of (3.21) and (3.23) to write

Ψi
40 ∧Ψi

40 = Re Ψi
40 ∧Ψi

40

= ∑〈((ei0 ei1)ei2)ei3 , ((ei4 ei5)ei6)ei7〉dxi0 ∧ · · · ∧ dxi7
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= ∑〈Rei4
Rei5

Rei6
Rei7

Rei3
Rei2

Rei1
Rei0

(1), 1〉dxi0 ∧ · · · ∧ dxi7 .

Here the sums extend over all indices such that ei0 ei1 ei2 ei3 = ±ei (and ei4 ei5 ei6 ei7 = ±ei
but this is redundant since the inner product would be zero otherwise). As in the proof
of Lemma 3.14, due to skew-symmetry we further have

Ψi
40 ∧Ψi

40 = ni(4!)2 det1,

where ni denotes the number of combinations of four distinct indices between 0 and 7
whose product is ±ei.

We claim that n0 = 14, i.e. among all (8
4) = 70 combinations of four distinct indices,

14 products equal ±1. To see this, assume ei0 ei1 ei2 ei3 = ±ei4 ei5 ei6 ei7 = ±1 for i0, . . . , i7 all
distinct. If one of the indices i0, i1, i2, i3, say i0, is zero, then the others are non-zero and
ei1 ei2 ei3 = ±1, hence ei3 = ±ei1 ei2 . There are precisely 7 distinct sets {i1, i2, i3} satisfying
this, corresponding to the 7 columns of the table in Remark 2.11. Symmetrically, the
other 7 combinations occur when 0 ∈ {i4, i5, i6, i7}.

Now, ∑7
i=1 ni = 70− 14 = 56 and therefore, according to (3.24), one finally has

Re Ψ40 ∧Ψ40 = Ψ0
40 ∧Ψ0

40 −
7

∑
i=1

Ψi
40 ∧Ψi

40

=

(
n0 −

7

∑
i=1

ni

)
(4!)2 det1

= −3
5

Ψ40 ∧Ψ40.

Let us prove one more auxiliary assertion from the representation theory of Spin(8).
For σ = 0,+,−, we denote by Sσ the space O equipped with the Spin(8)-module struc-
ture ρσ, as discussed in §2.2.3 from where the notation is kept.

Lemma 3.17. dim
[∧8 (S+ ⊕ S−)

∗
]Spin(8)

= 5.

Proof. Regarded as a Spin(8)-module,

∧
8(S+ ⊕ S−)∗ ∼=

∧
8(S+ ⊕ S−) =

8⊕
k=0

∧
kS+ ⊗

∧
8−kS−

and thus

dim
[∧

8(S+ ⊕ S−)∗
]Spin(8)

=
8

∑
k=0

dim
[∧

kS+ ⊗
∧

8−kS−
]Spin(8)

.

Let us denote this number by d. Since(
1 0
0 −1

)
∈ Spin(8),

the terms of the sum above are trivial for k odd, and because dim S± = 8 and so∧8−kS± ∼=
∧kS±, we in fact have d = 2d0 + 2d2 + d4, where

dk = dim
[∧

kS+ ⊗
∧

kS−
]Spin(8)

.

Let Γµ be an irreducible Spin(8)-module of highest weight µ. In particular, we have
S0 = Γλ1 , S+ = Γλ3 , and S− = Γλ4 . Trivially,

∧0 S0 = Γ0. It is also known that
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∧2 S0 = Γλ2 is the adjoint representation and that
∧4 S0 = Γ2λ3 ⊕ Γ2λ4 (see [65], §19.2).

Applying the triality principle (see §2.2.4), we further obtain
∧0 S+ =

∧0 S− = Γ0,∧2 S+ =
∧2 S− = Γλ2 , and

∧4 S+ = Γ2λ4 ⊕ Γ2λ1 , while
∧4 S− = Γ2λ1 ⊕ Γ2λ3 . Counting

the same factors in the decompositions of exterior powers of S+ and S−, we finally
conclude d0 = d2 = d4 = 1 and thus d = 5.

Now we can finally proceed to the main result of this chapter. Recall that

Ψ40 = ((dx ∧ dx) ∧ dx) ∧ dx,

Ψ31 = ((dy ∧ dx) ∧ dx) ∧ dx,

Ψ13 = ((dx ∧ dy) ∧ dy) ∧ dy,

Ψ04 = ((dy ∧ dy) ∧ dy) ∧ dy.

Theorem 3.18. The form

Ψ8 = Ψ40 ∧Ψ40 + 4 Ψ31 ∧Ψ31 − 5
(
Ψ31 ∧Ψ13 + Ψ13 ∧Ψ31

)
+ 4 Ψ13 ∧Ψ13 + Ψ04 ∧Ψ04

(3.46)
is a non-trivial real multiple of the Spin(9)-invariant 8-form Ψ on O2.

Remark 3.19. Before we prove this theorem, let us highlight several advantages our
approach and the formula it results into have. First, the presented description allows us
to verify the invariance and non-triviality with very simple algebraic tools, eliminating
thus the role of combinatorics significantly. Second, the formula (3.46) is transparently
intrinsic (involves no choice of basis of O) and immediately reveals some non-trivial
information about the structure of the form (e.g. its decomposition with respect to the
natural bi-grading). Finally, using our formula, we are able to determine explicitly and
without any aid of computer all the 702 terms of Ψ in the standard basis, explaining thus
the pattern Parton and Piccinni [110] observed in their Table 2. These computations are
postponed to Appendix A.

Proof. Let us denote

Ψ80 = Ψ40 ∧Ψ40,

Ψ62 = Ψ31 ∧Ψ31,

Ψ44 = −5
6
(
Ψ31 ∧Ψ13 + Ψ13 ∧Ψ31

)
= −5

3
Re Ψ31 ∧Ψ13,

Ψ26 = Ψ13 ∧Ψ13,

Ψ08 = Ψ04 ∧Ψ04.

We have to show that

Ψ8 = Ψ80 + 4 Ψ62 + 6 Ψ44 + 4 Ψ26 + Ψ08 (3.47)

is a non-trivial Spin(9)-invariant real 8-form.
First of all, all five summands on the right-hand side of (3.47) clearly belong to∧8

O(O
2)∗. In fact, they are all real as seen from (3.21), taking into account that the forms

Ψ40, Ψ31, Ψ13, and Ψ04 are of even degree. Hence Ψ8 ∈
∧8(O2)∗.

Second, we prove that each summand separately is Spin(8) invariant. By Lemma
2.23, it is sufficient to show invariance under(

Rz 0
0 Rz

)
, |z| = 1.
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Since Rz, Rz ∈ SO(O) for |z| = 1, and the determinant on O is SO(O) invariant, Ψ80 and
Ψ08 are Spin(8) invariant according to Lemma 3.14. The invariance of the rest follows
at once from Lemma 3.13.

For the final step, let us abbreviate, for t ∈ R, c = cos(t), s = sin(t), and

g =

(
c s
s −c

)
∈ Spin(9).

Further, let P :
∧8(O2)∗ → ∧8,0(O2)∗ be the natural projection. Since g∗dx = cdx+ sdy

and g∗dy = sdx− cdy, with help of Lemma 3.16 it is not difficult to see that, for all k, l
we consider,

P (g∗Ψkl) = cksl Ψ80.

In particular, this shows that all the five forms Ψkl are non-trivial. Moreover, because
Ψkl ∈

∧k,l(O2)∗, they are linearly independent and thus, according to Lemma 3.17, span
[
∧8(O2)∗]Spin(8). As Spin(8) ⊂ Spin(9), we have Ψ ∈ [

∧8(O2)∗]Spin(8), and therefore
there are constants κ = (κ0, . . . , κ4) ∈ R5 such that Ψκ = ∑4

i=0 κiΨ8−2i,2i is Spin(9)
invariant. In order to fix κ, we impose the condition of invariance under g. Namely, in
particular,

P (g∗Ψκ) =
4

∑
i=0

κic8−2is2i Ψ80

must equal to
P (Ψκ) = κ0Ψ80 = κ0(c2 + s2)4 Ψ80.

It is easily seen that the solution of

4

∑
i=0

κic8−2is2i = κ0(c2 + s2)4

equals uniquely, up to scaling by κ0, to the binomial coefficients of the fourth-power
expansion. In particular, for κ0 = 1 we have Ψ8 = Ψκ which completes the proof.

63



64



Chapter 4

Spin(9)-Invariant Valuations

4.1 General Framework and Previous Results

In this chapter we introduce a basis of the space of Spin(9)-invariant valuations on the
octonionic plane and determine the Bernig-Fu convolution on it. The invariant-form
approach in the sense of Theorem 1.29 and the formula (1.38) are the foundations on
which our construction will be erected.

Let us recall from §1.3 that ValSpin(9) = Val(O2)Spin(9) equipped with the Bernig-Fu
convolution is, a priori, a finite-dimensional commutative associative algebra with unit
vol16 that is graded with respect to the McMullen decomposition

ValSpin(9) =
16⊕

k=0

ValSpin(9)
16−k . (4.1)

As usual, we identify O2 = R16. Furthermore, the Alesker-Poincaré pairing (1.43) is
perfect and convolution with µ15 has the hard Lefschetz property (1.47) on ValSpin(9).

4.1.1 Examples of Spin(9)-Invariant Valuations

To the best of our knowledge, the problem of Spin(9)-invariant valuations was treated
for the first time by Alesker in [13]. Developing the theory of octoninic plurisubharmonic
functions on O2, the author was able to introduce a new example of such a valuation, in
addition to an array of more or less obvious examples that he also discussed.

First of all, the intrinsic volumes are SO(O2) invariant, hence

µk ∈ ValSpin(9)
k , 0 ≤ k ≤ 16. (4.2)

Further, for K ∈ K(O2), one can consider

Tk(K) =
∫

OP1
µk(π`K)d`, 0 ≤ k ≤ 8, (4.3)

where π` is the orthogonal projection to a octonionic line ` ∈ OP1 (see §2.2.2) and d` is
the Spin(9)-invariant Haar measure on OP1, and

Uk(K) =
∫

OP1
µk−8(K ∩ `)d`, 8 ≤ k ≤ 16, (4.4)

where OP1 = {x + ` ; x ∈ O2, ` ∈ OP1} is the affine octonionic projective line with the
Spin(9)-invariant Haar measure d`. It follows at once from invariance of the measures
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and Proposition 2.19 that Tk ∈ ValSpin(9)
k , 0 ≤ k ≤ 8, and Uk ∈ ValSpin(9)

k , 8 ≤ k ≤ 16. We
shall comment more on these valuations in §4.5 below.

Finally, for an octonion-valued smooth function f ∈ O⊗ C∞(O2), Alesker defines

∂ f
∂xi

=
7

∑
a=0

ea
∂ f
∂xa

i
and

∂ f
∂xi

=
7

∑
a=0

∂ f
∂xa

i
ea, where

(
x1
x2

)
∈ O2 and xi =

7

∑
a=0

xa
i ea. (4.5)

The octonionic Hessian
(

∂2 f
∂xi∂xj

)
is then, pointwise, a 2x2 octonionic hermitian matrix

which has a well-defined real-valued determinant (see also [20]). Alesker extends, in
the sense of measures, the notion of det

(
∂2 f

∂xi∂xj

)
to much broader class of the so-called

octonionic plurisubharmonic functions. In particular, this applies to the support function
hK(X) = supY∈K〈X, Y〉, X ∈ O2, of a convex body K ∈ K(O2), and

Theorem 4.1 (Alesker [13]). The functional τO : K(O2)→ R given by

τO(K) =
∫

B
det

(
∂2hK

∂xi∂xj

)
dx, (4.6)

where B ⊂ O2 is the unit ball, is a well-defined element of ValSpin(9)
2 .

Definition 4.2. The valuation τ is called Alesker-Kazarnovskii octonionic pseudovolume.

In the article [13], Alesker also raised several questions worth further investigation.
First, he pointed out that neither a classification of elements of ValSpin(9) nor even the di-
mension of this space was known to him. Second, he speculated whether the foregoing
examples already generate ValSpin(9) as an algebra, equipped with either the product or
the convolution (see §1.3.2). Finally, he recalled the general invariant-form approach
(see §1.2.3) and asked about its relation to the constructions of [13]. For a long time,
however, no progress in either of these directions had been reported.

4.1.2 The Dimension

A breakthrough came with recent work of Bernig and Voide who, applying methods
developed by the first-named author [28], computed the dimension and in fact all Betti
numbers of the algebra ValSpin(9). Remarkably, this was possible without explicitly de-
termining the space. Namely, studying certain exact sequences and using enumerative
representation-theoretical machinery, the authors showed

Theorem 4.3 (Bernig, Voide [35]). One has

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

dim ValSpin(9)
k 1 1 2 3 6 10 15 20 27 20 15 10 6 3 2 1 1

.

In particular,

dim ValSpin(9) = 143. (4.7)

Moreover, Bernig and Voide [35] defined a valuation µsec ∈ Val+2 (Tp M) canonically
assigned to any tangent space of a Riemannian manifold M as follows: Klµsec is the
sectional curvature at p ∈ M (for more details we refer to [35] and also to [89], §1.11).
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In particular, regarding O2 as a tangent space of the so-called octonionic projective plane
OP2, this construction yields a Spin(9)-invariant valuation satisfying

µsec = 4µ2 − 3τO. (4.8)

Theorem 4.3 certainly answered some of the aforementioned questions, first of all,
the one about the dimension. Second, it is verified readily that dimSpin(9)

4 = 6 already
requires at least two generators of this degree, proving thus that more generators are
certainly needed than Alesker’s examples (see §4.4.1 below for a general discussion on
the numbers of generators). Even more they are insufficient to constitute a basis.

To sum up, Theorem 4.3 tells us that the algebra ValSpin(9) is indeed a complicated
object, especially in comparison with its companions discussed in §1.3.4. This fact,
however, only amplifies the unanswered questions, and makes it even more desirable
to have a deeper understanding of the space as it is very likely that certain structures
hidden behind the simplicity of the other known cases may ensue.

4.2 Invariant Forms on the Sphere Bundle SO2

Recall from §1.2.3 and §1.3.1 that the elements of ValSpin(9)(O2) are smooth valuations
and are, therefore, representable by accordingly invariant smooth differential forms on
the sphere bundle SO2 (see also §2.4.3). To this end, the goal of the following section is
to determine the space Ω•(SO2)Spin(9).

Let us outline the strategy based on an observation of Bernig and Voide (see [35], the
proof of Proposition 4.2). For the group Spin(9) acts transitively on the sphere bundle
SO2, any invariant differential form on this space is uniquely determined by its value

in a single point, say in p = (0, E0), where E0 =

(
1
0

)
∈ S15. In other words, there is an

isomorphism

Ω•(SO2)Spin(9) ∼=
[∧ •(TpSO2)∗

]Stabp Spin(9)
. (4.9)

According to Theorem 2.30,

Stabp Spin(9) = StabE0 Spin(9) ∼= Spin(7). (4.10)

This group acts diagonally on the tangent space TpSO2 = T0O2 ⊕ TE0 S15 that further
decomposes into irreducible Spin(7)-modules as follows: By Corollaries 2.31 and 2.32,

TpSO2 = R⊕ Im O⊕O⊕ Im O⊕O. (4.11)

(4.9) thus becomes

Ω•(SO2)Spin(9) ∼=
[∧ •(R⊕ Im O⊕O⊕ Im O⊕O)∗

]Spin(7)
. (4.12)

Further, the image of the contact form α under this isomorphism is given by, see (1.25),

αp(Zp) = 〈E0, dπ(Zp)〉, Zp ∈ TpSO2, (4.13)

where π : SO2 → O2 is the canonical projection. (4.13) is nothing else but the projection
to the first factor of (4.11) and hence (4.12) finally induces

Ω•h(SO2)Spin(9) ∼=
[∧ •(Im O⊕O⊕ Im O⊕O)∗

]Spin(7)
. (4.14)
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4.2.1 Spin(7)-Invariant Alternating Forms

The algebra [
∧•(Im O⊕O⊕ Im O⊕O)∗]Spin(7) will be now described in terms of a

generating set. Our main ingredient is the FFT 2.47, and an important role is also played
by the algebra of octonion-valued forms, as developed in §3.2.1. In a manner similar
to the various invariants constructed in §3.3 and §3.4, the basic building blocks are the
octonionic coordinate 1-forms

θ0, θ1, ϕ0, ϕ1 ∈
∧

1
O(Im O⊕O⊕ Im O⊕O)∗

defined naturally by:

θ0 :


u
x
v
y

 7→ u, θ1 :


u
x
v
y

 7→ x, ϕ0 :


u
x
v
y

 7→ v, and ϕ1 :


u
x
v
y

 7→ y. (4.15)

As usual, we denote, for the standard basis e0, . . . , e7 of O,

θ0 =
7

∑
a=1

eaθa
0, θ1 =

7

∑
a=0

eaθa
1, ϕ0 =

7

∑
a=1

ea ϕa
0, and ϕ1 =

7

∑
a=0

ea ϕa
1. (4.16)

Remark 4.4. Observe that there is notational conflict between (4.15) and (2.95) – (2.98).
In the next section, however, the relation between these, strictly speaking, different
objects will be clarified and, in fact, taken advantage of. At the same time, it will be-
come apparent that the task of this section is completely equivalent to the problem of
constructing right-Spin(7)-invariant forms on Spin(9), as discussed in §(2.4.3).

Let us establish some more notation. First, one has the natural tetra-grading:[∧•(Im O⊕O⊕ Im O⊕O)∗
]Spin(7)

=
⊕

k,l,m,n

∧
k,l,m,n, (4.17)

where we abbreviate∧
k,l,m,n =

[∧
k,l,m,n(Im O⊕O⊕ Im O⊕O)∗

]Spin(7)
. (4.18)

Second, by L and R we denote the from-the-left and from-the-right ordered products of
octonion-valued forms α1, . . . , αn ∈

∧1
O(Im O⊕O⊕ Im O⊕O)∗, i.e.

L(α1, . . . , αn) = ((· · · ((α1 ∧ α2) ∧ α3) ∧ · · · ) ∧ αn), (4.19)
R(α1, . . . , αn) = (α1 ∧ (· · · ∧ (αn−2 ∧ (αn−1 ∧ αn)) · · · )). (4.20)

Finally, for a non-negative integer m, we write

L(α1, . . . , αk−1, αk[m], αk+1, . . . , αn) = L(α1, . . . , αk−1,
m-times︷ ︸︸ ︷

αk, . . . , αk, αk+1, . . . , αn), (4.21)

and similarly forR.
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Theorem 4.5. The algebra [
∧•(Im O⊕O⊕ Im O⊕O)∗]Spin(7) is generated by the following

96 elements:
(a) 1 element

[1, 0, 1, 0]p = −Re (θ0 ∧ ϕ0) ,

(b) 8 elements

[k, 0, 7− k, 0]p = ∑
π∈S7

sgn(π) θ
π(1)
0 ∧ · · · ∧ θ

π(k)
0 ∧ ϕ

π(k+1)
0 ∧ · · · ∧ ϕ

π(7)
0 , 0 ≤ k ≤ 7,

(c) 36 elements

[k1, 1, k2, 1]p = Re
[
R
(
θ1, θ0[k1], ϕ0[k2], ϕ1

)]
, 0 ≤ k1 + k2 ≤ 7,

(d) 36 elements

[k1, 2, k2, 0]p = Re
[
R
(
θ1, θ0[k1], ϕ0[k2], θ1

)]
,

[k1, 0, k2, 2]p = Re [R(ϕ1, θ0[k1], ϕ0[k2], ϕ1)] , k1 + k2 ∈ {1, 2, 5, 6},

(e) 15 elements

[k1, 4, k2, 0]p = Re
[
L
(
θ0[k1], ϕ0[k2], θ1, θ1, θ1, θ1

)]
,

[k1, 3, k2, 1]p = Re
[
L
(
θ0[k1], ϕ0[k2], θ1, θ1, θ1, ϕ1

)]
,

[k1, 2, k2, 2]p = Re
[
L
(
θ0[k1], ϕ0[k2], θ1, θ1, ϕ1, ϕ1

)]
,

[k1, 1, k2, 3]p = Re [L(θ0[k1], ϕ0[k2], θ1, ϕ1, ϕ1, ϕ1)] ,
[k1, 0, k2, 4]p = Re [L(θ0[k1], ϕ0[k2], ϕ1, ϕ1, ϕ1, ϕ1)] , 0 ≤ k1 + k2 ≤ 1.

Remark 4.6.
(a) Observe that each generator is uniquely characterized by its tetra-degree, namely,

[k, l, m, n]p ∈
∧

k,l,m,n. (4.22)

This fact advocates our choice of notation.
(b) Related to Remark 2.48 is the following note: The dimensions of the subspaces∧

K,M =
⊕

k+l=K
m+n=M

∧
k,l,m,n

were computed by Bernig and Voide (see [35], Proposition 4.2). Comparison with their
result asserts that there exist (in fact numerous) relations among the algebra generators
we listed in the preceding theorem. For instance, simple combinatorics shows that there
are 12 monomials in the generators in bi-degree (6, 1) whereas dim

∧6,1 = 10. In fact,
MAPLE computation in coordinates shows

2 [0, 2, 1, 0]p ∧ [2, 2, 0, 0]p − [1, 2, 0, 0]p ∧ [1, 2, 1, 0]p + 3 [1, 0, 1, 0]p ∧ [1, 4, 0, 0]p = 0,
(4.23)

and

2 [1, 1, 0, 1]p ∧ [0, 4, 0, 0]p − [1, 2, 0, 0]p ∧ [0, 3, 0, 1]p + 3 [0, 1, 0, 1]p ∧ [1, 4, 0, 0]p = 0.
(4.24)

It would be certainly interesting to prove (4.23) and (4.24) as well as the relations that
appear in other bi-degrees without computer assistance. Our attempts in this direction,
based on manipulations of the O-valued 1-forms which the generators are built of, did
not, unfortunately, meet with success. Similarly, no structural result about the relations
à la the SFT is known to us in this case.
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Proof. First of all, conventions similar to those of §2.3.3 will be adhered to within the
proof: u, v will always refer to the vector module Im O, while x, y to the spin module O

of Spin(7). Consider an arbitrary φ ∈ ∧k,l,m,n. Then

p = p(u1, . . . , uk, v1, . . . , vm, x1, . . . , xl , y1, . . . , yn)

= φ




u1
0
0
0

 , . . . ,


uk
0
0
0

 ,


0
x1
0
0

 , . . . ,


0
xl
0
0

 ,


0
0
v1
0

 , . . . ,


0
0

vm
0

 ,


0
0
0
y1

 , . . . ,


0
0
0
yn




is a multilinear Spin(7)-invariant polynomial, i.e. p ∈ Pk+m,l+n. According to Theorem
2.47, p must be a polynomial in the generating elements listed therein, hence a linear
combination of the following monomials:

J

∏
j=1

pj(uκ(k j−1+1), . . . , uκ(k j), vµ(mj−1+1), . . . , vµ(mj), xλ(lj−1+1), . . . , xλ(lj), yν(nj−1+1), . . . , yν(nj)),

(4.25)

for some permutations κ ∈ Sk, λ ∈ Sl , µ ∈ Sm, ν ∈ Sn, some integers

0 = k0 ≤ k1 ≤ · · · ≤ k J = k,
0 = l0 ≤ l1 ≤ · · · ≤ lJ = l,

0 = m0 ≤ m1 ≤ · · · ≤ mJ = m,
0 = n0 ≤ n1 ≤ · · · ≤ nJ = n,

and some generators pj ∈ P∆k j+∆mj,∆lj+∆nj where

∆k j = k j − k j−1,

∆lj = lj − lj−1,

∆mj = mj −mj−1,

∆nj = nj − nj−1.

Without loss of generality, we may assume that φ is such that p actually equals to (4.25).
If we denote

V = Im O⊕O⊕ Im O⊕O and N = k + l + m + n,

φ can also be regarded as an element of

(V∗)⊗N =
(

V⊗N
)∗

.

In this respect, consider another element of this space, namely, let

φ̃ = ∑
I

αI θ
i(u)1
0 ⊗ · · · ⊗ θ

i(u)k
0 ⊗ θ

i(x)
1

1 ⊗ · · · ⊗ θ
i(x)
l

1 ⊗ ϕ
i(v)1
0 ⊗ · · · ⊗ ϕi(v)m

0 ⊗ ϕ
i(y)1
1 ⊗ · · · ⊗ ϕi(y)n

1 ,

where the summation is taken over all multiindices

I =
(

i(u)1 , . . . , i(u)k , i(x)
1 , . . . , i(x)

l , i(v)1 , . . . , i(v)m , i(y)1 , . . . , i(y)n

)
∈ {1, . . . , 7}k × {0, . . . , 7}l × {1, . . . , 7}m × {0, . . . , 7}n,
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and

αI =
J

∏
j=1

pj(ei(u)
κ(kj−1+1)

, . . . , e
i(u)
κ(kj)

, e
i(v)
µ(mj−1+1)

, . . . , e
i(v)
µ(mj)

, e
i(x)
λ(lj−1+1)

, . . . , e
i(x)
λ(lj)

, e
i(y)
ν(nj−1+1)

, . . . , e
i(y)
ν(nj)

),

Then for any

Z =


u1
0
0
0

⊗ · · · ⊗


uk
0
0
0

⊗


0
x1
0
0

⊗ · · · ⊗


0
xl
0
0



⊗


0
0
v1
0

⊗ · · · ⊗


0
0

vm
0

⊗


0
0
0
y1

⊗ · · · ⊗


0
0
0
yn


(4.26)

we obviously have

φ(Z) = φ̃(Z). (4.27)

Let us now apply the alternation operator Alt : (V∗)⊗N → ∧N V∗, defined by

(Alt ϕ)(W1 ⊗ · · · ⊗WN) =
1

N! ∑
π∈SN

sgn(π) ϕ(Wπ(1) ⊗ · · · ⊗Wπ(N))

(see [131], pp. 202–205, and the proofs of Theorem 2.1.2 in [109] and of Lemma 3.3 in
[24]). On one hand, we have

Alt φ = φ, (4.28)

on the other,

Alt φ̃ = c ∑
I

α̃I θ
i(u)1
0 ∧ · · · ∧ θ

i(u)k
0 ∧ θ

i(x)
1

1 ∧ · · · ∧ θ
i(x)
l

1 ∧ ϕ
i(v)1
0 ∧ · · · ∧ ϕi(v)m

0 ∧ ϕ
i(y)1
1 ∧ · · · ∧ ϕi(y)n

1 ,

where c = sgn(κ) sgn(λ) sgn(µ) sgn(ν)
N! is a normalizing constant and

α̃I =
J

∏
j=1

pj(ei(u)kj−1+1
, . . . , e

i(u)kj

, e
i(v)mj−1+1

, . . . , e
i(v)mj

, e
i(x)
lj−1+1

, . . . , e
i(x)
lj

, e
i(y)nj−1+1

, . . . , e
i(y)nj

).

(4.27) and (4.28) together imply

φ(Z) = (Alt φ)(Z) = (Alt φ̃)(Z).

However, since any multilinear alternating form that is homogeneous of tetra-degree
(k, l, m, n) is already determined by its values on tensors of type (4.26), we in fact have

φ = Alt φ̃.

Altogether, φ is a polynomial (with respect to wedge product) in the following forms:

∑
I ′

q(e
i(u)1

, . . . , e
i(u)k′

, e
i(v)1

, . . . , e
i(v)m′

, e
i(x)
1

, . . . , e
i(x)
l′

, e
i(y)1

, . . . , e
i(y)n′

)

× θ
i(u)1
0 ∧ · · · ∧ θ

i(u)k′
0 ∧ θ

i(x)
1

1 ∧ · · · ∧ θ
i(x)
l′

1 ∧ ϕ
i(v)1
0 ∧ · · · ∧ ϕ

i(v)m′
0 ∧ ϕ

i(y)1
1 ∧ · · · ∧ ϕ

i(y)n′
1 ,

(4.29)
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where k′, l′, m′, n′ are non-negative integers,

I ′ =
(

i(u)1 , . . . , i(u)k′ , i(x)
1 , . . . , i(x)

l′ , i(v)1 , . . . , i(v)m′ , i(y)1 , . . . , i(y)n′

)
∈ {1, . . . , 7}k′ × {0, . . . , 7}l′ × {1, . . . , 7}m′ × {0, . . . , 7}n′ ,

and q ∈ Pk′+m′,l′+n′ is a generating polynomial from Theorem 2.47.
In the rest of the proof we will separately investigate all possible combinations of a

generator q and integers k′, l′, m′, n′ that may occur.

(a) Consider q = 〈u1, u2〉 ∈ P2,0. Then k′ + m′ = 2 and l′ = n′ = 0, so we distinguish
three cases here. First, if k′ = 2 and m′ = 0,

7

∑
i1,i2=1

〈ei1 , ei2〉θ
i1
0 ∧ θi2

0 =
7

∑
i1=1

θi1
0 ∧ θi1

0 = 0.

Second, for k′ = m′ = 1 we have

7

∑
i1,i2=1

〈ei1 , ei2〉θ
i1
0 ∧ ϕi2

0 =
7

∑
i1,i2=1

Re(ei1 ei2)θ
i1
0 ∧ ϕi2

0

= −
7

∑
i1,i2=1

Re(ei1 ei2)θ
i1
0 ∧ ϕi2

0

= −Re (θ0 ∧ ϕ0) .

Third, if k′ = 0 and m′ = 2, then again

7

∑
i1,i2=1

〈ei1 , ei2〉ϕ
i1
0 ∧ ϕi2

0 = 0.

(b) Let q = det(u1, . . . , u7) ∈ P7,0. Then l′ = n′ = 0, m′ = 7− k′ and for 0 ≤ k′ ≤ 7 one
has

7

∑
i1,...,i7=1

det(ei1 , . . . , ei7) θi1
0 ∧ · · · ∧ θ

ik′
0 ∧ ϕ

ik′+1
0 ∧ · · · ∧ ϕi7

0

= ∑
π∈S7

det(eπ(1), . . . , eπ(7)) θ
π(1)
0 ∧ · · · ∧ θ

π(k′)
0 ∧ ϕ

π(k′+1)
0 ∧ · · · ∧ ϕ

π(7)
0 ,

= ∑
π∈S7

sgn(π) θ
π(1)
0 ∧ · · · ∧ θ

π(k′)
0 ∧ ϕ

π(k′+1)
0 ∧ · · · ∧ ϕ

π(7)
0 .

(c) For 0 ≤ r ≤ 7, let q = 〈Lu1 · · · Lur(x1), x2〉 ∈ Pr,2. In this case n′ = 2− l′, 0 ≤ l′ ≤ 2,
and m′ = r− k′, 0 ≤ k′ ≤ r. First, if l′ = 2, we have

7

∑
j1,j2=0

7

∑
i1,...,ir=1

〈Lei1
· · · Leir

(ej1), ej2〉θ
i1
0 ∧ · · · ∧ θ

ik′
0 ∧ θ

j1
1 ∧ θ

j2
1 ∧ ϕ

ik′+1
0 ∧ · · · ∧ ϕir

0

= ±
7

∑
j1,j2=0

7

∑
i1,...,ir=1

Re
[

Lej2
Lei1
· · · Leir

(ej1)
]

θ
j2
1 ∧ θi1

0 ∧ · · · ∧ θ
ik′
0 ∧ ϕ

ik′+1
0 ∧ · · · ∧ ϕir

0 ∧ θ
j1
1

= ±Re
[
R
(
θ1, θ0[k′], ϕ0[r− k′], θ1

)]
,

0 ≤ k′ ≤ r, where the sign reflects the number of transpositions needed for commuting
the coordinate 1-forms to the appropriate order. Exactly in the same way we obtain

±Re
[
R
(
θ1, θ0[k′], ϕ0[r− k′], ϕ1

)]
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when l′ = 1, and, for l′ = 0,

±Re
[
R
(

ϕ1, θ0[k′], ϕ0[r− k′], ϕ1
)]

.

In fact, we may exclude the cases l′ = 2 and l′ = 0 if r ∈ {0, 3, 4, 7}. Let us explain
the case l′ = 2, the other being completely similar. First, if r = 0, by (3.21) we have

Re
[
R
(
θ1, θ0[0], ϕ0[0], θ1

)]
= Re

(
θ1 ∧ θ1

)
=

1
2
(
θ1 ∧ θ1 − θ1 ∧ θ1

)
= 0.

Second, using LuLv + LvLu = −2〈u, v〉, u, v ∈ Im O, one has

Re
[

Lej2
Lei1
· · · Leir

(ej1)
]
= 〈Lei1

· · · Leir
(ej1), ej2〉

= 〈ej1 , Leir
· · · Lei1

(ej2)〉
= (−1)r〈ej1 , Leir

· · · Lei1
(ej2)〉

= (−1)r+(r−1)+···+1〈ej1 , Lei1
· · · Leir

(ej2)〉+ q̃(ej1 , ej2 , ei1 , . . . , eir)

= (−1)
r
2 (r+1) Re

[
Lej1

Lei1
· · · Leir

(ej2)
]
+ q̃(ej1 , ej2 , ei1 , . . . , eir),

where q̃ is a linear combination of polynomials q̃1q̃2 with q̃1 ∈ P2,0 and q̃2 ∈ Pr−2,2. So,

2 Re
[
R
(
θ1, θ0[k′], ϕ0[r− k′], θ1

)]
= ∑

{
Re
[

Lej2
Lei1
· · · Leir

(ej1)
]
+ (−1)

r
2 (r+1) Re

[
Lej1

Lei1
· · · Leir

(ej2)
]
+ q̃
}

× θ
j2
1 ∧ θi1

0 ∧ · · · ∧ θ
ik′
0 ∧ ϕ

ik′+1
0 ∧ · · · ∧ ϕir

0 ∧ θ
j1
1

= ∑
{(

1− (−1)
r
2 (r+1)

)
Re
[

Lej2
Lei1
· · · Leir

(ej1) + q̃
]}

× θ
j2
1 ∧ θi1

0 ∧ · · · ∧ θ
ik′
0 ∧ ϕ

ik′+1
0 ∧ · · · ∧ ϕir

0 ∧ θ
j1
1 ,

and therefore for r ∈ {3, 4, 7}, [k′, 2, r− k′, 0]p is either zero (if k′ ∈ {0, r}) or a multiple
of [1, 0, 1, 0]p ∧ [k′ − 1, 2, r− 1− k′, 0]p.

Remark 4.7. It follows easily from the proof of Theorem 2.47, see in particular (2.66),
that in the statement of the theorem, the polynomials

〈1, ((xk1 xk2)xk3)xk4〉 and 〈1, (((ujxk1)xk2)xk3)xk4〉

may equivalently replace Φ(xk1 , xk2 , xk3 , xk4) and Φ(ujxk1 , xk2 , xk3 , xk4), respectively.

(d) Assume q = 〈1, ((xk1 xk2)xk3)xk4〉 ∈ P0,4, k′ = m′ = 0, n′ = 4− l′. For l′ = 4,

7

∑
j1,...,j4=0

〈1, ((ej1 ej2)ej3)ej4〉θ
j1
1 ∧ θ

j2
1 ∧ θ

j3
1 ∧ θ

j4
1 = Re

[
L
(
θ1, θ1, θ1, θ1

)]
.

Similarly, it is straightforward that one arrives at

Re
[
L
(
θ1, θ1, θ1, ϕ1

)]
,

Re
[
L
(
θ1, θ1, ϕ1, ϕ1

)]
,

Re [L(θ1, ϕ1, ϕ1, ϕ1)] ,
Re [L(ϕ1, ϕ1, ϕ1, ϕ1)] ,

depending on whether l′ is 3, 2, 1, or 0, respectively.
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(e) Completely analogous to (d) is the last case q = 〈1, (((ujxk1)xk2)xk3)xk4〉 ∈ P1,4. Just
for instance, when k′ = 0, l′ = 2, m′ = 1, and n′ = 2, one has

7

∑
j1,...,j4=0

7

∑
i=1
〈1, (((eiej1)ej2)ej3)ej4〉θ

j1
1 ∧ θ

j2
1 ∧ ϕi

0 ∧ ϕ
j3
1 ∧ ϕ

j4
1 = Re

[
L
(

ϕ0, θ1, θ1, ϕ1, ϕ1
)]

.

Since it is clear from the construction that all the considered forms are Spin(7) invariant
and at the same time we have exhausted all the possibilities provided by Theorem 2.47,
the proof is completed.

Important Remark 4.8. It is clear from the proof that if we rescale the generators by

[k, l, m, n]p 7→
1

k! l! m! n!
[k, l, m, n]p, (4.30)

their coefficients in the standard basis θ1
0 , . . . , θ7

0 , θ0
1 , . . . , θ7

1 , ϕ1
0, . . . , ϕ7

0, ϕ0
1, . . . , ϕ7

1 remain
integers. Let us, therefore, redefine hereby the generating forms according to (4.30).

Naturally, the rescaled generators are more convenient to work with in implemen-
tation and practical computation. Of the same spirit is the following observation. First
of all, let us denote

κ(i1, . . . , ik) =
k

∑
a=1

(ia − a) =
k

∑
a=1

ia −
1
2

k(k + 1) (4.31)

and, for completeness, κ() = 0. Then

Proposition 4.9. Let k ∈ N and m ∈ N0. Let further i1, . . . , ik, j1, . . . , jm ∈ N be such that
i1 < i2 < · · · < ik, j1 < j2 < · · · < jm, and {i1, . . . , ik, j1, . . . , jm} = {1, . . . , k + m}. Then
the parity of κ(i1, . . . , ik) is the same as that of the permutation (i1, . . . , ik, j1, . . . , jm), i.e.

(−1)κ(i1,...,ik) = sgn(i1, . . . , ik, j1, . . . , jm). (4.32)

Proof. We use induction on m. First, if m = 0, then ia = a for 1 ≤ a ≤ k, consequently
κ(i1, . . . , ik) = 0 and (4.32) follows. Second, assume (4.32) holds for m ∈N0. Then

sgn(i1, . . . , ik, j1, . . . , jm+1) = (−1)k−l sgn(i1, . . . , il , j1, il+1, . . . , ik, j2, . . . , jm+1),

where il < j1 < il+1, i.e. j1 = l + 1. By induction hypothesis this equals (−1)n, where

n = k− l + κ(i1, . . . , il , j1, il+1, . . . , ik) = k− l +
k

∑
a=1

ia + j1 −
1
2
(k + 1)(k + 2)

=
k

∑
a=1

ia + (k + 1)− 1
2
(k + 1)(k + 2)

=
k

∑
a=1

ia −
1
2

k(k + 1)

= κ(i1, . . . , ik),

which completes the proof.
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Now, the (rescaled) generator [k, 0, 7− k, 0]p, 0 ≤ k ≤ 7, equals

1
k!(7− k)! ∑

π∈S7

sgn(π)θ
π(1)
0 ∧ · · · ∧ θ

π(k)
0 ∧ ϕ

π(k+1)
0 ∧ · · · ∧ ϕ

π(7)
0

= ∑ sgn(i1, . . . , ik, ik+1, . . . , i7)θ
i1
0 ∧ · · · ∧ θik

0 ∧ ϕ
ik+1
0 ∧ · · · ∧ ϕi7

0 ,

where the sum on the right-hand side extends over all integers 1 ≤ i1 < · · · < ik ≤ 7,
and by ik+1 < · · · < i7 we denote the integers satisfying {i1, . . . , i7} = {1, . . . , 7}.
Hence, according to Proposition 4.9,

[k, 0, 7− k, 0]p = ∑
1≤i1<···<ik≤7

(−1)κ(i1,...,ik)θi1
0 ∧ · · · ∧ θik

0 ∧ ϕ
ik+1
0 ∧ · · · ∧ ϕi7

0 . (4.33)

4.2.2 Spin(9)-Invariant Differential Forms

The generators from Theorem 4.5 can be also regarded as elements of[∧ •(TpSO2)∗
]Spin(7)

. (4.34)

More precisely, let us identify the 96 forms with their images under (id−αp)∗, where
αp is again viewed as the projection to the first factor of

TpSO2 = R⊕ Im O⊕O⊕ Im O⊕O. (4.35)

Then, the algebra (4.34) is generated by them and by the 1-form αp. Let us extend our
notation also to the latter generator by putting (cf. Remark 4.6(a))

[1, 0, 0, 0]p = αp. (4.36)

Remark 4.10. It may be tempting to regard αp as the (missing) real part of the octonion-
valued 1-form θ0. However, this would mean to replace θ0 by its imaginary part in the
statement of Theorem 4.5 which would somewhat decrease the readability of the result.

Finally, we apply the isomorphism (4.9):

Theorem 4.11. Let [k, l, n, m] ∈ Ω•(SO2)Spin(9) be the (unique) form whose value in the point
p is [k, l, m, n]p. Then the algebra Ω•(SO2)Spin(9) is generated by the following 97 elements:

[1, 0, 0, 0],
[1, 0, 1, 0],
[k, 0, 7− k, 0], 0 ≤ k ≤ 7,
[k1, 1, k2, 1], 0 ≤ k1 + k2 ≤ 7,
[k1, 2, k2, 0], k1 + k2 ∈ {1, 2, 5, 6},
[k1, 0, k2, 2], k1 + k2 ∈ {1, 2, 5, 6},
[k1, 4, k2, 0], 0 ≤ k1 + k2 ≤ 1,
[k1, 3, k2, 1], 0 ≤ k1 + k2 ≤ 1,
[k1, 2, k2, 2], 0 ≤ k1 + k2 ≤ 1,
[k1, 1, k2, 3], 0 ≤ k1 + k2 ≤ 1,
[k1, 0, k2, 4], 0 ≤ k1 + k2 ≤ 1.

(4.37)
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4.3 Exterior Derivatives

Strictly speaking, we have now done enough to describe the vector space ValSpin(9).
Indeed, according to Theorem 1.29, each invariant valuation, apart from the Lebesque
measure vol16, is represented by a 15-form that is a polynomial in the generators listed
in Theorem 4.11. However, as discussed in §1.2.4, there are more forms than valuations,
the precise proportion being expressed by virtue of the second-order differential Rumin
operator (see Theorem 1.33). Thus, in order to find a basis and to determine the algebra
structure on ValSpin(9), more work needs to be done. With this regard, the purpose of
the section that follows is to develop a method for differentiating the invariant forms.

4.3.1 The Octonionic Structure Equations

We shall make use of Cartan’s moving frames, as pre-prepared for this purpose in §2.4
above. Let π : Spin(9) → SO2 be the natural projection (2.91). First, it was showed in
Remark 2.53 (c) that

π∗[1, 0, 0, 0] = α, (4.38)

where the right-hand side is given by (2.94). Let us now extend this relation to the rest
of the generators (4.37). Namely, for a generator [k, l, m, n] ∈ Ω•(SO2)Spin(9), let

]k, l, m, n[∈ Ω•(Spin(9)) ⊂ Ω•O(Spin(9)) (4.39)

be given formally by the same expression as [k, l, m, n] in the point p = (0, E0), i.e. as in
Theorem 4.5, but with 1-forms (4.15) replaced by (2.95) – (2.98). Theorem 4.5 together
with Lemma 2.54 implies that ]k, l, m, n[ is right Spin(7) invariant. Since the other two
assumptions of Lemma 2.50 are satisfied trivially, (4.39) descends to a Spin(9)-form on
SO2. In fact,

Proposition 4.12. For any [k, l, m, n] from (4.37), one has

π∗[k, l, m, n] =]k, l, m, n[. (4.40)

Proof. Since both sides of (4.40) are Spin(9)-invariant (the left-hand one by Lemma 2.50)
and Spin(9) acts transitively on itself, it is enough to verify (4.40) in a point, say in the
identity, which follows immediately from (2.87), (2.88), (2.99), and (2.93).

This at ones generalizes to

Corollary 4.13. Consider β ∈ Ω•(SO2)Spin(9) and let βp = f (αp, θ0, θ1, ϕ0, ϕ1) be its value
in the point p. Then

π∗β = f (α, θ0, θ1, ϕ0, ϕ1) (4.41)

where, on the right-hand-side, the arguments are taken in the sense of (2.94) – (2.98).

Remark 4.14. f (α, θ0, θ1, ϕ0, ϕ1) is meant to be a polynomial in

α, θ1
0 , . . . , θ7

0 , θ0
1 , . . . , θ1

1 , ϕ1
0, . . . , ϕ7

0, ϕ0
1, . . . , ϕ1

1.

Notice that (4.41) can be differentiated by means of the moving frames. In this
connection, let us now adjust the Maurer-Cartan equations on Spin(9)

dθa
k = −

1

∑
j=0

7

∑
c=0

ϕa,c
k,j ∧ θc

j , (2.105)
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dϕa,b
k,l = −

1

∑
j=0

7

∑
c=0

ϕa,c
k,j ∧ ϕc,b

j,l (2.106)

into a compact form that can be regarded as an octonionic version of the structure equa-
tions and that will be particularly convenient for our purpose.

First, it is necessary to employ the description of the Lie algebra spin(9) derived in
§2.4.5. In particular, according to Remark 2.57, the Maurer-Cartan form on Spin(9) is
the collection of the following 52 (independent) 1-forms:

α = θ0
0 ,

θa
0, 1 ≤ a ≤ 7,

θa
1, 0 ≤ a ≤ 7,

ϕa
0 = ϕa,0

0,0, 1 ≤ a ≤ 7,

ϕa
1 = ϕa,0

1,0, 0 ≤ a ≤ 7,

ϕa,b
1,1, 1 ≤ b < a ≤ 7,

(4.42)

whereas the other entries of ϕ are expressed in terms of them via (2.122) – (2.130).
Second is the following observation: Differentiating (4.41) yields

π∗dβ = d f (α, θ0, θ1, ϕ0, ϕ1). (4.43)

Since dβ ∈ Ω•(SO2)Spin(9), we may apply Corollary 4.13 to conclude that (4.43) is again
expressed entirely in terms of α, θa

0, θa
1, ϕa

0, ϕa
1 and contains, a priori, no ϕa,b

1,1. It is, hence,
sufficient to consider the Maurer-Cartan equations (subject to the relations (2.122) –
(2.130)) modulo the following congruence relation:

≡ mod O⊗ span{ϕa,b
1,1 ; 1 ≤ b < a ≤ 7}. (4.44)

Lemma 4.15. On Ω•O(Spin(9)), one has

d(α + θ0) ≡ −ϕ0 ∧ (α + θ0)− θ1 ∧ ϕ1, (4.45)
dθ1 ≡ (α + θ0) ∧ ϕ1 − ϕ0 ∧ θ1 + θ1 ∧ ϕ0, (4.46)
dϕ0 ≡ −ϕ0 ∧ ϕ0 − ϕ1 ∧ ϕ1, (4.47)
dϕ1 ≡ ϕ1 ∧ ϕ0. (4.48)

Remark 4.16. Considering separately the real and the imaginary part of (4.45) yields
formulas for dα and dθ0, respectively. More generally, inner product with ei gives us the
exterior derivative of the i-th component of either of the four octonion-valued forms.

Proof. First of all, according to Corollary 2.56 (see also Remark 2.57) we have

ϕa,b
1,0 ≡ ϕba,0

1,0 , 0 ≤ a ≤ 7, 1 ≤ b ≤ 7,

ϕa,b
0,1 ≡ −ϕab,0

1,0 , 0 ≤ a, b ≤ 7,

ϕa,a
k,k ≡ 0, 0 ≤ a ≤ 7, k = 0, 1,

ϕa,b
1,1 ≡ 0, 1 ≤ a < b ≤ 7,

ϕa,0
1,1 ≡ 2ϕa,0

0,0, 1 ≤ a ≤ 7,

ϕ0,a
1,1 ≡ −2ϕa,0

0,0, 1 ≤ a ≤ 7,

ϕa,b
0,0 ≡ −ϕba,0

0,0 , 1 ≤ b < a ≤ 7,
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ϕa,b
0,0 ≡ ϕab,0

0,0 , 1 ≤ a < b ≤ 7,

ϕ0,a
0,0 ≡ −ϕa,0

0,0, 1 ≤ a ≤ 7.

Observe that, since for a, b > 0 such that a 6= b one has ba = −ab, ab = ab and a = −a,
the last three relations can be written together as

ϕa,b
0,0 ≡ ϕab,0

0,0 , 0 ≤ a, b ≤ 7.

Now we can proceed to computing the differentials modulo the congruence (4.44). All
summations are taken from 0 to 7 throughout the rest of the proof. First,

d(α + θ0) = ∑
a

eadθa
0

= −∑
a,c

ea ϕa,c
0,0 ∧ θc

0 −∑
a,c

ea ϕa,c
0,1 ∧ θc

1

≡ −∑
a,c

ea ϕac,0
0,0 ∧ θc

0 + ∑
a,c

ea ϕac,0
1,0 ∧ θc

1

= −∑
b,c

ebec ϕb,0
0,0 ∧ θc

0 + ∑
b,c

eceb ϕb,0
1,0 ∧ θc

1

= −ϕ0 ∧ (α + θ0)−∑
b,c

ecebθc
1 ∧ ϕb,0

1,0

= −ϕ0 ∧ (α + θ0)− θ1 ∧ ϕ1.

Let us comment on the substitution we made use of in the fourth step. It is easily seen
that {|ac| ; 0 ≤ a ≤ 7} = {0, . . . , 7} holds for any c. Thus, instead of summing over
a, we may sum over b = ac in ∑a ea ϕac,0

0,0 , where ea = ebc = ebec then holds. Further, if

|b| = −b, then e|b| = −eb but also ϕ
|b|,0
0,0 = −ϕb,0

0,0, so we may in fact sum over |b|, which
is what we do. This trick will be used repeatedly in the sequel. Second,

dθ1 = ∑
a

eadθa
1

= −∑
a,c

ea ϕa,c
1,0 ∧ θc

0 −∑
a,c

ea ϕa,c
1,1 ∧ θc

1

≡ −∑
a,c

ea ϕca,0
1,0 ∧ θc

0 −∑
a

ea ϕa,0
1,1 ∧ θ0

1 −∑
c

e0ϕ0,c
1,1 ∧ θc

1

≡ −∑
b,c

eceb ϕb,0
1,0 ∧ θc

0 − 2 ∑
a

ea ϕa,0
0,0 ∧ θ0

1 + 2 ∑
c

ϕc,0
0,0 ∧ θc

1

= ∑
b,c

ecebθc
0 ∧ ϕb,0

1,0 − 2ϕ0 ∧ Re θ1 + 2 Re(ϕ0 ∧ θ1)

= (α + θ0) ∧ ϕ1 − ϕ0 ∧ (θ1 + θ1) + ϕ0 ∧ θ1 − θ1 ∧ ϕ0

= (α + θ0) ∧ ϕ1 − ϕ0 ∧ θ1 + θ1 ∧ ϕ0,

where (3.21) and (3.24) were used as well as ϕ0 = −ϕ0. Third,

dϕ0 = ∑
a

eadϕa,0
0,0

= −∑
a,c

ea ϕa,c
0,0 ∧ ϕc,0

0,0 −∑
a,c

ea ϕa,c
0,1 ∧ ϕc,0

1,0

≡ −∑
a,c

ea ϕac,0
0,0 ∧ ϕc,0

0,0 + ∑
a,c

ea ϕac,0
1,0 ∧ ϕc,0

1,0

= −∑
b,c

ebec ϕb,0
0,0 ∧ ϕc,0

0,0 + ∑
b,c

eceb ϕb,0
1,0 ∧ ϕc,0

1,0
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= −ϕ0 ∧ ϕ0 −∑
b,c

eceb ϕc,0
1,0 ∧ ϕb,0

1,0

= −ϕ0 ∧ ϕ0 − ϕ1 ∧ ϕ1.

Finally, according to (3.21), (3.24), and ϕ0 = −ϕ0 again,

dϕ1 = ∑
a

eadϕa,0
1,0

= −∑
a,c

ea ϕa,c
1,0 ∧ ϕc,0

0,0 −∑
a,c

ea ϕa,c
1,1 ∧ ϕc,0

1,0

≡ −∑
a,c

ea ϕca,0
1,0 ∧ ϕc,0

0,0 −∑
a

ea ϕa,0
1,1 ∧ ϕc,0

1,0 −∑
c

e0ϕ0,c
1,1 ∧ ϕc,0

1,0

≡ −∑
b,c

eceb ϕb,0
1,0 ∧ ϕc,0

0,0 − 2 ∑
a

ea ϕa,0
0,0 ∧ ϕ0,0

1,0 + 2 ∑
c

ϕc,0
0,0 ∧ ϕc,0

1,0

= ∑
b,c

eceb ϕc,0
0,0 ∧ ϕb,0

1,0 − 2ϕ0 Re ϕ1 + 2 Re(ϕ0 ∧ ϕ1)

= ϕ0 ∧ ϕ1 − ϕ0 ∧ (ϕ1 + ϕ1) + ϕ0 ∧ ϕ1 − ϕ1 ∧ ϕ0

= ϕ1 ∧ ϕ0.

4.3.2 Exterior Differentials of the Generating Forms

Let us conclude this section by an explicit recipe for differentiating the generators (4.37)
of the algebra Ω•(SO2)Spin(9). The three main ingredients are: Lemma 2.50, the Octo-
nionic structure equations (Lemma 4.15), and the anti-derivation property of d.

First of all, consider a subalgebra Sh ⊂ Ω•(Spin(9)) generated by

α, θ1
0 , . . . , θ7

0 , θ0
1 , . . . , θ1

1 , ϕ1
0, . . . , ϕ7

0, ϕ0
1, . . . , ϕ1

1, (4.49)

and let us define a linear anti-derivative operator dh on Sh as follows (see Lemma 4.15):

dh(α + θ0) = −ϕ0 ∧ (α + θ0)− θ1 ∧ ϕ1, (4.50)
dhθ1 = (α + θ0) ∧ ϕ1 − ϕ0 ∧ θ1 + θ1 ∧ ϕ0, (4.51)
dh ϕ0 = −ϕ0 ∧ ϕ0 − ϕ1 ∧ ϕ1, (4.52)
dh ϕ1 = ϕ1 ∧ ϕ0. (4.53)

Considering coordinates of these octonion-valued forms in the standard basis of O then
gives values of dh on the generators (4.49). Recall from §4.3.1 that π∗

[
Ω•(SO2)

]
⊂ Sh

and that, on the former space, d = dh.

Theorem 4.17. Consider a generator [k, l, m, n] ∈ Ω•(SO2)Spin(9). First, there is f such that

dh

(
]k, l, m, n[

)
= f (α, θ0, θ1, ϕ0, ϕ1). (4.54)

Second, one has

(d[k, l, m, n])p = f (αp, θ0, θ1, ϕ0, ϕ1) (4.55)

where, on the right-hand-side of (4.55), the arguments are taken in the sense of (4.15).
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Remark 4.18.
(a) Remember that ]k, l, m, n[= π∗[k, l, m, n] is given by formally the same expression
as [k, l, m, n]p. Therefore, for any β ∈ Ω•(SO2)Spin(9), Theorem 4.17 allows us to deduce
(dβ)p only from βp.
(b) According to Theorem 4.5, (dβ)p is a polynomial in the generators [a, b, c, d]p. It is
just the matter of notation that dβ is then given by precisely the same polynomial, but
in the corresponding generators [a, b, c, d].

Proof. First, since ]k, l, m, n[∈ π∗Ω•(SO2), we have

dh

(
]k, l, m, n[

)
= d

(
]k, l, m, n[

)
= π∗d[k, l, m, n] = dπ∗[k, l, m, n].

As have already seen in §4.3.1, because d[k, l, m, n] ∈ Ω•(SO2)Spin(9), Corollary 4.13
indeed implies existence of a polynomial f such that (4.54) holds.

Second, according to Lemma 2.50, f (α, θ0, θ1, ϕ0, ϕ1) is right Spin(7) invariant. Let
βp = f (αp, θ0, θ1, ϕ0, ϕ1) ∈

∧•(TpSO2), i.e. the arguments taken in the sense of (4.15).
Then Theorem 4.5 and the transformation rules in Lemma 2.54 imply that βp is Spin(7)
invariant, i.e. it is the value in p of a certain β ∈ Ω•(SO2)Spin(7). According to Corollary
4.13 and the construction of this form, one has

π∗β = f (α, θ0, θ1, ϕ0, ϕ1) = dh

(
]k, l, m, n[

)
= π∗d[k, l, m, n].

Finally, the uniqueness part of Lemma 2.50 yields β = d[k, l, m, n]. In particular, in the
point p, one has (4.55).

Example 4.19. Sometimes it is necessary to split the derivation rules (4.50) – (4.53) into
the real coordinates, for instance in order to differentiate the ‘determinantal’ generators
[k, 0, 7− k, 0], c.f. (4.33). In other cases, however, it may be more convenient to work
with the octonion-valued forms. To illustrate this, consider the following computation
in Ω•O(Spin(9)):

dh ]1, 0, 0, 0[ = dhα

= Re [−ϕ0 ∧ (α + θ0)− θ1 ∧ ϕ1]

= −Re(ϕ0) ∧ α− Re(ϕ0 ∧ θ0)− Re(θ1 ∧ ϕ1)

= −1
2
(ϕ0 ∧ θ0 − θ0 ∧ ϕ0)− Re(θ1 ∧ ϕ1)

= Re(θ0 ∧ ϕ0)− Re(θ1 ∧ ϕ1)

= − ]1, 0, 1, 0[− ]0, 1, 0, 1[,

where we used (3.21), (3.24), and α = α, θ0 = −θ0, ϕ0 = −ϕ0. We conclude that

(dα)p = −[1, 0, 1, 0]p − [0, 1, 0, 1]p ∈
∧•(TpSO2)Spin(7),

and, finally, on Ω•(SO2)Spin(9) we have

dα = −[1, 0, 1, 0]− [0, 1, 0, 1]. (4.56)
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4.4 Integral Geometry on the Octonionic Plane

The contents of the previous sections and chapters will be finally synthesized into a
description of the algebra of Spin(9)-invariant valuations and, consequently, into the
Principal kinematic formula on the octonionic plane. This section forms the nucleus of
our thesis.

4.4.1 Minimal Generating Set

In order to formulate precisely a particular aspect of our main result, we shall need the
following statement of algebraic nature which is probably well known to algebraists
and follows, most likely, from certain more general considerations. Let us, nonetheless,
give a direct proof.

Consider a commutative associative unital graded (real) algebraA =
⊕n

k=0Ak with
A0 ∼= R and 1 < dimA < ∞. A is finitely generated, e.g. by a basis. Hence the set

M = {l ∈N ; there are g1, . . . , gl ∈ A that generate A} (4.57)

has a minimum. Denote m = min M. A generating set {g1, . . . , gm} ⊂ A of cardinality
m is then said to be minimal.

Lemma 4.20. A admits a minimal generating set consisting entirely of homogeneous elements.

Proof. Let us construct a homogeneous generating set as follows: First, choose a basis
h1, . . . , hm1 of A1. Second, pick a basis of A2

1 ⊂ A2 and complete it to a basis of A2 by
adding hm1+1, . . . , hm2 . Similarly, in the k-th step, pick a basis of

∑Ai1
1 · · · A

ik−1
k−1 ⊂ Ak,

where the sum of vector spaces runs over all tuples (i1, . . . , ik−1) of non-negative inte-
gers such that ∑k−1

l=1 l · il = k and complete it to a basis ofAk by adding hmk−1+1, . . . , hmk .
Continue until k = n. Obviously, {h1, . . . , hmn} is a homogeneous generating set.

Next, consider a minimal generating set {g1, . . . , gm}. We shall show that neces-
sarily mn = n. Clearly, we may assume {g1, . . . , gm} ⊂

⊕n
k=1Ak without loss of any

generality. Then there are constants ai,j ∈ R and polynomials pi ∈ R[λ1, . . . , λm] with
pi(0) =

∂pi
∂λj

(0) = 0, for all 1 ≤ i ≤ mn and 1 ≤ j ≤ m, such that

hi =
m

∑
j=1

ai,jgj + pi(g1, . . . , gm), 1 ≤ i ≤ mn.

Conversely, there are αj ∈ R and qj ∈ R[λ, . . . , λmn ] with qj(0) =
∂qj
∂λ1

(0) = 0, for all
1 ≤ j ≤ m, such that

gj = αjh1 + qi(h1, . . . , hmn), 1 ≤ j ≤ m. (4.58)

Together, we have

hi =

(
m

∑
j=1

ai,jαj

)
h1 + ri(h1, . . . , hmn), 1 ≤ i ≤ mn, (4.59)

for some ri ∈ R[λ1, . . . , λmn ] with rj(0) =
∂rj
∂λ1

(0) = 0, 1 ≤ j ≤ m. It is clear from the
construction that any hi cannot be expressed as a polynomial in h1, . . . , hmn with trivial
constant- and hi-linear term (otherwise it would not be a basis vector forAki , hi ∈ Aki ).
In particular, this applies to h1. Thus, collecting in (4.59) the coefficients standing in
front of h1, we conclude that the following linear system must have a solution in Rm:
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 a1,1 · · · a1,m
...

...
amn,1 · · · amn,m


α1

...
αm

 =


1
0...
0

 , (4.60)

in particular,

rank

 a2,1 · · · a2,m
...

...
amn,1 · · · amn,m

 < m. (4.61)

Since {g1, . . . , gm} is minimal, we have mn ≥ m. Suppose mn > m. Then (4.61) implies
existence of l ∈ {2, . . . , mn} such that the l-th row of the matrix in (4.60) is a linear
combination of the others. However, we can repeat the same construction for any other
member of our homogeneous generating set, in particular for hl . Namely, we have

gj = α̃jhl + q̃i(h1, . . . , hmn), 1 ≤ j ≤ m,

for some α̃j ∈ R and q̃j ∈ R[λ, . . . , λmn ] with q̃j(0) =
∂q̃j
∂λl

(0) = 0, for all 1 ≤ j ≤ m,
instead of (4.58) and consequently there must be a solution of

 a1,1 · · · a1,m
...

...
amn,1 · · · amn,m


 α̃1

...
α̃m

 =


...
0
1
0...

 , (4.62)

where, on the right-hand side, the 1 is in the l-th row. But this is impossible as the l-th
row of the matrix on the left is a linear combination of the others. Hence we conclude
that mn = m in fact.

Remark 4.21. Any minimal homogeneous generating set {h1, . . . , hm} obviously arises
through the construction described in the first part of the previous proof. Observe also
that the quantities

genkA = # ({h1, . . . , hm} ∩ Ak) , 1 ≤ k ≤ n. (4.63)

are well-defined invariants of A.

4.4.2 The Algebra Val(O2)Spin(9)

Theorem 4.22.
(

Val(O2)Spin(9), ∗
)

is generated, as an algebra, by the following 12 elements:

t =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [7, 0, 0, 0]

]]
∈ Val16−1,

s =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [6, 0, 1, 0]

]]
∈ Val16−2,

v =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [5, 0, 2, 0]

]]
∈ Val16−3,

u1 =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [4, 0, 3, 0]

]]
∈ Val16−4,

u2 =
[[
[0, 4, 0, 0] ∧ [0, 1, 2, 1] ∧ [7, 0, 0, 0]

]]
∈ Val16−4,
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w1 =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [3, 0, 4, 0]

]]
∈ Val16−5,

w2 =
[[
[0, 4, 0, 0] ∧ [0, 0, 2, 2] ∧ [7, 0, 0, 0]

]]
∈ Val16−5,

w3 =
[[
[0, 4, 0, 0] ∧ [0, 0, 0, 4] ∧ [7, 0, 0, 0]

]]
∈ Val16−5,

x1 =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [2, 0, 5, 0]

]]
∈ Val16−6,

x2 =
[[
[0, 4, 0, 0] ∧ [1, 1, 1, 1] ∧ [4, 0, 3, 0]

]]
∈ Val16−6,

y =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [1, 0, 6, 0]

]]
∈ Val16−7,

z =
1
14

[[
[0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [0, 0, 7, 0]

]]
∈ Val16−8,

subject to 93 independent homogeneous relations specified in Appendix B, such that

ValSpin(9)
16−0 = span {vol16} ,

ValSpin(9)
16−1 = span {t} ,

ValSpin(9)
16−2 = span

{
t2, s

}
,

ValSpin(9)
16−3 = span

{
t3, ts, v

}
,

ValSpin(9)
16−4 = span

{
t4, t2s, tv, s2, u1, u2

}
,

ValSpin(9)
16−5 = span

{
t5, t3s, t2v, ts2, tu1, tu2, sv, w1, w2, w3

}
,

ValSpin(9)
16−6 = span

{
t6, t4s, t3v, t2s2, t2u1, t2u2, tsv, tw1, tw2, tw3, s3, su1, su2, x1, x2

}
,

ValSpin(9)
16−7 = span

{
t7, t5s, t4v, t3s2, t3u1, t3u2, t2sv, t2w1, t2w2, t2w3,

ts3, tsu1, tsu2, tx1, tx2, s2v, sw1, sw2, sw3, y } ,

ValSpin(9)
16−8 = span

{
t8, t6s, t5v, t4s2, t4u1, t4u2, t3sv, t3w1, t3w2, t3w3, t2s3, t2su1, t2su2,

t2x1, t2x2, ts2v, tsw1, tsw2, tsw3, ty, s4, s2u1, s2u2, sx1, vw2, vw3, z
}

,

ValSpin(9)
16−9 = span

{
t9, t7s, t6v, t5s2, t5u1, t5u2, t4sv, t4w1, t4w2, t4w3,

t3s3, t3su1, t3su2, t3x1, t3x2, t2s2v, t2sw1, t2sw2, t2sw3, t2y } ,

ValSpin(9)
16−10 = span

{
t10, t8s, t7v, t6s2, t6u1, t6u2, t5sv, t5w1,

t5w2, t5w3, t4s3, t4su1, t4su2, t4x1, t4x2

}
,

ValSpin(9)
16−11 = span

{
t11, t9s, t8v, t7s2, t7u1, t7u2, t6sv, t6w1, t6w2, t6w3

}
,

ValSpin(9)
16−12 = span

{
t12, t10s, t9v, t8s2, t8u1, t8u2

}
,

ValSpin(9)
16−13 = span

{
t13, t11s, t10v

}
,

ValSpin(9)
16−14 = span

{
t14, t12s

}
,

ValSpin(9)
16−15 = span

{
t15
}

,

ValSpin(9)
16−16 = span

{
t16
}

,

where each of the sets is also linearly independent, i.e. a basis of the respective subspace.
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Proof. We shall construct a basis and determine the convolution at the same time, using
an inductive algorithm analogous to the first part of the proof of Lemma 4.20. Let us
keep the notation (4.18) and to extend it also to the bi-degree (

∧l,m) and the degree (
∧n)

throughout the proof.
First of all, recall from §1.2.3 and §1.3.1 that for any µ ∈ ValSpin(9)

16−k , 1 ≤ k ≤ 16, there

exists ω ∈ Ω16−k,k−1(SO2)Spin(9) with µ = [[ω]]. According to Theorem 4.11, ω is a
polynomial in the 97 generators listed therein.

Let us describe how to compute the Rumin differential Dω defined in §1.2.4. Recall
that (see also Proposition 1.37)

Dω = d(ω + α ∧ ξ) = dω + dα ∧ ξ − α ∧ dξ, (4.64)

where ξ ∈ Ω14
h (SO2)Spin(9) is the unique element such that (4.64) is vertical, i.e. with

dω + dα ∧ ξ ≡ 0 mod α. (4.65)

Because all the forms here are invariant, we may do all the computations in the point

p = (0, E0) ∈ SO2, E0 =

(
1
0

)
. The first step, thus, is to describe the space

∧
14 ∼= Ω14

h (SO2)Spin(9).

To this end, we consider all possible combinations of the generators given in Theorem
4.5 that give degree 14. Using MAPLE, we express them in the standard dual basis
given by (4.15) and pick a basis among them. Second, we compute (dω)p according
to Theorem 4.17. This is done again in coordinates and with MAPLE. Observe from
the differentiating rules (4.50) – (4.53) that dω has bi-degree (16− k, k). Third, we need
to solve the linear problem (4.65) for ξp (also (4.56)). To this end, we simply let the
computer to find the right linear combination of the basis vectors constructed earlier.
The following two simplifications are available: First, it is now clear that ξp ∈

∧15−k,k−1.
Second, it is convenient to consider

∧
15−k,k−1 =

⊕
m

⊕
j

∧
j,15−k−j,m+j,k−1−m−j

 (4.66)

since the multiplication by (dα)p ∈
∧1,1 then acts diagonally with respect to the outer

grading.
Everything is prepared now to start the algorithm. Theorems 1.33, 1.41, and 4.3 will

be used in the sequel. We start with k = 1 and take

ω = [0, 4, 0, 0] ∧ [0, 4, 0, 0] ∧ [7, 0, 0, 0] ∈ Ω15,0(SO2)Spin(9).

Using the considerations from the first part of the proof, we let the computer to find
(Dω)p 6= 0. Consequently, [[ω]] 6= 0, and since dim ValSpin(9)

16−1 = 1, [[ω]] in fact spans

ValSpin(9)
16−1 . Expressing ω in coordinates reveals that these are all integers divisible by 14

- we rescale ω accordingly and get the first generator t. In the second step, we first use
the formulas (1.38) and (1.40) for the Bernig-Fu convolution and the Kernel theorem
to compute t2 = t ∗ t 6= 0. As dim ValSpin(9)

16−2 = 2, we need one new generator here to
complete a basis. We choose s as above. As for the induction, assume we have found a
basis for every ValSpin(9)

16−j , j = 1, 2, . . . , k− 1. Consider all possible µ ∗ ν ∈ Val16−k, where
µ, ν are some basis vectors from our bases and choose the biggest linearly independent
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set among them. Those that do not fit into this set are expressible in those that do.
We express them and record the corresponding relations in Appendix B. If the linearly
independent set is not a basis of ValSpin(9)

16−k (i.e. of cardinality dim ValSpin(9)
16−k , see Theorem

4.3), we complete it to one by adding new generator(s). We continue until k = 16.

Let us briefly comment on certain aspects of the computational part of the proof. In
general, we face two problems of linear algebra: We need to perform linear operations,
in particular the wedge product, on the space

∧•(Im O⊕O⊕ Im O⊕O), and we need
to solve systems of linear equations, i.e. to invert matrices. As for the latter, this is
unproblematic: Using in particular the decomposition (4.66), the problem is reduced to
inverting rational matrices of size at most 110 which is done instantly by MAPLE.

The first task, however, is more subtle. Observe that the dimension of the space is

230 = 1 073 741 824.

Therefore, to compute a wedge product, for instance, the computer may need to con-
duct a huge number of basic operations. All our attempts to use conventional MAPLE

procedures and packages for work with exterior algebra failed to be able to multiply
generic forms in real time. Instead, the following idea turned out to be extremely use-
ful and, in fact, made it even possible to bring the necessary computations to an end:
First, the standard basis of

∧•(Im O⊕O⊕ Im O⊕O) is in a bijective correspondence
with the set

{(K, L, M, N) ; 0 ≤ K, M ≤ 27 − 1 = 127 and 0 ≤ L, N ≤ 28 − 1 = 255}.

Using the usual notation (4.15), it is convenient to redenote θ8
1 = θ0

1 and ϕ8
1 = ϕ0

1. Then,
we identify the basis vector

θ
i(u)1
0 ∧ · · · ∧ θ

i(u)k
0 ∧ θ

i(x)
1

1 ∧ · · · ∧ θ
i(x)
l

1 ∧ ϕ
i(v)1
0 ∧ · · · ∧ ϕi(v)m

0 ∧ ϕ
i(y)1
1 ∧ · · · ∧ ϕi(y)n

1 ,

where

1 ≤ i(u)1 < · · · < i(u)k ≤ 7,

1 ≤ i(x)
1 < · · · < i(x)

l ≤ 8,

1 ≤ i(v)1 < · · · < i(v)m ≤ 7,

1 ≤ i(y)1 < · · · < i(y)n ≤ 8,

with (K, L, M, N), where

K =
k

∑
j=1

2i(u)j −1, L =
l

∑
j=1

2i(x)
j −1, M =

m

∑
j=1

2i(v)j −1, and N =
n

∑
j=1

2i(y)j −1.

In this representation, the wedge product is fairly simple: Namely, it is easily seen that
it equals either

(K, L, M, N) ∧ (K′, L′, M′, N′) = ±(K + K′, L + L′, M + M′, N + N′) (4.67)

or it is trivial. The pairs of four-tuples for which this is the case can be easily computed
(or seen) as well as the signs in (4.67). Moreover, this can be done just once, stored, and
then read within each elementary operation. The ‘difficult’ part of the operation ∧ is
therefore transformed into the addition of integers. Similarly, for the Hodge ∗, one has

∗(K, L, M, N) = ±(127− K, 255− L, 127−M, 255− N). (4.68)

85



It is clear from the proof of Theorem 4.22 that the (homogeneous) generating set we
construct is minimal in the sense of §4.4.1. Consequently (see Remark 4.21),

Corollary 4.23. The algebra ValSpin(9) satisfies

k 1 2 3 4 5 6 7 8

genk ValSpin(9) 1 1 1 2 3 2 1 1
.

Remark 4.24. Notice that the previous statement is with respect to the codegree if
Val(O2)Spin(9) is equipped with the Bernig-Fu convolution. Equivalently, one may con-
sider its image under Alesker-Fourier transform, i.e. being endowed with the Alesker
product. In that case Corollary 4.23 holds for the degree of homogeneity.

To compare the statement of Corollary 4.23 with its counterparts in the other known
cases listed in §1.3.4, observe that, in particular,

k 1

genk ValSO(n) 1
,

k 1 2

genk ValU(n) 1 1
,

k 1 2 3 4

genk ValSp(2)Sp(1) 1 1 1 1
.

Similarly, one gets analogous tables for SU(n), G2, and Spin(7). However, the numbers
genk in these three reaming cases disobey a magical phenomenon that can be observed in
the four tables above: Apart from gen1 (which corresponds to the first intrinsic volume
and may be perhaps viewed somewhat special) the remaining non-zero numbers of
generators display the following ‘hard-Lefschetz-type’ behaviour:

gen2 ≤ gen3 ≤ · · · ≤ gen d
2+1, and genk = gend+2−k, 2 ≤ k ≤ d, (4.69)

where d is the dimension of the underlying normed division algebra. (4.69) is rather
trivial in the three latter cases but the things are more interesting on the octonionic
plane. In particular, the existence of the second generator in degree 6 is not required
by dimensional reasons but rather it reflects the (unexpected) existence of a non-trivial
relation of this degree (see the first paragraph of Appendix B). Although we believe
that there might be some underlying principle, perhaps related to the structure of the
corresponding normed division algebras, we currently have no understanding of this
phenomenon at all.

4.4.3 The Principal Kinematic Formula

We shall explicitly determine the Principal kinematic formula on the octonionic plane,
using the results of the previous section and the FTAIG (Theorem 1.52) in its special
version (1.52). The main step is to compute the matrix of the Alesker-Poincaré pair-
ing. Recall that this could be deduced from knowledge of the Bernin-Fu-convolution
product on ValSpin(9) via (1.43).

Let us denote the Betti numbers of the algebra (see Theorem 4.3) by

dk = dim ValSpin(9)
16−k , 0 ≤ k ≤ 16, (4.70)

and let

Ψ(1)
k , . . . , Ψ(dk)

k (4.71)
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be the basis of ValSpin(9)
16−k given in Theorem 4.22. Thus, the basis of ValSpin(9) is

Ψ(1)
0 , Ψ(1)

1 , Ψ(1)
2 , Ψ(2)

2 , . . . , Ψ(1)
k , . . . , Ψ(dk)

k , . . . , Ψ(1)
16 . (4.72)

Observe also it was chosen such that

Ψ(i)
8 = t8−k ∗Ψ(i)

k and Ψ(i)
16−k = t8−k ∗Ψ(i)

8 , 0 ≤ k ≤ 8, 1 ≤ i ≤ dk, (4.73)

in particular,

Ψ(i)
16−k = t16−2k ∗Ψ(i)

k , 0 ≤ k ≤ 8, 1 ≤ i ≤ dk. (4.74)

It is easily seen from (1.43) that the matrix of the Alesker-Poincaré pairing with
respect to (4.72) has the following (symmetric) block anti-diagonal form

M =


M0

...
Mk

...
M16

 , (4.75)

where a single block Mk is of size dk and given by

(Mk)i,j =
(

Ψ(i)
k ∗Ψ(j)

16−k

)
0

. (4.76)

(4.74) yields immediately

Mk = M16−k, (4.77)

In particular, Mk is symmetric. In fact, the middle block contains all the others: from
(4.73) one conclude that for any 0 ≤ k ≤ 8 and 1 ≤ i ≤ dk,

(Mk)i,j = (M8)i,j, 0 ≤ k ≤ 8, 1 ≤ i ≤ dk (4.78)

(cf. Bernig’s discussion of Corollary 3.6 in [27]).
With MAPLE, M8 is easily computed in terms of invariant forms, using the formula

(1.38). Equally simple is to invert it as well as its submatrices and, thus, to obtain

M−1 =


M−1

0
...

M−1
k

...
M−1

16

 . (4.79)

Consequently, keeping the notation of this paragraph, it follows from (1.52) that

Theorem 4.25. The principal kinematic formula in O2 reads

∫
Spin(9)

χ(K ∩ gL) =
16

∑
k=0

dk

∑
i,j=1

(M−1
k )i,jΨ

(i)
k (K)Ψ(j)

16−k(L), K, L ∈ K(O2). (4.80)

Remark 4.26. The explicit expression of the (biggest) middle part k = 8 of (4.80) is, for
illustration, given in Appendix C.
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4.5 Kubota-Type Spin(9)-Invariant Valuations

In the final part of this chapter we shall study the Kubota-type valuations

Tk(K) =
∫

OP1
µk(π`K)d`, 0 ≤ k ≤ 8, (4.81)

introduced by Alesker [13] that were recalled in §4.1.1. As for the terminology we use,
cf. the classical Kubota formulas (1.11). First, we prove their non-triviality and second,
we express them in the basis of ValSpin(9) that was given in §4.4.2.

4.5.1 Invariant Measures on OP1 and OP1

For we shall need to explicitly compute the integrals (4.81) in the sequel, let us recall
that the Spin(9)-invariant measure on OP1 is well known. Namely, in the stereographic
coordinates OP1\{`∞} → O : `a 7→ a, one has (see [71])

d`a =
c da(

1 + |a|2
)8 , (4.82)

where da is the Lebesgue measure on O = R8, and c ∈ R a normalizing constant. Let
us calibrate c such that d`a is a probability measure. To this end,

Proposition 4.27.

1
c
=
∫

O

da(
1 + |a|2

)8 =
π4

840
. (4.83)

Proof. Using spherical coordinates in O, where the surface area of the unit sphere S7 is
8ω8 = 8 · π4

4! = π4

3 , and an easy substitution 1 + r2 = y(r), we can write∫
O

da(
1 + |a|2

)8 =
π4

3

∫ ∞

0

r7

(1 + r2)8 dr

=
π4

6

∫ ∞

1

(y− 1)3

y8 dy

=
π4

6

∫ ∞

1

(
1
y5 −

3
y6 +

3
y7 −

1
y8

)
dy

=
π4

6

[
− 1

4y4 +
3

5y5 −
3

6y6 +
1

7y7

]∞

1

=
π4

6

(
1
4
− 3

5
+

1
2
− 1

7

)
=

π4

840
.

The invariant measure d` on OP1 is constructed accordingly: To any measurable
function f on OP1 we first assign a function f̃ on OP1×O2 by f̃ (`, x) = f (`+ x). Then
we require ∫

OP1
f (`)d` =

∫
OP1

(∫
`⊥

f̃ (`, x)dx
)

d`

(cf. [88], §7.1).

88



4.5.2 Non-Triviality

Let us show that the valuations Tk, 0 ≤ k ≤ 8, are non-trivial in that sense that they are
not multiples of the intrinsic volumes of the respective degree. Notice that we do not
yet use our description of ValSpin(9) (given in §4.4) at all.

We shall need the following well-known description of the operator Λ (which holds
in fact much more general). It explains why Λ is usually called the derivation operator.
See also (1.4).

Lemma 4.28 (Bernig, Fu [30], Corollary 1.8). For any φ ∈ ValSpin(9) and K ∈ K one has

(Λφ)(K) = (µ15 ∗ φ)(K) =
1
2

d
dλ

∣∣∣∣
λ=0

φ(Kλ). (4.84)

Let us also recall the standard integral-geometric notation (see [88]): We put

[0] = 1 and [k] =
kωk

2ωk−1
, k ∈N. (4.85)

Then for [k]! = [k][k− 1] · · · [1] we define[
n
k

]
=

[n]!
[k]![n− k]!

, 0 ≤ k ≤ n. (4.86)

Proposition 4.29. For 1 ≤ k ≤ 8,

ΛTk = [9− k] Tk−1. (4.87)

Proof. Take K ∈ K and λ > 0. According to the Kubota formula (1.11) and the Steiner
formula (1.10), we have

Tk(Kλ) =
∫

OP1
µk(π`Kλ)d`

=

[
8
k

] ∫
OP1

(∫
Grk(`)

volk(πEπ`Kλ)dE
)

d`

=

[
8
k

] ∫
OP1

(∫
Grk(`)

volk((πEπ`K)λ)dE
)

d`

=

[
8
k

] ∫
OP1

(
k

∑
j=0

∫
Grk(`)

ωjµk−j(πEπ`K)λj dE

)
d`.

Differentiating in λ = 0 and Lemma 4.28 then yield

(ΛTk)(K) =
[

8
k

]
ω1

2

∫
OP1

(∫
Grk(`)

µk−1(πEπ`K)dE
)

d`

=

[
8
k

] [
k

k− 1

] ∫
OP1

(∫
Grk(`)

(∫
Grk−1(E)

volk−1(πFπEπ`K)dF
)

dE
)

d`

=

[
8
k

] [
k

k− 1

] ∫
OP1

(∫
Grk−1(`)

volk−1(πFπ`K)dF
)

d`

=

[
8
k

] [
k

k− 1

] [
8

k− 1

]−1 ∫
OP1

µk−1(π`K)d`

=

[
8
k

] [
k

k− 1

] [
8

k− 1

]−1

Tk−1(K),
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where we used the Kubota formula again, back and forth, as well as the probability
normalization of the invariant measures on Grassmannians. (4.87) now follows from[

8
k

] [
k

k− 1

] [
8

k− 1

]−1

=
[8]![k]![k− 1]![8− k + 1]!
[k]![8− k]![k− 1]![1]![8]!

=
[9− k]!

[1]![8− k]!
= [9− k].

By induction, it follows at once

Corollary 4.30. For 0 ≤ k ≤ 8,

ΛkT8 = [k]! T8−k. (4.88)

Lemma 4.31. The valuations µ2, T2 ∈ ValSpin(9) are linearly independent.

Proof. According to Klain’s Embedding theorem 1.21 and Example 1.22, it is enough to
show that KlT2 is not constant. To this end, consider the following two convex bodies
in O2:

K1 = conv
{(

0
0

)
,
(

e0
0

)
,
(

e1
0

)}
and K2 = conv

{(
0
0

)
,
(

e0
0

)
,
(

0
e0

)}
.

Since µ2(Ki) = vol2(Ki) =
1
2 clearly holds for i = 1, 2, in order to prove the statement,

it is sufficient to show T2(K1) 6= T2(K2).
Let a ∈ O. Then the set

1√
1 + |a|2

(
e0
e0a

)
, . . . ,

1√
1 + |a|2

(
e7
e7a

)

is an orthonormal basis of the octonionic line `a. Consequently, the orthogonal projec-
tion πa : O2 → `a is given by

πa

(
x
y

)
=

1

1 + |a|2
7

∑
j=0

(
〈x, ej〉+ 〈y, eja〉

) ( ej
eja

)
.

In particular, one has, first,

πa

(
e0
0

)
=

1

1 + |a|2

(
e0
e0a

)
, (4.89)

second,

πa

(
e1
0

)
=

1

1 + |a|2

(
e1
e1a

)
, (4.90)

and finally,

πa

(
0
e0

)
=

1

1 + |a|2
7

∑
j=0
〈e0, eja〉

(
ej
eja

)
=

Re(a)
1 + |a|2

(
e0
e0a

)
− 1

1 + |a|2
7

∑
j=1
〈ej, a〉

(
ej
eja

)
.

(4.91)

Now we can explicitly compute T2(K1) and T2(K2) using (4.82).
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First, since the projections (4.89) and (4.90) are obviously perpendicular, one has

2µ2(πaK1) =

∥∥∥∥∥ 1

1 + |a|2

(
e0
e0a

)∥∥∥∥∥ ·
∥∥∥∥∥ 1

1 + |a|2

(
e1
e1a

)∥∥∥∥∥ =
1

1 + |a|2
.

Hence, integration completely analogous to the proof of Proposition 4.27 above yields

2T2(K1) =
840
π4

∫
O

da(
1 + |a|2

)9

= 280
∫ ∞

0

r7

(1 + r2)9 dr

= 140
∫ ∞

1

(y− 1)3

y9 dy

= 140
∫ ∞

1

(
1
y6 −

3
y7 +

3
y8 −

1
y9

)
dy

= 140
[
− 1

5y5 +
3

6y6 −
3

7y7 +
1

8y8

]∞

1

= 140
(

1
5
− 1

2
+

3
7
− 1

8

)
=

1
2

.

Second, the two parts of the projection on the right-hand side of (4.91) are obviously
parallel and perpendicular, respectively, to (4.89), one has

2µ2(πaK2) =

∥∥∥∥∥ 1

1 + |a|2

(
e0
e0a

)∥∥∥∥∥ ·
∥∥∥∥∥ 1

1 + |a|2
7

∑
j=1
〈ej, a〉

(
ej
eja

)∥∥∥∥∥
=

1

1 + |a|2

√√√√ 7

∑
j=1
〈ej, a〉2

=
|Im(a)|
1 + |a|2

.

Now, using spherical coordinates in Im O, where the surface area of the unit sphere S6

is 7ω7 = 7 · 24π3

7!! = 16π3

15 , substitution 1 + x2 + r2 = y(r), and the known integral∫ ∞

0

dx

(1 + x2)5 =
35π

256

(see e.g. [67], p. 327, §3.249), we have

2T2(K1) =
840
π4

∫
O

|Im(a)|(
1 + |a|2

)9 da

=
896
π

∫
R

(∫ ∞

0

r7

(1 + r2 + x2)9 dr

)
dx

=
448
π

∫
R

(∫ ∞

1+x2

(y− x2 − 1)3

y9 dy
)

dx

=
448
π

∫
R

(∫ ∞

1+x2

(
1
y6 −

3(1 + x2)

y7 +
3(1 + x2)2

y8 − (1 + x2)3

y9

)
dy
)

dx
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=
448
π

∫
R

[
− 1

5y5 +
3(1 + x2)

6y6 − 3(1 + x2)2

7y7 +
(1 + x2)3

8y8

]∞

1+x2
dx

=
8

5π

∫
R

dx

(1 + x2)5

=
16
5π

∫ ∞

0

dx

(1 + x2)5

=
7
16

.

Therefore, T2(K1) 6= T2(K2) as desired.

Remark 4.32. Consider E1, E2 ∈ Gr2(O2) as follows:

E1 = span
{(

e0
0

)
,
(

e1
0

)}
and E2 = span

{(
e0
0

)
,
(

0
e0

)}
.

It is easily observed from the previous proof that

KlT2(E0) =
1
2

and KlT2(E1) =
7
16

. (4.92)

Using the same considerations as on p. 853 of [35], namely that Klµ2 ≡ 1, KlτO
(E1) = 0,

KlτO
(E2) = 1, and dim ValSpin(9)

2 = 2, from (4.92) we conclude

T2 =
1
2

µ2 −
1

16
τO. (4.93)

Corollary 4.33. Let 2 ≤ k ≤ 8. The valuations µk, Tk ∈ ValSpin(9) are linearly independent.

Proof. Assume that Tk = λµk for some λ 6= 0. Then, according to Proposition 4.29 and
Theorem 1.53, there are c0 6= 0 and c1 6= 0 such that

c0T2 = Λk−2Tk = λΛk−2µk = c1µ2

which is in contradiction with Lemma 4.31.

4.5.3 Expressions in the Monomial Basis

Finally, let us now express the Kubota-type valuations in terms of the basis of ValSpin(9)

introduced in Theorem 4.22. We shall first deduce the expression of T8 from the Prin-
cipal kinematic formula (4.80) and extend it consequently to Tk, 0 ≤ k ≤ 7, using the
relation (4.88).

First of all, with the normalization we chose,

Proposition 4.34. One has T8 = U8.

Proof. For any K ∈ K,

U8(K) =
∫

OP1
χ(K ∩ `)d` =

∫
OP1

(∫
`⊥

χ(K ∩ (x + `))dx
)

d`.

For a given x ∈ `⊥, χ(K ∩ (x + `)) = 1 if and only if there exist k ∈ K and l ∈ ` with
x = k− l which clearly occurs if and only if x ∈ π`⊥K. Otherwise χ(K ∩ (x + `)) = 0.
Therefore, ∫

`⊥
χ(K ∩ (x + `))dx = vol8(π`⊥K).

To complete the proof, observe that `⊥a = `− a
|a|2

for 0 6= a ∈ O, and `⊥0 = `∞.
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In what follows, the notation of §4.4.3 will be kept. Consider the following eight-
dimensional convex body:

D =

{(
0
x

)
∈ O2 ; x ∈ O, |x| ≤ 1

}
∈ K(O2). (4.94)

First of all, observe that span D = `∞. Consequently, one has

Lemma 4.35. For any K ∈ K(O2),

U8 =
d8

∑
i=1

[
d8

∑
j=1

(M−1
8 )i,jΨ

(j)
8 (D)

]
Ψ(i)

8 . (4.95)

Proof. We apply the principal kinematic formula (4.80) to L = λD, λ > 0:

∫
Spin(9)

χ(K ∩ gλD) =
16

∑
k=0

dk

∑
i,j=1

(M−1
k )i,jΨ

(i)
k (K)Ψ(j)

16−k(λD)

= λ8
d8

∑
i,j=1

(M−1
8 )i,jΨ

(i)
8 (K)Ψ(j)

8 (D) + O(λ7)

holds for any K ∈ K(O2). Dividing by λ8 and sending λ→ ∞ then yields (4.95).

As we shall see, the convex body D was chosen such that it is that easy to evaluate
the basis elements of ValSpin(9)

8 given in Theorem 4.22 on it. In fact, the normal cycle is
nc(D) = N1 ∪ N2 ∈ SO2, where

N1 =

{((
0
x

)
,
(

v
λx

))
; λ ∈ R, x, v ∈ O, λ > 0, |x| = 1, λ2 + |v|2 = 1

}
(4.96)

and

N2 =

{((
0
x

)
,
(

v
0

))
; x, v ∈ O, |x| ≤ |v| = 1

}
. (4.97)

Take any ω ∈ Ω8,7(SO2)Spin(9). Then clearly∫
nc(D)

ω =
∫

N2

ω. (4.98)

Let us keep the notation from the proof of Theorem 4.22, in particular the abbreviations∧k,l,m,n and
∧k,l . Remember that we only know explicitly ωp ∈

∧8,7 (strictly speaking,
modulo α, which is insignificant). First, observe that p ∈ N2. Second, for some c ∈ R,
one has

ωp = c θ0
1 ∧ · · · ∧ θ7

1 ∧ ϕ1
0 ∧ · · · ∧ ϕ7

1 + ω̃p, where ω̃p ∈
⊕

l+m<15

∧
8−l,l,m,7−m.

Clearly, ω̃p
∣∣
Tp N2
≡ 0 and hence ω

∣∣
Tp N2

= c θ0
1 ∧ · · · ∧ θ7

1 ∧ ϕ1
0 ∧ · · · ∧ ϕ7

1. Third, for any

other point q ∈ N2, there is g ∈ Spin(8) such that p = gq. Since ω is invariant,

ωq = g∗ωp = c g∗(θ0
1 ∧ · · · ∧ θ7

1 ∧ ϕ1
0 ∧ · · · ∧ ϕ7

1) + g∗ω̃p.
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Finally, recall from §2.2.3 that Spin(8) acts diagonally on O2 = O ⊕ O and thus g∗

preserves the tetra-degree. In particular, g∗ω̃p ∈
⊕

l+m<15
∧8−l,l,m,7−m is again trivial

on TqN2. Altogether,

[[ω]](D) =
∫

nc(D)
ω = c vol8+7(N2) = c · 8(ω8)

2. (4.99)

To make our consideration explicit, let us first denote

T̃k =
1

ω2
8[8− k]!

Tk, 0 ≤ k ≤ 8.

Then we have

T̃8 =
97

14192640
t8 +

727
17740800

t6s +
43

184800
t5v− 53

7096320
t4s2 +

4703
4435200

t4u1

− 1
46200

t3sv +
3229

831600
t3w1 +

29
53222400

t2s3 − 47
950400

t2su1 +
593

55440
t2x1

+
1

1663200
ts2v− 13

166320
tsw1 +

13
660

ty− 1
212889600

s4 +
1

2661120
s2u1

− 1
15840

sx1 +
1

55
z,

T̃7 =
1961

2531917440
t9 +

373
82052880

t7s +
2063

82052880
t6v− 101

123079320
t5s2 +

1133
10256610

t5u1

− 55
24615864

t4sv +
28193

73847592
t4w1 +

1
18461898

t3s3 − 43
9230949

t3su1 +
25

26299
t3x1

+
1

18461898
t2s2v,− 1

157794
t2sw1 +

1
714

t2y,

T̃6 =
67

116121600
t10 +

41
12902400

t8s +
13

806400
t7v− 1

1843200
t6s2 +

101
1612800

t6u1

− 1
806400

t5sv +
1

5600
t5w1,+

1
38707200

t4s3 − 1
537600

t4su1 +
1

3360
t4x1,

T̃5 =
313

884822400
t11 +

383
221205600

t9s +
61

8192800
t8v− 1

3686760
t7s2

+
1

43890
t7u1 −

1
2633400

t6sv +
1

25080
t6w1,

T̃4 =
79

447068160
t12 +

1
1354752

t10s +
1

423360
t9v− 1

13547520
t8s2 +

1
241920

t8u1,

T̃3 =
107

1470268800
t13 +

1
4039200

t11s +
1

2570400
t10,

T̃2 =
1

55351296
t14 +

1
21288960

t12s,

T̃1 = − 1
259459200

t15.

Remark 4.36. Observe that, in particular, each of these valuations lie in the subalgebra
generated by the seven ‘first-order’ generators t, s, v, u1, w1, x1, y, z.
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Chapter 5

Hodge-Riemann Bilinear Relations

5.1 Kähler Manifolds

There is a fascinating phenomenon in the background of the recent developments in
algebraic integral geometry. Namely, and as also the used terminology suggests, many
of the remarkable algebraic structures on valuations we recalled in §1.3.2 above have
counterparts in the theory of cohomology on compact Kähler manifolds. Motivated by
the results of the previous chapter, we hope this analogy may be pushed even further.

Let us begin with a brief review of certain aspects of the theory of Kähler manifolds
that turns out to be relevant to valuations. Our references are [53] and [84]. Unlike in
the preceding chapters, we shall assume all differential forms to be complex valued.

First of all, recall that each complex manifold M carries naturally an almost complex
structure J induced by the multiplication by i in a local holomorphic chart zk = xk + iyk,
1 ≤ k ≤ n = dimC M, around u ∈ M as follows:

J : ∂xk 7→ ∂yk and J : ∂yk 7→ −∂xk . (5.1)

Then the (complexified) tangent space at u decomposes canonically

C⊗ Tu M = T+
u ⊕ T−u (5.2)

into eigenspaces of J, corresponding to the eigenvalues ±i. The algebra of differential
forms on M is graded accordingly:

Ω•(M) =
n⊕

p,q=0

Ωp,q(M) and Ωp,q(M) = Ωq,p(M). (5.3)

Definition 5.1. A Kähler manifold is a complex manifold M equipped with a Riemannian
metric g compatible with the almost complex structure J such that the induced form

ω(X, Y) = g(JX, Y), X, Y ∈ X(M), (5.4)

is closed. ω is then called the Kähler form on M.

Observe that ω is a real form of degree (1, 1) and M is canonically oriented by ωn.
Throughout the rest of this section we shall assume that M is a compact Kähler manifold
with the Kähler form ω.

The k-th de Rham cohomology of M is given by

Hk = Hk(M) =
ker

(
d : Ωk(M)→ Ωk+1(M)

)
im (d : Ωk−1(M)→ Ωk(M))

, 0 ≤ k ≤ 2n. (5.5)

Since M is compact, one has dim Hk(M) < ∞. Further, like any other compact oriented
Riemannian manifold, M satisfies
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Theorem 5.2 (Poincaré Duality). The pairing pd : Hk × H2n−k → C given by

pd([α], [β]) =
∫

M
α ∧ β (5.6)

is perfect, i.e. non-degenerate.

Taking now the complex structure of M into consideration, denote ∂ = P p,q+1 ◦ d,
where P p,q : Ω•(M) → Ωp,q(M) is the natural projection. It is easy to verify ∂

2
= 0 as

well as the Leibnitz rule for ∂. The (p, q)-Dolbeault cohomology of M is then defined as

Hp,q = Hp,q(M) =
ker

(
∂ : Ωp,q(M)→ Ωp,q+1(M)

)
im
(

∂ : Ωp,q−1(M)→ Ωp,q(M)
) , 0 ≤ p, q ≤ n. (5.7)

It turns out that (5.5) and (5.7) are compatible with each other. This is the famous

Theorem 5.3 (Hodge decomposition).

Hk =
⊕

p+q=k

Hp,q and Hp,q = Hq,p. (5.8)

It follows at once from the above properties of ∂ that

H• = H•(M) =
n⊕

p,q=0

Hp,q (5.9)

is a graded ring with respect to [α] ∧ [β] = [α ∧ β].
Crucial for the theory of Kähler manifolds is the so-called Lefschetz map given by

L : Hp,q → Hp+1,q+1 : [α] 7→ [α] ∧ [ω]. (5.10)

For 0 ≤ p + q = k ≤ n, let us define the subspaces of primitive elements as

Pq,p = Hp,q ∩ ker(Ln−k+1) and Pk =
⊕

p+q=k

Pq,p. (5.11)

The importance of the Lefschetz map is at once fully revealed by the following

Theorem 5.4 (Hard Lefschetz Theorem). For 0 ≤ k ≤ n, the map

Ln−k : Hk → H2n−k (5.12)

is an isomorphism, and

Hk =
⊕
j≥0

LjPk−2j. (5.13)

In the Lefschetz decomposition (5.13) we put Pm = 0 if m < 0. Observe also that L respects
the bi-grading (5.8). In particular, for 0 ≤ k ≤ n

2 , one Ln−2k : Hk,k ∼−→ Hn−k,n−k.
Finally, the Lefschetz map and the notion of primitiveness are remarkably related

to the Poincaré pairing (5.6). Namely, consider the induced pairing Q : Hk × Hk → C:

Q(·, ·) = pd
(

Ln−k(·), ·
)
= pd

(
·, Ln−k(·)

)
. (5.14)

Explicitly,

Q([α], [β]) =
∫

M
α ∧ β ∧ωn−k. (5.15)
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Theorem 5.5 (Hodge-Riemann Bilinear Relations). For any non-zero primitive cohomology
class [ξ] ∈ Pp,q, 0 ≤ p + q = k ≤ n, one has

ip−q(−1)
1
2 (p+q)(p+q−1)Q

(
[ξ], [ξ]

)
> 0. (5.16)

Remark 5.6. Observe that for p + q = 2l even,

ip−q(−1)
1
2 (p+q)(p+q−1) = i2p−2l(−1)l(2l−1) = (−1)p−l+l = (−1)p. (5.17)

5.2 Algebraic Structures on Smooth Valuations

Let us turn back to smooth valuations on convex bodies, this time in a more general
setting than in Chapter 1. Namely, we shall assume that they take values in the complex
numbers and Val∞ thus becomes a complex vector space. This is sometimes useful (see
Bernig’s description [24] of ValSU(n)), sometimes necessary (for example to consider the
Alesker-Fourier transform of odd valuations - see e.g. [32], Theorem 1), and in any case
standard. However, when one deals with G-invariant valuations entirely, there clearly
exists a basis of ValG of real-valued elements which can be represented, via (1.22), by
real-valued differential forms. This is a very convenient assumption to work with,
especially when one wants, for instance, to temporarily twist the algebra of forms with
the octonions, like we did on our way to ValSpin(9).

As anticipated in §1.3.2, the whole array of algebraic structures listed therein is not
only available on G-invariant valuations but in much greater generality of Val∞. Let us
recall, in this more general context, those of these results that resemble the respective
statements from the cohomology of Kähler manifolds in §5.1. Except for the difference
of complex-valuedness, the notation is kept from Chapter 1. In particular, we have the
McMullen grading

Val∞ = Val∞(Rn) =
n⊕

k=0

Val∞
k . (5.18)

Theorem 5.7 (Alesker Product [8]). Let A, B ∈ K have smooth boundaries with positive
curvature. Then (1.33) defines a commutative associative distributive naturally continuous
graded product on Val∞ with unit χ.

Theorem 5.8 (Alesker-Poincaré Duality [8]). The pairing pd : Val∞×Val∞ → C given by

pd(φ, ψ) = (φ · ψ)n (5.19)

is perfect, i.e. non-degenerate.

Let L be the linear operator on Val∞ given by

L : Val∞
k → Val∞

k+1 : φ 7→ φ · µ1. (5.20)

Theorem 5.9 (Hard Lefschetz Theorem [6, 29]). For 0 ≤ k < n
2 , the map

Ln−2k : Val∞
k → Val∞

n−k

is an isomorphism.

Comparing this with §5.1, a formal, yet far-reaching analogy between the space Val∞

and the commutative subring
⊕n

k=0 Hk,k ⊂ H• in the cohomology of compact Kähler
manifolds may be observed. In fact, one has the following magical conversion table:
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Cohomology Valuations

Underlying space
Kähler manifold M Euclidean vector space V

dimC M = n dimR V = n

Graded ring
⊕n

k=0 Hk,k ⊕n
k=0 Val∞

k

Canonical object [ω] ∈ H1,1 µ1 ∈ Val∞
1

Product [α] ∧ [β] = [α ∧ β] φ · ψ

Poincaré duality pd ([α], [β]) =
∫

M α ∧ β pd(φ, ψ) = (φ · ψ)n

Lefschetz map L : [α] 7→ [α] ∧ [ω] L : φ 7→ φ · µ1

Hard Lefschetz thm. Ln−2k : Hk,k ∼−→ Hn−k,n−k Ln−2k : Val∞
k
∼−→ Val∞

n−k

Table 5.1: Cohomology of Kähler manifolds vs. smooth valuations

5.3 Hodge-Riemann Bilinear Relations for Valuations

As it was pointed out to us by Semyon Alesker, there is still one more important result
from the cohomology theory of compact Kähler manifolds listed in §5.1 that has not yet
been included in the analogy with valuation algebras, namely, the Hodge-Riemann bi-
linear relations. To this end, the aim of this section is to conjecture a version of Theorem
5.5 for smooth valuations.

First of all, parallel to (5.11), let us denote the subspace of primitive smooth valuations
of degree 0 ≤ k ≤

⌊ n
2

⌋
by

P∞
k = Val∞

k ∩ ker(Ln−2k+1). (5.21)

Let us also put

P∞ =

b n
2 c⊕

k=0

P∞
k . (5.22)

Similarly, parallel to (5.14), we define the induced pairing Q : Val∞
k ×Val∞

k → C:

Q(·, ·) = pd
(

Ln−2k(·), ·
)
= pd

(
·, Ln−2k(·)

)
. (5.23)

Explicitly, one has

Q(φ, ψ) = (φ · ψ · µn−2k
1 )n, φ, ψ ∈ Val∞

k . (5.24)

Then, pursuing the heurism of Table 5.1, one might expect that the counterpart to the
Hodge-Riemann relations (5.16) in this setting is, according to Remark 5.6,

(−1)kQ
(
φ, φ

) ?
> 0, φ ∈ P∞

k , φ 6= 0. (5.25)

Remark 5.10. Since one has

Q(φ, φ) = Q(Re φ + i Im φ, Re φ− i Im φ) = Q(Re φ, Re φ) + Q(Im φ, Im φ),
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(5.25) is clearly equivalent to

(−1)kQ(φ, φ)
?
> 0, φ ∈ Re(P∞

k ) = {φ + φ ; φ ∈ P∞
k }, φ 6= 0. (5.26)

Observe that (5.25) is indeed true in the following special cases: Let us denote

PG = P∞ ∩ValG and PG
k = P∞

k ∩ValG .

(a) PSO(n). Clearly, non-trivial primitive elements here only exist in degree 0, i.e are
multiples of χ. It is easily seen from the Steiner formula 1.10 and Lemma 4.28 that
µn

1 = c voln for some positive number c ∈ R. Together, for any 0 6= z ∈ C, one has

Q(zχ, zχ) = |z|2 (c voln)n > 0.

(b) PU(m), for n = 2m. Similarly to the previous case, non-trivial primitive elements are
of even degree entirely: Indeed, it follows at once from Theorem 1.54 that

dim PU(n)
k =

{
1 if k = 2l, 0 ≤ l ≤

⌊ n
2

⌋
,

0 otherwise.

Thus, take 0 6= φ ∈ PU(m)
2l . Since Re φ, Im φ ∈ PU(n)

2l , according to Remark 5.10, we may
assume φ = Re φ. It was by shown Bernig and Fu in [31], Corollary 5.13, that

Q(φ, φ) = (φ · φ · µ2n−4l
1 )n > 0.

(c) PSpin(9), for n = 16. It follows from Theorem 4.3 of Bernig and Voide that

k 0 1 2 3 4 5 6 7 8

dim PSpin(9)
k 1 0 1 1 3 4 5 5 7

.

From our Theorem 4.22, in particular, from its second part Appendix B, one can easily
read a basis of PSpin(9)

16−k (in the convolution setting). For instance, for codegree k = 4,
looking at the set of relations in codegree 13, one deduces at once

PSpin(9)
16−4 = span

{
s2 +

9
65

t4 +
6
5

t2s +
8
5

tv,

u1 +
1007
36465

t4 +
131
935

t2s +
43
85

v,

u2 +
229
1870

t4 +
783
1870

t9s +
62
85

tv
}

.

Then it is just a matter of computation (see the proof of Theorem 4.22) to verify that one
indeed has the expected dependence on the (co-)degree:

(−1)16−kQ(φ, φ) > 0, φ ∈ Re PSpin(9)
16−k . (5.27)

The complex-valued version follows as before.
The general case of P∞, however, turns out to be slightly more subtle. We shall see

that this is due to appearance of odd valuations (observe that all the valuations in the
previous three cases we treated are in fact even). It will be convenient to denote the
subspaces of even and odd smooth valuations by Val∞,0 and Val∞,1, respectively, and
similarly for Val∞

k as well as for P∞ and P∞
k . Then

P∞ = P∞,0⊕P∞,1 =
⊕

k=0,...,n
s=0,1

P∞,s
k . (5.28)
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Theorem 5.11. Let n ≥ 2. Then, for s = 0, 1, and for any non-zero φ ∈ P∞,s
1 , one has

(−1)1+s Q(φ, φ) > 0. (5.29)

Proof. All the necessary material is covered by [32] where we refer for details. Through-
out the proof, we shall assume that c is a general positive real constant. The authors of
[32] consider the so-called spherical valuations

µk, f (K) = c
∫

Sn−1
f (y)dSk(K, y), K ∈ K, (5.30)

where Sk(K, ·) is the k-th surface area measure and f ∈ C∞(Sn−1). One has µk, f ∈ Val∞
k

and, moreover, each φ ∈ Val∞
1 is of this form. Further, the space C∞(Sn−1) decomposes

orthogonally, with respect to the standard L2-inner product, into eigenspaces of spher-
ical Laplacian as C∞(Sn−1) =

⊕∞
q=0Hn

q , where Hn
q is the space of spherical harmonics,

i.e. restrictions of homogeneous harmonic polynomials of degree q ∈ N0 from Rn.
One has ∆Sn−1 |Hn

q
= q(n + q − 2) id. In the connection with (5.30), it is well known

that µk, f = 0 if f ∈ Hn
1 , that µk, f ∈ Val∞,s

k , where s ≡ q mod 2, if f ∈ Hn
q , and that

µk,1 = cµk. Now, Proposition 4.10 of [32] for h ∈ Hn
q1

and g ∈ Hn
q2

gives

(µk,h · µn−k,g)n =

{
(−1)q1 c

∫
Sn−1(h− 1

n−1 ∆Sn−1 h)g if q1 = q2,
0 otherwise.

(5.31)

We shall also need one of the main results of [32], namely, that for f ∈ Hn
q , q 6= 0, and

1 ≤ k ≤ n− 1, the Alesker-Fourier transform of these valuations is

F(µk, f ) = iqcµn−k, f , (5.32)

Together with µn−1 ∗ µk, f = cµk−1, f , which follows easily from the considerations (4.30)
in [32], and with standard properties of the Alesker-Fourier transform, (5.32) yields

µ1 · µk, f = cµk+1, f . (5.33)

Consider µ1, f ∈ P∞,s
1 . Then, according to (5.31), f ⊥ 1, i.e. f = ∑q fq, where fq ∈ Hn

q
and the sum runs over q ≥ 2 with q ≡ s mod 2. Consequently, using (5.31) again,
together with (5.33), one has

Q(µ1, f , µ1, f ) = (µ1, f · µn−2
1 · µ1, f )n

= c(µn−1, f · µ1, f )n

= (−1)qc ∑
r

∫
Sn−1

(
1− q(n + q− 2)

n− 1

)
| f |2 .

Finally, since (−1)q = (−1)s and

1− q(n + q− 2)
n− 1

=
(1− q)(n− 1 + q)

n− 1

is always negative for q, n ≥ 2, the claim follows.

Corollary 5.12. Let 1 ≤ n ≤ 3. Then, for 0 ≤ k ≤
⌊ n

2

⌋
, for s = 0, 1, and for any non-zero

primitive smooth valuation φ ∈ P∞,s
k , one has

(−1)k+s Q(φ, φ) > 0. (5.34)

Proof. This follows from the previous theorem and the discussion on PSO(n) above.
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To conclude, motivated by these observations, we propose the following:

Conjecture 5.13. Let n ∈ N. Then, for 0 ≤ k ≤
⌊ n

2

⌋
and s = 0, 1, and for any non-zero

primitive smooth valuation φ ∈ P∞,s
k , one has

(−1)k+s Q(φ, φ) > 0. (5.35)

Remark 5.14. In terms of the so-called Euler-Verdier involution σ (see [10]), defined by

σ(φ) = (−1)k+sφ, φ ∈ Val∞,s
k ,

(5.35) can be equivalently written as

Q
(
σ(φ), φ

)
> 0. (5.36)
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Appendix A

A 702-Piece Puzzle

The Spin(9)-invariant 8-form Ψ8 on O2 constructed in §3.4 will be now expressed in
terms of the dual basis dx0, . . . , dx7, dy0, . . . , dy7 of

∧1(O2)∗ corresponding to the stan-
dard orthonormal basis e0, . . . , e7 of O (see also Example 3.4). Although the computa-
tions performed to this end are slightly more technical, they are based on elementary
algebraic properties of the octonions entirely. Basically, we just use the identity (3.44)
together with the rule

Rei Rej = −Rej Rei , i 6= j, (A.1)

following easily from (2.10).
We keep the notation from the proof of Theorem 3.18. In particular, let us recall

that, in terms of the octonionic coordinate 1-forms dx, dy on O2,

Ψ8 = Ψ80 + 4 Ψ62 + 6 Ψ44 + 4 Ψ26 + Ψ08, (A.2)

where

Ψ80 = Ψ40 ∧Ψ40,

Ψ62 = Ψ31 ∧Ψ31,

Ψ44 = −5
3

Re Ψ31 ∧Ψ13,

Ψ26 = Ψ13 ∧Ψ13,

Ψ08 = Ψ04 ∧Ψ04,

where

Ψ40 = ((dx ∧ dx) ∧ dx) ∧ dx,

Ψ31 = ((dy ∧ dx) ∧ dx) ∧ dx,

Ψ13 = ((dx ∧ dy) ∧ dy) ∧ dy,

Ψ04 = ((dy ∧ dy) ∧ dy) ∧ dy.

Finally, let us omit the wedge product symbol for the sake of brevity.

The Parts Ψ80 and Ψ08

As already shown in Lemma 3.14, both these parts consist of one term each. Namely,

Ψ80 = 8! dx0 · · ·dx7 (A.3)

and

Ψ08 = 8! dy0 · · ·dy7. (A.4)
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The Parts 4 Ψ62 and 4 Ψ26

Since Ψ62 = Re Ψ62, according to (3.23) we have

4 Ψ62 = 4 ∑〈Rei4
Rei5

Rei6
Rei7

Rei3
Rei2

Rei1
Rei0

(1), 1〉dyi0dxi1dxi2dxi3dyi4dxi5dxi6dxi7 ,

or, after reordering the canonical 1-forms,

4 Ψ62 = −4 ∑〈Rei7
Rei3

Rei4
Rei5

Rei2
Rei1

Rei0
Rei6

(1), 1〉dxi0 · · ·dxi5dyi6dyi7 .

Clearly, a general term

−4〈Rei7
Rei3

Rei4
Rei5

Rei2
Rei1

Rei0
Rei6

(1), 1〉dxi0 · · ·dxi5dyi6dyi7 (A.5)

of this sum is possibly non-trivial only if #{i0, . . . , i5} = 6 and #{i6, i7} = 2. Hence,
there are just three eventualities for #{i0, . . . , i7}: 6, 7 or 8. Further necessary condition
on non-triviality of (A.5) is obviously, in the sense of Remark 3.15,

7

∏
k=0

eik = ±1. (A.6)

First, suppose #{i0, . . . , i7} = 8. This means all indices in (A.5) are distinct and the
inner product there is thus totally skew-symmetric. Therefore, there are (8

2) = 28 dis-
tinct terms of this kind, each corresponding to a different set {i6, i7}, all with coefficients
±4 · 2! · 6! = ±8 · 6!.

Second, let #{i0, . . . , i7} = 7, i.e. precisely two indices coincide in (A.5). Then (A.6)
requires that the product of six distinct basis vectors equals ±1. According to (3.44),
this would however mean that the product of the two remaining (and distinct) basis
elements is also ±1, which is impossible. We conclude, therefore, that there is no non-
trivial term of this kind.

Finally, suppose #{i0, . . . , i7} = 6, i.e. {i6, i7} ⊂ {i0, . . . , i5}. In particular, i6 agrees
with precisely one element in {i0, . . . , i5} and thus, after commuting the operator Rei6
leftwards, (A.5) takes the form

+4 〈Rei7
Rei6

Rei3
Rei4

Rei5
Rei2

Rei1
Rei0

(1), 1〉dxi0 · · ·dxi5dyi6dyi7

that is totally skew-symmetric in i6, i7, and i0, . . . , i5, respectively. The inner product is
non-zero precisely when the product of the basis elements of indices {i0, · · · , i5}\{i6, i7}
is ±1. So, as discussed in the proof of Lemma 3.16, there are 14 possibilities for the set
{i0, · · · , i5}\{i6, i7} and to each of them there are (4

2) = 6 choices of {i6, i7}. Therefore,
there are 6 · 14 = 84 terms of this kind, each with prefactor ±4 · 2! · 6! = ±8 · 6!.

The case of Ψ26 is completely analogous.

The Part 6 Ψ44

Now we have

6 Ψ44 = −10 ∑〈((ei0 ei1)ei2)ei3 , ((ei4 ei5)ei6)ei7〉dyi0dxi1dxi2dxi3dxi4dyi5dyi6dyi7 .

After reordering, a general term takes the form

−10〈((ei4 ei0)ei1)ei2 , ((ei3 ei5)ei6)ei7〉dxi0 · · ·dxi3dyi4 · · ·dyi7 , (A.7)

that is only non-trivial if #{i0, . . . , i3} = #{i4, . . . , i7} = 4, i.e. 4 ≤ #{i0, . . . , i7} ≤ 8.

104



Due to the higher complexity of this case, we introduce a version of the product
of indices considered in §2.4.4: for 0 ≤ i, j ≤ 7, we define i · j = ij to be the (unique)
element of {0, . . . , 7} such that eij = ±eiej. This product is clearly commutative as well
as associative (see Remark 3.15). The condition (A.6), which of course still applies,
translates in this language as

7

∏
k=0

ik = 0. (A.8)

Let #{i0, . . . , i7} = 8, i.e. {i0, . . . , i3} ∩ {i4, . . . , i7} = ∅. We shall distinguish two
cases here. First, suppose i0i1i2i3 = 0. Then (A.8) is only fulfilled if i4i5i6i7 = 0 too,
i.e. if i5i6i7 = i4. Since i3 6= i4, one has i5i6i7 6= i3 and thus i3i5i6i7 6= 0. Therefore
((ei3 ei5)ei6)ei7 = −((ei3 ei5)ei6)ei7 and so (A.7) takes the form

+ 10 〈((ei4 ei0)ei1)ei2 , ((ei3 ei5)ei6)ei7〉dxi0 · · ·dxi3dyi4 · · ·dyi7

= +10〈Rei3
Rei5

Rei6
Rei7

Rei2
Rei1

Rei0
Rei4

(1), 1〉dxi0 · · ·dxi3dyi4 · · ·dyi7 ,

that is again totally skew-symmetric and thus the coefficient is ±10 · 4! · 4! = ±8 · 6!.
We have already shown that there exist 14 distinct sets {i0, . . . , i3} with i0i1i2i3 = 0,
and there are therefore 14 terms of this kind. Second, if i0i1i2i3 6= 0 then, by (A.8),
also i4i5i6i7 6= 0 and thus i5i6i7 6= i4. If, for instance, i5i6i7 = i5, then i6 = i7, which is
impossible. Similarly one shows that i5i6i7 6= i6 and i5i6i7 6= i7. It is therefore necessary
that i5i6i7 ∈ {i0, i1, i2, i3}. If i5i6i7 = i3, we have ((ei3 ei5)ei6)ei7 = ((ei3 ei5)ei6)ei7 and (A.7)
reads

−10 〈((ei4 ei0)ei1)ei2 , ((ei3 ei5)ei6)ei7〉dxi0 · · ·dxi3dyi4 · · ·dyi7 .

In the three other cases i5i6i7 ∈ {i0, i1, i2} one has ((ei3 ei5)ei6)ei7 = −((ei3 ei5)ei6)ei7 and
(A.7) equals

+10 〈((ei4 ei0)ei1)ei2 , ((ei3 ei5)ei6)ei7〉dxi0 · · ·dxi3dyi4 · · ·dyi7 .

Altogether, the coefficient in front of such a term is ±
(−1+3

4

)
· 10 · 4! · 4! = ±4 · 6!. As

discussed in the proof of Lemma 3.16, there are 56 sets {i0, . . . , i3} with i0i1i2i3 6= 0 and
so is the number of the corresponding terms.

If #{i0, . . . , i7} = 7, then (A.8) could never be fulfil from exactly the same reason as
in the case of Ψ62. There is, hence, no such term again.

Let #{i0, . . . , i7} = 6, and denote

{j0, . . . , j3} = {i0, . . . , i3} and {j2, . . . , j5} = {i4, . . . , i7}.

According to (A.8), we may assume j0 j1 j4 j5 = 0, i.e. j0 j1 = j4 j5. Let σ1, σ2 = ±1 be such
that

((ei3 ei5)ei6)ei7 = σ1((ei3 ei5)ei6)ei7 ,
Rei3

Rei5
Rei6

Rei7
Rei2

Rei1
Rei0

Rei4
= σ2Rei5

Rei6
Rei7

Rei4
Rei3

Rei2
Rei1

Rei0
.

Using this notation, a general term (A.7) takes the form

6 Ψ44 = −10 σ1σ2〈Rei5
Rei6

Rei7
Rei4

Rei3
Rei2

Rei1
Rei0

(1), 1〉dxi0 · · ·dxi3dyi4 · · ·dyi7 .

In what follows, we shall discuss how the sign σ1σ2 alternates for different positions of
i3 within {j0, . . . , j3}, and of i4 within {j2, . . . , j5}. Let us distinguish two separate cases.
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First, assume j0 j1 j2 j3 = 0, or equivalently j0 j1 = j2 j3. Then, if i3 = j0 and i4 = j2, for
instance, one has {i5, i6, i7} = {j3, j4, j5} and {i0, i1, i2} = {j1, j2, j3}. Therefore,

i3i5i6i7 = j0 j3 j4 j5 = j0 j3 j2 j3 = j0 j2 6= 0,

meaning ((ei3 ei5)ei6)ei7 6= ±1 and thus σ1 = −1. Further, since we have i3 /∈ {i5, i6, i7},
i4 /∈ {i0, i1, i2}, and i3 6= i4, we can write

Rei3
Rei5

Rei6
Rei7

Rei2
Rei1

Rei0
Rei4

= −Rei5
Rei6

Rei7
Rei3

Rei2
Rei1

Rei0
Rei4

= −Rei5
Rei6

Rei7
Rei3

Rei4
Rei2

Rei1
Rei0

= Rei5
Rei6

Rei7
Rei4

Rei3
Rei2

Rei1
Rei0

,

and thus σ2 = +1. The signs corresponding to the other positions of i3 and i4 are
computed analogically and summarised in Table A.1. One can observe from the table
that σ1σ2 equals +1 in precisely 8 cases and -1 in the 8 others, from which we conclude
that the corresponding term is trivial in the end. We may thus assume j0 j1 j2 j3 6= 0.
Then it is easily seen that the eight indices j0, j1, j2, j3, j0 j1 j2, j0 j1 j3, j0 j2 j3 and j1 j2 j3
are all distinct. Therefore, j4 and j5 must be among the last four ones. The requirement
j0 j1 j4 j5 = 0 however chooses the last two ones. Without loss of generality, we thus have
j4 = j0 j2 j3 and j5 = j1 j2 j3. Now we investigate the behaviour of the sign σ1σ2 again,
taking into account that j0 j4 = j1 j5 = j2 j3. The results are captured in Table A.2: Clearly,
σ2 stays the same as in the case j0 j1 j2 j3 = 0 but σ1 alternates so that σ1σ2 is positive only
in 4 cases and negative otherwise. This means that the corresponding term appears
with the coefficient ±

(−12+4
16

)
· 10 · 4! · 4! = ±4 · 6!. Regarding the number of such

terms, there are 56 options for {j0, . . . , j3}, j0 j1 j2 j3 6= 0, and for each of them there
are (4

2) = 6 possible partitions into {j0, j1} and {j2, j3}. Since {j4, j5} is then uniquely
determined, there are altogether 56 · 6 = 336 terms of this kind.

i3 j0 j0 j0 j0 j1 j1 j1 j1 j2 j2 j2 j2 j3 j3 j3 j3

i4 j2 j3 j4 j5 j2 j3 j4 j5 j2 j3 j4 j5 j2 j3 j4 j5

σ1 − − − − − − − − + − − − − + − −

σ2 + + − − + + − − + − + + − + + +

σ1σ2 − − + + − − + + + + − − + + − −

Table A.1: The signs σ1σ2 in the case j0 j1 j2 j3 = 0

i3 j0 j0 j0 j0 j1 j1 j1 j1 j2 j2 j2 j2 j3 j3 j3 j3

i4 j2 j3 j4 j5 j2 j3 j4 j5 j2 j3 j4 j5 j2 j3 j4 j5

σ1 − − − + − − + − − − − − − − − −

σ2 + + − − + + − − + − + + − + + +

σ1σ2 − − + − − − − + − + − − + − − −

Table A.2: The signs σ1σ2 in the case j0 j1 j2 j3 6= 0
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Further, suppose that #{i0, . . . , , i7} = 5, i.e. that {i0, . . . , i3} ∩ {i4, . . . , i7} contains
precisely three indices. (A.8) requires that the product of the two (distinct) elements of
{i0, . . . , i7} that do not belong to this intersection is 0. This is again impossible and thus
there are no terms here either.

Finally, let #{i0, . . . , , i7} = 4, i.e. {i0, . . . , i3} = {i4, . . . , i7}. First, assume i0i1i2i3 = 0.
If i3 = i4, it is easily seen that σ1 = σ2 = 1, whereas if i3 6= i4, one has σ1 = σ2 = −1.
In any case σ1σ2 = 1 and so 14 these terms have all coefficients ±10 · 4! · 4! = ±8 · 6!.
Second, if i0i1i2i3 6= 0, then σ1 = −1 regardless the relation between i3 and i4. Since σ2
does not change from the previous case, for any i3 we have σ1σ2 = −1 if i4 = i3 and
σ1σ2 = 1 in the three other cases of i4 6= i3. Altogether, the prefactors of these 56 terms
are ±

(−1+3
4

)
· 10 · 4! · 4! = ±4 · 6!.

Summary

All in all, the expression of Ψ8 in the standard basis possesses 702 non-trivial terms.
They are summarized in Table A.3 below. Notice that we scaled the form Ψ8 by − 1

4·6!
in order to adhere to the conventions of [110].

Each block of the table corresponds to one summand in (A.2). Each row of the table
stands for a particular class of terms of − 1

4·6! Ψ8. A general term of the class is stated
in the second column and the class is further specified in the third column. In the first
column, the coefficient standing in front of the terms from the respective class is given.
Notice that the signs of the coefficients can be explicitly determined directly from the
aforedescribed construction. Finally, the number of non-trivial terms within each class
is given in the fourth column.

Throughout the table, we always assume ik 6= il if k 6= l. Recall also that the product
of indices is taken in the following sense: eij = ±eiej.

Coefficient Basis vector Specification Number

−14 dx0 · · ·dx7 − 1

±2 dxi0 · · ·dxi5dyi6dyi7 i0 < · · · < i5, i6 < i7 28

±2 dxi0 · · ·dxi5dyi4dyi5
i0 < · · · < i3, i4 < i5,

84
i0i1i2i3 = 0

±2 dxi0 · · ·dxi3dyi4 · · ·dyi7
i0 < · · · < i3, i4 < · · · < i7,

14
i0i1i2i3 = 0

±1 dxi0 · · ·dxi3dyi4 · · ·dyi7
i0 < · · · < i3, i4 < · · · < i7,

56
i0i1i2i3 6= 0

±1 dxi0 · · ·dxi3dyi2 · · ·dyi5
i0 < i1, i2 < i3, i0i1i2i3 6= 0,

336
i4 = i0i2i3, i5 = i1i2i3

±1 dxi0 · · ·dxi3dyi0 · · ·dyi3 i0 < · · · < i3, i0i1i2i3 6= 0 56
±2 dxi0 · · ·dxi3dyi0 · · ·dyi3 i0 < · · · < i3, i0i1i2i3 = 0 14

±2 dxi0dxi1dyi0 · · ·dyi5
i0 < i1, i2 < · · · < i5,

84
i2i3i4i5 = 0

±2 dxi0dxi1dyi2 · · ·dyi7 i0 < i1, i2 < · · · < i7 28

−14 dy0 · · ·dy7 − 1

Table A.3: Explicit expression of the form − 1
4·6! Ψ8 in the standard basis
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Appendix B

The Complete List of Relations
in the Algebra Val(O2)Spin(9)

Here we list all the relations defining the algebra of Spin(9)-invariant valuations on
the octonionic plane, with respect to the Bernig-Fu convolution. This completes the
statement of Theorem 4.22. Recall that the algebra is graded by the codegree as follows:

Val(O2)Spin(9) = ValSpin(9) =
16⊕

k=0

ValSpin(9)
16−k . (B.1)

Observe that all the listed relations are independent of each other since the monomials
on the left-hand sides of all of the equations below occur exactly once.

Codegree 6

v2 = −2tw1 + 2su1.

Codegree 7

vu1 = −5tx1 + 3sw1,

vu2 = −109
32

t7 − 23
2

t5s− 317
48

t4v +
125
96

t3s2 +
317
2

t3u1 −
161

4
t3u2 + 5t2sv +

4835
6

t2w1

− 127
4

t2w2 − 291t2w3 +
1

48
ts3 +

95
12

tsu1 − tsu2 + 1440tx1 −
159
4

tx2 +
1
48

s2v

+
3
2

sw1 −
21
4

sw2 − 3sw3.

Codegree 8

sx2 = − 67
660

t8 − 151
330

t6s− 37
99

t5v− 65
198

t4s2 +
233
66

t4u1 − t4u2 −
26
99

t3sv +
650
33

t3w1

− 2
3

t3w2 −
62
11

t3w3 +
1
36

t2s3 +
122
33

t2su1 − t2su2 + 36t2x1 − t2x2 +
1
9

ts2v

+
650
33

tsw1 −
2
3

tsw2 −
62
11

tsw3 +
1
6

s2u1 + 36sx1,

vw1 = −9ty + 4sx1,

u2
1 = −16ty + 6sx1,
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u1u2 =
2983
880

t8 +
20051
1760

t6s +
3365
528

t5v− 1559
1056

t4s2 − 20939
132

t4u1 +
481
12

t4u2 −
1535
264

t3sv

− 318149
396

t3w1 +
379
12

t3w2 +
12769

44
t3w3 −

1
144

t2s3 − 2099
198

t2su1 +
1
2

t2su2

− 8573
6

t2x1 +
159

4
t2x2 +

1
144

ts2v− 2867
396

tsw1 +
59
12

tsw2 +
9
44

tsw3 + 18ty

+
1
36

s2u1 − 6sx1 −
1
3

vw2 − 4vw3,

u2
2 =

4199
660

t8 +
46507
2640

t6s− 2765
99

t5v− 821
396

t4s2 − 17003
33

t4u1 +
571
6

t4u2 −
925
132

t3sv

− 430433
198

t3w1 +
250

3
t3w2 +

14731
22

t3w3 +
1
18

t2s3 − 41
18

t2su1 +
1
3

t2su2

− 38537
11

t2x1 + 95t2x2 −
1
12

ts2v +
1807

66
tsw1 + 19tsw2 −

17
22

tsw3 +
5616

11
ty

− 1
144

s4 − 1
3

s2u1 +
1
6

s2u2 +
210
11

sx1 − 2vw2 +
36
11

vw3.

Codegree 9

ts4 = −25
9

t9 − 52
7

t7s + 16t6v + 10t5s2 + 64t5u1 + 32t4sv− 128
3

t4w1 +
28
3

t3s3

− 64
3

t3su1 −
16
3

t2s2v,

ts2u1 = − 2
1521

t9 +
580
1183

t7s +
445
169

t6v +
174
169

t5s2 +
2471
169

t5u1 +
534
169

t4sv +
16208
507

t4w1

− 88
507

t3s3 +
1822
507

t3su1 −
600
13

t3x1 −
257
507

t2s2v− 152
13

t2sw1,

ts2u2 = −145939
18252

t9 − 207881
7098

t7s− 10897
338

t6v +
471
676

t5s2 +
144604

507
t5u1 − 79t5u2

+
864
169

t4sv +
2558476

1521
t4w1 − 26t4w2 − 552t4w3 −

167
1521

t3s3 +
6926
1521

t3su1

+ 2t3su2 +
43200

13
t3x1 − 90t3x2 −

2531
3042

t2s2v +
180
13

t2sw1 + 2t2sw2 + 24t2sw3,

tsx1 =
25897

8791380
t9 +

6180
341887

t7s +
78332

732615
t6v− 25481

2930460
t5s2 +

219157
488410

t5u1

− 12499
293046

t4sv +
59099
48841

t4w1 +
7

293046
t3s3 − 16481

97682
t3su1 +

1575
3757

t3x1

+
7

293046
t2s2v− 1889

3757
t2sw1 −

168
17

t2y,

tvw2 =
345859705
464184864

t9 +
201050353
85960160

t7s +
17103107
96705180

t6v− 40427333
77364144

t5s2 − 329863723
8058765

t5u1

+
152
15

t5u2 −
78728239
38682072

t4sv− 3748338689
19341036

t4w1 + 13t4w2 +
3111
44

t4w3

− 9205
879138

t3s3 − 81780211
19341036

t3su1 +
1
2

t3su2 −
2594261

7514
t3x1 +

19
2

t3x2

+
4007

1172184
t2s2v− 507563

165308
t2sw1 +

13
6

t2sw2 +
295
44

t2sw3 −
990
17

t2y,
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tvw3 =
2269121
7033104

t9 +
130671239
123079320

t7s +
30778613
52748280

t6v− 2169641
10549656

t5s2 − 21735751
1465230

t5u1

+
176
45

t5u2 −
1002280
1318707

t4sv− 65308993
879138

t4w1 +
11
3

t4w2 +
55
2

t4w3

+
9869

5274828
t3s3 − 205373

146523
t3su1 −

498421
3757

t3x1 +
11
3

t3x2 +
9869

5274828
t2s2v

− 3014
3757

t2sw1 +
11
9

t2sw2 −
7
3

t2sw3 −
165
17

t2y,

tz = − 28331
1107713880

t9 − 1249
6153966

t7s− 87019
61539660

t6v +
101

123079320
t5s2

− 115473
13675480

t5u1 +
55

24615864
t4sv− 388147

9230949
t4w1 −

1
18461898

t3s3

+
43

9230949
t3su1 −

26449
157794

t3x1 −
1

18461898
t2s2v +

1
157794

t2sw1 −
179
357

t2y,

s3v = −2978
507

t9 − 10272
169

t7s− 32411
169

t6v− 8254
169

t5s2 − 48612
169

t5u1 −
6479
169

t4sv

+
111376

169
t4w1 +

3492
169

t3s3 +
51884
169

t3su1 +
4560
13

t3x1 +
8731
169

t2s2v +
864
13

t2sw1,

s2w1 = − 423211
2197845

t9 − 348476
341887

t7s− 1288358
244205

t6v +
203141
244205

t5s2 − 3244737
244205

t5u1

+
199599
48841

t4sv +
3397013
146523

t4w1 −
308

146523
t3s3 +

2370856
146523

t3su1 +
988500
3757

t3x1

− 308
146523

t2s2v +
158718

3757
t2sw1 +

1320
17

t2y,

s2w2 =
1424473757
580231080

t9 +
3491695369
451290840

t7s− 99305936
24176295

t6v +
148345751
193410360

t5s2

− 1235838493
8058765

t5u1 +
544
15

t5u2 +
9534368
4835259

t4sv− 3137856266
4835259

t4w1 + 49t4w2

+
2610

11
t4w3 −

54913
390728

t3s3 +
38941391
4835259

t3su1 + 2t3su2 −
3601952

3757
t3x1 + 34t3x2

− 55672
439569

t2s2v +
995606
41327

t2sw1 +
28
3

t2sw2 +
146
11

t2sw3 +
1584
17

t2y,

s2w3 =
271307
450840

t9 +
9413891
4733820

t7s +
228614
507195

t6v− 68117
4057560

t5s2 − 1697401
56355

t5u1 +
352
45

t5u2

− 7022
101439

t4sv− 4702732
33813

t4w1 +
22
3

t4w2 + 55t4w3 +
193

101439
t3s3 +

3838
3757

t3su1

− 63756
289

t3x1 +
22
3

t3x2 +
193

101439
t2s2v +

1188
289

t2sw1 +
22
9

t2sw2

− 14
3

t2sw3 +
264
17

t2y,

sy =
28331

19780605
t9 +

4996
439569

t7s +
174038
2197845

t6v− 101
2197845

t5s2 +
115473
244205

t5u1

− 55
439569

t4sv +
3105176
1318707

t4w1 +
4

1318707
t3s3 − 344

1318707
t3su1 +

105796
11271

t3x1

+
4

1318707
t2s2v− 4

11271
t2sw1 +

1279
51

t2y,

vx1 =
198317

26374140
t9 +

8743
146523

t7s +
609133
1465230

t6v− 707
2930460

t5s2 +
2424933
976820

t5u1

− 385
586092

t4sv +
5434058
439569

t4w1 +
7

439569
t3s3 − 602

439569
t3su1 +

185143
3757

t3x1

+
7

439569
t2s2v− 7

3757
t2sw1 +

2251
17

t2y,
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vx2 =
1752942221
2320924320

t9 +
12823165981
2707745040

t7s +
27192059569
1160462160

t6v +
1693971839
2320924320

t5s2

+
590022453
5372510

t5u1 +
391
180

t5u2 +
102946787
58023108

t4sv +
2315759090

4835259
t4w1 −

77
12

t4w2

+
477
22

t4w3 −
1397087

21099312
t3s3 +

35304473
19341036

t3su1 +
2
3

t3su2 +
6613466

3757
t3x1

+
49
12

t3x2 −
2569271
21099312

t2s2v− 95061
41327

t2sw1 −
221
36

t2sw2 +
991
66

t2sw3 +
67176

17
t2y,

u1w1 =
28331

1861704
t9 +

6245
51714

t7s +
87019
103428

t6v− 101
206856

t5s2 +
115473
22984

t5u1 −
275

206856
t4sv

+
1940735

77571
t4w1 +

5
155142

t3s3 − 215
77571

t3su1 +
132245

1326
t3x1 +

5
155142

t2s2v

− 5
1326

t2sw1 +
805

3
t2y,

u1w2 = −1696241603
2320924320

t9 − 3770703661
1805163360

t7s +
406638451
193410360

t6v +
24948791
48352590

t5s2

+
875507521
16117530

t5u1 −
32
3

t5u2 +
77926367
38682072

t4sv +
4772084077

19341036
t4w1 −

41
3

t4w2

− 3279
44

t4w3 +
4129

390728
t3s3 +

79225709
19341036

t3su1 −
1
2

t3su2 +
10794811

22542
t3x1

− 10t3x2 −
1460

439569
t2s2v +

1338605
495924

t2sw1 −
17
6

t2sw2 −
287
44

t2sw3 +
4082
17

t2y,

u1w3 = − 49421519
158244840

t9 − 244104829
246158640

t7s− 232604
1318707

t6v +
2701219
13187070

t5s2 +
1638935
97682

t5u1

− 176
45

t5u2 +
7994645
10549656

t4sv +
107533550
1318707

t4w1 −
11
3

t4w2 −
83
3

t4w3

− 9583
5274828

t3s3 +
1842208
1318707

t3su1 +
1712623
11271

t3x1 −
11
3

t3x2 −
9583

5274828
t2s2v

+
17941
22542

t2sw1 −
11
9

t2sw2 +
11
6

t2sw3 +
1969
51

t2y,

u2w1 = −10493459
48352590

t9 − 124941559
112822710

t7s− 23738857
6447012

t6v− 30171637
193410360

t5s2

− 181494101
21490040

t5u1 −
14
15

t5u2 −
1710261
4298008

t4sv− 179353831
9670518

t4w1 +
10
3

t4w2

− 119
11

t4w3 +
2101

439569
t3s3 − 2720161

4835259
t3su1 −

771061
7514

t3x1 − 2t3x2

+
2101

439569
t2s2v +

118517
123981

t2sw1 +
10
3

t2sw2 −
64
11

t2sw3 −
6858
17

t2y,

u2w2 =
3676123513
2785109184

t9 +
5148236867
676936260

t7s +
5587823539
154728288

t6v +
2045441273
1547282880

t5s2

+
33255409283

193410360
t5u1 +

154
15

t5u2 +
24508851
4298008

t4sv +
44687560949

58023108
t4w1

+
335
24

t4w2 +
1509

22
t4w3 +

2651825
42198624

t3s3 +
1075520785
58023108

t3su1 +
13
24

t3su2

+
19781025

7514
t3x1 +

77
8

t3x2 +
4800829
42198624

t2s2v +
5379211
165308

t2sw1 +
77
24

t2sw2

+
101
22

t2sw3 +
79524

17
t2y,

112



u2w3 =
3676123513
2785109184

t9 +
5148236867
676936260

t7s +
5587823539
154728288

t6v +
2045441273
1547282880

t5s2

+
33255409283

193410360
t5u1 +

154
15

t5u2 +
24508851
4298008

t4sv +
44687560949

58023108
t4w1

+
335
24

t4w2 +
1509

22
t4w3 +

2651825
42198624

t3s3 +
1075520785
58023108

t3su1 +
13
24

t3su2

+
19781025

7514
t3x1 +

77
8

t3x2 +
4800829
42198624

t2s2v +
5379211
165308

t2sw1 +
77
24

t2sw2

+
101
22

t2sw3 +
79524

17
t2y.

Codegree 10

t3s2v =
97
560

t10 +
171
112

t8s +
297
70

t7v +
81
80

t6s2 +
21
5

t6u1 +
3

10
t5sv− 112

5
t5w1

− 41
80

t4s3 − 38
5

t4su1,

t3sw1 =
113

17920
t10 +

491
17920

t8s +
59
480

t7v− 53
1536

t6s2 +
303

2240
t6u1 −

171
1120

t5sv− 53
35

t5w1

+
1

17920
t4s3 − 1129

2240
t4su1 −

55
7

t4x1,

t3sw2 = − 7823
134400

t10 − 1091
8960

t8s +
437
840

t7v +
217
3840

t6s2 +
6171
1120

t6u1 −
101
80

t6u2 +
3
14

t5sv

+
1996
105

t5w1 −
13
5

t5w2 −
42
5

t5w3 +
23

8960
t4s3 +

293
672

t4su1 −
9
80

t4su2

+
804
35

t4x1 −
9
10

t4x2,

t3sw3 = − 3499
89600

t10 − 2237
17920

t8s +
1
24

t7v− 5
1536

t6s2 +
16307
6720

t6u1 −
253
480

t6u2 +
103
5040

t5sv

+
1154
105

t5w1 −
11
15

t5w2 −
16
5

t5w3 +
107

53760
t4s3 +

451
6720

t4su1 −
11
160

t4su2

+
638
35

t4x1 −
11
20

t4x2,

t3y = − 769
6451200

t10 − 1961
2150400

t8s− 271
44800

t7v +
1

307200
t6s2 − 9061

268800
t6u1

+
1

134400
t5sv− 423

2800
t5w1 −

1
6451200

t4s3 +
1

89600
t4su1 −

281
560

t4x1,

s5 = −4699
28

t10 − 19701
28

t8s +
468
7

t7v +
593
4

t6s2 +
20718

7
t6u1 +

10940
7

t5sv

+
13696

7
t5w1 +

13373
28

t4s3 +
2606

7
t4su1 +

1920
7

t4x1,

s3u1 = −14219
4032

t10 − 1109
2240

t8s +
5077
140

t7v +
3757
320

t6s2 +
150531

280
t6u1 +

4435
28

t5sv

+
73704

35
t5w1 −

5837
6720

t4s3 +
98571

280
t4su1 +

5808
7

t4x1,

s3u2 = −605559
11200

t10 − 2365561
11200

t8s− 903953
4200

t7v− 89257
4800

t6s2 +
1275297

700
t6u1

− 24121
40

t6u2 −
32163
1400

t5sv +
1903824

175
t5w1 −

1548
5

t5w2 − 4788t5w3

+
165853
11200

t4s3 − 146421
700

t4su1 +
2667

40
t4su2 +

835284
35

t4x1 −
3483

5
t4x2,
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s2x1 =
214609
2419200

t10 +
55729
89600

t8s +
64511
16800

t7v− 2107
38400

t6s2 +
640487
33600

t6u1 −
3547
16800

t5sv

+
25271
350

t5w1 +
187

806400
t4s3 − 5787

11200
t4su1 +

11667
70

t4x1,

svw2 =
6926111
9676800

t10 +
3964277
1075200

t8s +
615323
33600

t7v− 73879
51200

t6s2 +
9098347
134400

t6u1

+
679
640

t6u2 −
25661
5600

t5sv +
861193
4200

t5w1 −
17
4

t5w2 +
243
20

t5w3 +
87677

3225600
t4s3

− 1113461
134400

t4su1 +
19
640

t4su2 +
122803

280
t4x1 +

99
80

t4x2,

svw3 = −661805
774144

t10 − 860953
307200

t8s− 3863
134400

t7v +
9917

102400
t6s2 +

13609109
268800

t6u1

− 3201
320

t6u2 +
28457
44800

t5sv +
2085701

8400
t5w1 −

11
2

t5w2 −
349
5

t5w3

+
169

6451200
t4s3 +

217613
268800

t4su1 +
11
320

t4su2 +
51733
112

t4x1 −
429
40

t4x2,

sz = − 1987
19353600

t10 − 547
716800

t8s− 653
134400

t7v +
1

307200
t6s2 − 6821

268800
t6u1

+
1

134400
t5sv− 283

2800
t5w1 −

1
6451200

t4s3 +
1

89600
t4su1 −

141
560

t4x1,

vy = − 1987
3225600

t10 − 1641
358400

t8s− 653
22400

t7v +
1

51200
t6s2 − 6821

44800
t6u1

+
1

22400
t5sv− 849

1400
t5w1 −

1
1075200

t4s3 +
3

44800
t4su1 −

423
280

t4x1,

u1x1 = − 1987
1290240

t10 − 1641
143360

t8s− 653
8960

t7v +
1

20480
t6s2 − 6821

17920
t6u1

+
1

8960
t5sv− 849

560
t5w1 −

1
430080

t4s3 +
3

17920
t4su1 −

423
112

t4x1,

u1x2 =
24797
28800

t10 +
142987
67200

t8s− 11981
1800

t7v− 16741
28800

t6s2 − 799313
8400

t6u1 +
213
20

t6u2

− 28171
12600

t5sv− 454733
1050

t5w1 +
88
15

t5w2 +
66
t

5
w3 +

509
67200

t4s3 − 29501
8400

t4su1

− 4
15

t4su2 −
178733

210
t4x1 +

737
60

t4x2,

u2x1 = −1472719
9676800

t10 − 170223
358400

t8s +
12263
67200

t7v +
7109

153600
t6s2 +

200273
19200

t6u1 −
131
80

t6u2

+
649
3200

t5sv +
30877

600
t5w1 −

4
5

t5w2 −
49
5

t5w3 −
49

153600
t4s3 +

5161
19200

t4su1

+
1
80

t4su2 +
4049

40
t4x1 −

19
10

t4x2,

u2x2 = −14018959
1814400

t10 − 740737
28800

t8s− 1200169
151200

t7v +
153107
86400

t6s2 +
20598827

50400
t6u1

− 129703
1440

t6u2 +
1101323
151200

t5sv +
1075106

525
t5w1 −

667
15

t5w2 −
635

t

5
w3

− 68219
604800

t4s3 +
131573
16800

t4su1 +
2141
1440

t4su2 +
131847

35
t4x1 −

1961
20

t4x2,

w2
1 = − 1987

967680
t10 − 547

35840
t8s− 653

6720
t7v +

1
15360

t6s2 − 6821
13440

t6u1 +
1

6720
t5sv

− 283
140

t5w1 −
1

322560
t4s3 +

1
4480

t4su1 −
141
28

t4x1,
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w1w2 =
667913
4300800

t10 +
661729

1433600
t8s− 214337

806400
t7v− 246481

1843200
t6s2 − 6013373

537600
t6u1

+
7411
3840

t6u2 −
111437
268800

t5sv− 2691721
50400

t5w1 +
41
60

t5w2 +
629
40

t5w3

+
17849

4300800
t4s3 − 813583

1612800
t4su1 −

187
1280

t4su2 −
337997
3360

t4x1 +
333
160

t4x2,

w1w3 =
2481497
16588800

t10 +
6598189
12902400

t8s +
262457
806400

t7v− 10301
204800

t6s2 − 11184631
1612800

t6u1

+
935
576

t6u2 −
492167
2419200

t5sv− 1828759
50400

t5w1 +
77
90

t5w2 +
1369
120

t5w3

+
12389

38707200
t4s3 − 473407

1612800
t4su1 −

11
960

t4su2 −
224323
3360

t4x1 +
209
120

t4x2,

w2
2 = − 20627

19353600
t10 − 202963

716800
t8s− 1116131

403200
t7v− 98093

921600
t6s2 − 4410269

268800
t6u1

+
737
960

t6u2 −
45331
134400

t5sv− 489001
8400

t5w1 +
11
30

t5w2 +
11
2

t5w3

+
4591

6451200
t4s3 − 143413

268800
t4su1 −

11
960

t4su2 −
55861
560

t4x1 +
33
40

t4x2,

w2w3 =
2921

1105920
t10 +

14461
860160

t8s +
14419
161280

t7v− 7
40960

t6s2 +
5743
15360

t6u1

− 1
2560

t5sv +
179
160

t5w1 +
1

122880
t4s3 − 3

5120
t4su1 +

179
96

t4x1,

w2
3 = − 5159

8294400
t10 − 3157

921600
t8s− 1001

57600
t7v +

539
921600

t6s2 − 7777
115200

t6u1

+
77

57600
t5sv− 77

400
t5w1 −

77
2764800

t4s3 +
77

38400
t4su1 −

77
240

t4x1.

Codegree 11

t5s3 =
53

147
t11 +

73
49

t9s− 24
49

t8v− 15
49

t7s2 − 48
7

t7u1 −
24
7

t6sv,

t5su1 =
17

1617
t11 − 13

1078
t9s− 95

539
t8v− 159

1078
t7s2 − 135

77
t7u1 −

39
77

t6sv− 64
11

t6w1,

t5su2 = − 7439
48510

t11 − 10789
16170

t9s− 3376
2695

t8v− 18
49

t7s2 +
34
77

t7u1 −
3
7

t7u2 −
82

105
t6sv

+
96
11

t6w1 +
96
11

t6w3,

t5x1 = − 1759
2457840

t11 − 4149
819280

t9s− 9281
307230

t8v +
1

61446
t7s2 − 211

1463
t7u1

+
1

43890
t6sv− 105

209
t6w1,

t5x2 = −103727
921690

t11 − 76261
153615

t9s− 1939876
1382535

+
761

553014
t7s2 − 25519

13167
t7u1 −

19
21

t7u2

+
5501

197505
t6sv +

96
209

t6w1 −
4
9

t6w2 −
200
33

t6w3,

vz = 0,
u1y = 0,

u2y = − 4979
110602800

t11 − 52627
13825350

t9s− 25226
768075

t8v +
29

614460
t7s2 − 13933

87780
t7u1

+
29

438900
t6sv− 2447

6270
t6w1 −

1
6

t6w3,
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w1x1 = 0,

w1x2 =
15581

9216900
t11 +

1757219
27650700

t9s +
1294471
2513700

t8v +
6035

1106028
t7s2 +

318643
131670

t7u1

− 4
105

t7u2 +
41879

3950100
t6sv +

17912
3135

t6w1 −
1

45
t6w2 +

262
165

t6w3,

w2x1 = − 138679
126403200

t11 +
82583

126403200
t9s +

648539
15800400

t8v +
367

790020
t7s2 +

137509
526680

t7u1

− 1
30

t7u2 −
5633

4514400
t6sv +

8137
12540

t6w1 +
37
360

t6w2 −
98
165

t6w3,

w2x2 = − 361001
13825350

t11 − 881611
4608450

t9s− 617984
768075

t8v− 4376
51205

t7s2 − 659159
263340

t7u1

− 31
252

t7u2 −
693521
3950100

t6sv− 11612
3135

t6w1 −
17
45

t6w2 −
22
15

t6w3,

w3x1 =
19129

80438400
t11 +

27149
8937600

t9s +
1331623

60328800
t8v +

124
377055

t7s2 +
13759

143640
t7u1

− 11
630

t7u2 −
737

2154600
t6sv +

71
380

t6w1 −
11

540
t6w2 −

91
360

t6w3,

w3x2 = − 746203
15800400

t11 − 4453159
15800400

t9s− 3331721
2633400

t8v− 1493
87780

t7s2 − 143107
35112

t7u1

− 1
40

t7u2 −
2971
94050

t6sv− 2023
285

t6w1 −
21
55

t6w3.

Codegree 12

t7sv = − 3
224

t12 − 41
112

t10s− 59
42

t9v− 115
224

t8s2 − 15
4

t8u1,

t7w1 = − 221
48384

t12 − 229
8064

t10s− 71
504

t9v +
1

16128
t8s2 − 145

288
t8u1,

t7w2 =
29

2880
t12 +

5
96

t10s +
13
72

t9v +
1

576
t8s2 +

1
3

t8u1 −
1

12
t8u2,

t7w3 = − 1313
241920

t12 − 169
8064

t10s− 151
3024

t9v +
107

48384
t8s2 − 11

288
t8u1 −

11
144

t8u2,

u1z = 0,

u2z = − 15671
55883520

t12 − 863
846720

t10s− 1493
635040

t9v +
263

5080320
t8s2

− 31
15120

t8u1 −
11

6048
t8u2,

w1y = 0,

w2y = − 31403
111767040

t12 − 10663
8467200

t10s− 1033
254016

t9v +
299

10160640
t8s2

− 31
4320

t8u1 −
11

12096
t8u2,

w3y = − 40631
243855360

t12 − 136279
203212800

t10s− 5687
3048192

t9v +
6017

243855360
t8s2

− 3817
1451520

t8u1 −
121

145152
t8u2,

x2
1 = 0,

x1x2 =
15671

2794176
t12 +

863
42336

t10s +
1493
31752

t9v− 263
254016

t8s2 +
31
756

t8u1 +
55

1512
t8u2,

x2
2 = − 815827

3492720
t12 − 11353

10584
t10s− 13688

3969
t9v +

1943
317520

t8s2 − 1609
270

t8u1 −
356
945

t8u2.
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Codegree 13

t9s2 = − 9
65

t13 − 6
5

t11s− 8
5

t10v,

t9u1 = − 1007
36465

t13 − 131
935

t11s− 43
85

t10v,

t9u2 = − 229
1870

t13 − 783
1870

t11s− 62
85

t10v,

w1z = 0,

w2z =
101

61261200
t13 +

23
3534300

t11s +
1

71400
t10v,

w3z =
101

267321600
t13 +

23
15422400

t11s +
11

3427200
t10v,

x1y = 0,
x2y = 0.

Codegree 14

t11v =
9

64
t14 − 33

64
t12s,

x1z = 0,
x2z = 0,

y2 = 0.

Codegree 15

t13s = − 7
15

t15,

yz = 0.

Codegree 16

z2 = 0.

Codegree 17

t17 = 0.
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Appendix C

The Principal Kinematic Formula

In the last part of Appendix, the Principal kinematic formula on the octonionic plane is
given in terms of the basis introduced in Theorem 4.22. This completes the statement of
Theorem 4.25. Let us recall that, keeping the notation of §4.4.3, the Principal kinematic
formula reads

∫
Spin(9)

χ(K ∩ gL) =
16

∑
k=0

dk

∑
i,j=1

(M−1
k )i,jΨ

(i)
k (K)Ψ(j)

16−k(L), K, L ∈ K(O2).

Here we state explicitly the middle part corresponding to k = 8. Although we do not,
for sake of space, list the rest, notice that it is computed in exactly the same way. We
denote

µ� ν =
1
2
(µ⊗ ν + ν⊗ µ) .

Then one has

8064002

5

27

∑
i,j=1

(M−1
8 )i,jΨ

(i)
8 ⊗Ψ(j)

8 =

101042723
8448

t8 � t8 +
41912485

528
t8 � t6s +

131398835
3168

t8 � t5v− 10178935
792

t8 � t4s2

− 600048805
528

t8 � t4u1 +
4538995

16
t8 � t4u2 −

37975765
792

t8 � t3sv

− 189207035
33

t8 � t3w1 +
5826055

24
t8 � t3w2 +

7976745
4

t8 � t3w3 +
133415

352
t8 � t2s3

− 10151365
132

t8 � t2su1 +
8215

8
t8 � t2su2 −

112512535
11

t8 � t2x1 +
2265005

8
t8 � t2x2

+
2835155

3168
t8 � ts2v− 79005

44
t8 � tsw1 +

397455
8

t8 � tsw2 −
360555

11
t8 � tsw3

+
5465925

22
t8 � ty− 190945

12672
t8 � s4 +

163545
176

t8 � s2u1 +
25135

48
t8 � s2u2

+
882875

11
t8 � sx1 − 9900t8 � vw2 −

661775
22

t8 � vw3 +
20210400

11
t8 � z

+
17385985

132
t6s� t6s +

436979155
3168

t6s� t5v− 270203215
6336

t6s� t4s2

− 662726705
176

t6s� t4u1 +
45172565

48
t6s� t4u2 −

31560245
198

t6s� t3sv

− 7507001455
396

t6s� t3w1 +
6451745

8
t6s� t3w2 +

72690555
11

t6s� t3w3
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+
999775

792
t6s� t2s3 − 101244185

396
t6s� t2su1 +

27955
8

t6s� t2su2

− 2196730045
66

t6s� t2x1 +
7511925

8
t6s� t2x2 +

9489955
3168

t6s� ts2v

+
37990

9
t6s� tsw1 +

4010285
24

t6s� tsw2 −
5102905

44
t6s� tsw3 +

113103315
22

t6s� ty

− 315575
6336

t6s� s4 +
5247175

1584
t6s� s2u1 +

83515
48

t6s� s2u2 +
3741990

11
t6s� sx1

− 93575
3

t6s� vw2 −
2197925

22
t6s� vw3 +

228977280
11

t6s� z +
372273293

9504
t5v� t5v

− 19067905
864

t5v� t4s2 − 493836119
264

t5v� t4u1 +
35130295

72
t5v� t4u2

− 66023681
792

t5v� t3sv− 10474501303
1188

t5v� t3w1 +
5095775

12
t5v� t3w2

+
148030505

44
t5v� t3w3 +

26071
36

t5v� t2s3 − 139961069
1188

t5v� t2su1

+
24175

12
t5v� t2su2 −

1569950995
198

t5v� t2x1 +
1943975

4
t5v� t2x2

+
358893

176
t5v� ts2v +

236431805
1188

t5v� tsw1 +
416265

4
t5v� tsw2 −

5516905
44

t5v� tsw3

+
646168905

11
t5v� ty− 195559

9504
t5v� s4 +

11259665
2376

t5v� s2u1 +
65105

72
t5v� s2u2

+
12228860

11
t5v� sx1 −

9665
9

t5v� vw2 −
1898395

33
t5v� vw3 +

2034789120
11

t5v� z

+
132412835

38016
t4s2 � t4s2 +

108459275
176

t4s2 � t4u1 −
21953365

144
t4s2 � t4u2

+
40775785

1584
t4s2 � t3sv +

7474927855
2376

t4s2 � t3w1 −
1031415

8
t4s2 � t3w2

− 94810205
88

t4s2 � t3w3 −
313285
1584

t4s2 � t2s3 +
98639645

2376
t4s2 � t2su1

− 6265
24

t4s2 � t2su2 +
2395429675

396
t4s2 � t2x1 −

1223425
8

t4s2 � t2x2

− 1392715
3168

t4s2 � ts2v +
2469905

216
t4s2 � tsw1 −

194775
8

t4s2 � tsw2 +
1053325

88
t4s2 � tsw3

+
69259275

22
t4s2 � ty +

76115
9504

t4s2 � s4 − 1319135
4752

t4s2 � s2u1 −
38675
144

t4s2 � s2u2

+
172200

11
t4s2 � sx1 +

106925
18

t4s2 � vw2 +
1117375

66
t4s2 � vw3 +

97070400
11

t4s2 � z

+
7302883913

264
t4u1 � t4u1 −

162129715
12

t4u1 � t4u2 +
305659649

132
t4u1 � t3sv

+
56608773187

198
t4u1 � t3w1 −

69294665
6

t4u1 � t3w2 −
190666245

2
t4u1 � t3w3

− 3367217
198

t4u1 � t2s3 +
796349201

198
t4u1 � t2su1 −

295565
6

t4u1 � t2su2

+
19501574935

33
t4u1 � t2x1 −

26975625
2

t4u1 � t2x2 −
28250459

792
t4u1 � ts2v

+
518106715

198
t4u1 � tsw1 −

4543815
2

t4u1 � tsw2 +
2273065

2
t4u1 � tsw3

+
6008331870

11
t4u1 � ty +

413467
528

t4u1 � s4 − 5377685
396

t4u1 � s2u1 −
99455

4
t4u1 � s2u2

+
57302840

11
t4u1 � sx1 +

1667170
3

t4u1 � vw2 +
15188410

11
t4u1 � vw3
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+
16174529280

11
t4u1 � z +

40431875
24

t4u2 � t4u2 −
6793615

12
t4u2 � t3sv

− 1226983165
18

t4u2 � t3w1 +
17297225

6
t4u2 � t3w2 +

47471025
2

t4u2 � t3w3

+
40190

9
t4u2 � t2s3 − 16143095

18
t4u2 � t2su1 +

74525
6

t4u2 � t2su2

− 366421225
3

t4u2 � t2x1 +
6726225

2
t4u2 � t2x2 +

761065
72

t4u2 � ts2v

+
307835

18
t4u2 � tsw1 +

1149775
2

t4u2 � tsw2 −
655525

2
t4u2 � tsw3 − 2063250t4u2 � ty

− 25745
144

t4u2 � s4 +
388055

36
t4u2 � s2u1 +

74525
12

t4u2 � s2u2 + 917000t4u2 � sx1

− 395450
3

t4u2 � vw2 − 355350t4u2 � vw3 +
14256331

297
t3sv� t3sv

+
108352963

9
t3sv� t3w1 −

2819225
6

t3sv� t3w2 −
132191920

33
t3sv� t3w3

− 222529
297

t3sv� t2s3 +
16188959

99
t3sv� t2su1 −

1675
6

t3sv� t2su2

+
275442210

11
t3sv� t2x1 −

3412525
6

t3sv� t2x2 −
3443051

2376
t3sv� ts2v

+
10790080

99
t3sv� tsw1 −

1582885
18

t3sv� tsw2 +
1764145

33
t3sv� tsw3+

+
254846310

11
t3sv� ty +

52823
1584

t3sv� s4 − 127885
396

t3sv� s2u1 −
12385

12
t3sv� s2u2

+
7738360

33
t3sv� sx1 +

68660
3

t3sv� vw2 +
2074690

33
t3sv� vw3 +

629475840
11

t3sv� z

+
222457237834

297
t3w1 � t3w1 −

525452755
9

t3w1 � t3w2 −
5283356470

11
t3w1 � t3w3

− 23603398
297

t3w1 � t2s3 +
6703353544

297
t3w1 � t2su1 −

763135
3

t3w1 � t2su2

+
327601805680

99
t3w1 � t2x1 −

204106025
3

t3w1 � t2x2 −
58823117

396
t3w1 � ts2v

+
6633686990

297
t3w1 � tsw1 −

105045545
9

t3w1 � tsw2 +
210155900

33
t3w1 � tsw3

+
43860881220

11
t3w1 � ty +

9913909
2376

t3w1 � s4 − 1418575
594

t3w1 � s2u1

− 2256995
18

t3w1 � s2u2 +
1412144720

33
t3w1 � sx1 +

23670160
9

t3w1 � vw2

+
230312380

33
t3w1 � vw3 +

104970055680
11

t3w1 � z +
7244875

6
t3w2 � t3w2

+ 20489175t3w2 � t3w3 +
34565

9
t3w2 � t2s3 − 6291365

9
t3w2 � t2su1

+
24475

3
t3w2 � t2su2 −

314478350
3

t3w2 � t2x1 + 2880075t3w2 � t2x2

+
323075

36
t3w2 � ts2v +

1721765
9

t3w2 � tsw1 + 437525t3w2 � tsw2 − 149075t3w2 � tsw3

− 2223900t3w2 � ty− 1235
8

t3w2 � s4 +
165245

18
t3w2 � s2u1 +

10725
2

t3w2 � s2u2

+ 988400t3w2 � sx1 −
467500

3
t3w2 � vw2 − 300500t3w2 � vw3 +

918940050
11

t3w3 � t3w3

+
93100

3
t3w3 � t2s3 − 70189910

11
t3w3 � t2su1 + 98525t3w3 � t2su2
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− 860220900t3w3 � t2x1 + 23687475t3w3 � t2x2 +
9783655

132
t3w3 � ts2v

+
103320

11
t3w3 � tsw1 + 4089225t3w3 � tsw2 −

23682750
11

t3w3 � tsw3

− 158703300
11

t3w3 � ty− 330505
264

t3w3 � s4 +
1660785

22
t3w3 � s2u1 +

86975
2

t3w3 � s2u2

+
70534800

11
t3w3 � sx1 − 919800t3w3 � vw2 −

27461700
11

t3w3 � vw3 +
26489
4752

t2s3 � t2s3

− 296414
297

t2s3 � t2su1 +
200
9

t2s3 � t2su2 −
7172180

99
t2s3 � t2x1 +

13375
3

t2s3 � t2x2

+
36571
1188

t2s3 � ts2v +
657680

297
t2s3 � tsw1 +

8395
9

t2s3 � tsw2 −
34750

33
t2s3 � tsw3

+
4812180

11
t2s3 � ty− 359

1056
t2s3 � s4 +

37385
594

t2s3 � s2u1 + 15t2s3 � s2u2

+ 8260t2s3 � sx1 +
40
9

t2s3 � vw2 −
19780

33
t2s3 � vw3 +

10926720
11

t2s3 � z

+
54046126

297
t2su1 � t2su1 + 3905t2su1 � t2su2 +

6185875640
99

t2su1 � t2x1

− 2724175
3

t2su1 � t2x2 −
94211
396

t2su1 � ts2v +
222580090

297
t2su1 � tsw1

− 1083055
9

t2su1 � tsw2 +
3730420

33
t2su1 � tsw3 +

1463127060
11

t2su1 � ty

+
178397
2376

t2su1 � s4 +
3233635

594
t2su1 � s2u1 −

30865
18

t2su1 � s2u2 +
59595760

33
t2su1 � sx1

+
374480

9
t2su1 � vw2 +

3496940
33

t2su1 � vw3 +
3213181440

11
t2su1 � z

+
275
6

t2su2 � t2su2 − 473750t2su2 � t2x1 + 12375t2su2 � t2x2 +
725
12

t2su2 � ts2v

+
54365

3
t2su2 � tsw1 −

8525
3

t2su2 � tsw2 + 11275t2su2 � tsw3 − 56700t2su2 � ty

− 95
72

t2su2 � s4 +
395

6
t2su2 � s2u1 +

275
6

t2su2 � s2u2 + 25200t2su2 � sx1

− 5500t2su2 � vw2 + 1500t2su2 � vw3 +
14477882600
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t2x1 � t2x1

− 121877050t2x1 � t2x2 +
3463615

66
t2x1 � ts2v +

13225952500
99

t2x1 � tsw1

− 63199450
3

t2x1 � tsw2 + 11526800t2x1 � tsw3 +
242526403800

11
t2x1 � ty

+
3826345

396
t2x1 � s4 +

6844375
9

t2x1 � s2u1 −
673175

3
t2x1 � s2u2

+
3086557600

11
t2x1 � sx1 +

13851200
3

t2x1 � vw2 + 12442600t2x1 � vw3

+
522924595200

11
t2x1 � z +

918940050
11

t3w3 � t3w3 +
93100

3
t3w3 � t2s3

− 70189910
11

t3w3 � t2su1 + 98525t3w3 � t2su2 − 860220900t3w3 � t2x1

+ 23687475t3w3 � t2x2 +
9783655

132
t3w3 � ts2v +

103320
11

t3w3 � tsw1

+ 4089225t3w3 � tsw2 −
23682750

11
t3w3 � tsw3 −

158703300
11

t3w3 � ty

− 330505
264

t3w3 � s4 +
1660785

22
t3w3 � s2u1 +

86975
2

t3w3 � s2u2
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+
70534800

11
t3w3 � sx1 − 919800t3w3 � vw2 −

27461700
11

t3w3 � vw3 +
26489
4752

t2s3 � t2s3

− 296414
297

t2s3 � t2su1 +
200
9

t2s3 � t2su2 −
7172180

99
t2s3 � t2x1 +

13375
3

t2s3 � t2x2

+
36571
1188

t2s3 � ts2v +
657680

297
t2s3 � tsw1 +

8395
9

t2s3 � tsw2 −
34750

33
t2s3 � tsw3

+
4812180

11
t2s3 � ty− 359

1056
t2s3 � s4 +

37385
594

t2s3 � s2u1 + 15t2s3 � s2u2

+ 8260t2s3 � sx1 +
40
9

t2s3 � vw2 −
19780

33
t2s3 � vw3 +

10926720
11

t2s3 � z

+
54046126

297
t2su1 � t2su1 + 3905t2su1 � t2su2 +

6185875640
99

t2su1 � t2x1

− 2724175
3

t2su1 � t2x2 −
94211
396

t2su1 � ts2v +
222580090

297
t2su1 � tsw1

− 1083055
9

t2su1 � tsw2 +
3730420

33
t2su1 � tsw3 +

1463127060
11

t2su1 � ty

+
178397
2376

t2su1 � s4 +
3233635

594
t2su1 � s2u1 −

30865
18

t2su1 � s2u2 +
59595760

33
t2su1 � sx1

+
374480

9
t2su1 � vw2 +

3496940
33

t2su1 � vw3 +
3213181440

11
t2su1 � z +

275
6

t2su2 � t2su2

− 473750t2su2 � t2x1 + 12375t2su2 � t2x2 +
725
12

t2su2 � ts2v +
54365

3
t2su2 � tsw1

− 8525
3

t2su2 � tsw2 + 11275t2su2 � tsw3 − 56700t2su2 � ty− 95
72

t2su2 � s4

+
395
6

t2su2 � s2u1 +
275

6
t2su2 � s2u2 + 25200t2su2 � sx1 − 5500t2su2 � vw2

+ 1500t2su2 � vw3 +
14477882600

3
t2x1 � t2x1 − 121877050t2x1 � t2x2

+
3463615

66
t2x1 � ts2v +

13225952500
99

t2x1 � tsw1 −
63199450

3
t2x1 � tsw2

+ 11526800t2x1 � tsw3 +
242526403800

11
t2x1 � ty +

3826345
396

t2x1 � s4

+
6844375

9
t2x1 � s2u1 −

673175
3

t2x1 � s2u2 +
3086557600

11
t2x1 � sx1

+
13851200

3
t2x1 � vw2 + 12442600t2x1 � vw3 +

522924595200
11

t2x1 � z

+
3356925

2
t2x2 � t2x2 +

126575
12

t2x2 � ts2v− 37325
3

t2x2 � tsw1 + 578875t2x2 � tsw2

− 325875t2x2 � tsw3 − 1984500t2x2 � ty− 1425
8

t2x2 � s4 +
64525

6
t2x2 � s2u1

+
12375

2
t2x2 � s2u2 + 882000t2x2 � sx1 − 126500t2x2 � vw2 − 343500t2x2 � vw3

+
532517
9504

ts2v� ts2v +
5089175

396
ts2v� tsw1 +

68795
36

ts2v� tsw2 −
217055

132
ts2v� tsw3

+
19873065

11
ts2v� ty− 4633

9504
ts2v� s4 +

166205
792

ts2v� s2u1 +
2735
72

ts2v� s2u2

+
1034740

33
ts2v� sx1 −

935
3

ts2v� vw2 −
38915

33
ts2v� vw3 +

39432960
11

ts2v� z

+
502001260

297
tsw1 � tsw1 +

590395
9

tsw1 � tsw2 +
4781930

33
tsw1 � tsw3

+
5760977100

11
tsw1 � ty +

254365
2376

tsw1 � s4 +
1659235

54
tsw1 � s2u1 −

3995
18

tsw1 � s2u2
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+
245058800

33
tsw1 � sx1 +

59800
9

tsw1 � vw2 +
876100

33
tsw1 � vw3

+
11292825600

11
tsw1 � z +

241175
6

tsw2 � tsw2 − 129025tsw2 � tsw3

− 434700tsw2 � ty− 2375
72

tsw2 � s4 +
35785

18
tsw2 � s2u1 +

6875
6

tsw2 � s2u2

+ 193200tsw2 � sx1 −
73700

3
tsw2 � vw2 − 94100tsw2 � vw3 +

3656700
11

tsw3 � tsw3

− 4932900
11

tsw3 � ty +
6365
264

tsw3 � s4 − 114535
66

tsw3 � s2u1 −
1675

2
tsw3 � s2u2

+
2192400

11
tsw3 � sx1 − 75200tsw3 � vw2 +

2222700
11

tsw3 � vw3

+
457398003600

11
ty� ty +

252315
22

ty� s4 +
44199750

11
ty� s2u1 − 3150ty� s2u2

+
11863958400

11
ty� sx1 + 126000ty� vw2 +

1512000
11

ty� vw3 +
1784556748800

11
ty� z

+
1109
76032

s4 � s4 − 365
4752

s4 � s2u1 −
95

144
s4 � s2u2 +

4445
33

s4 � sx1 +
95
18

s4 � vw2

+
1235
66

s4 � vw3 +
211680

11
s4 � z +

408305
2376

s2u1 � s2u1 +
1465

36
s2u1 � s2u2

+
1913800

33
s2u1 � sx1 −

2650
9

s2u1 � vw2 −
38650

33
s2u1 � vw3 +

76204800
11

s2u1 � z

+
275
24

s2u2 � s2u2 + 1400s2u2 � sx1 −
550
3

s2u2 � vw2 − 650s2u2 � vw3

+
76574400

11
sx1 � sx1 − 56000sx1 � vw2 −

672000
11

sx1 � vw3 +
20727705600

11
sx1 � z

+
17600

3
vw2 � vw2 − 400vw2 � vw3 +

433200
11

vw3 � vw3 +
1575305625600

11
z� z.
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