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Abstract

This work is devoted to the problem of identifying a given Lie algebra in the classifi-
cation list. Namely, we consider real and complex indecomposable Lie algebras up to
dimension four. The main identification tool we apply for this purpose is the use of
invariants. This method was widely discussed by prof. P. Winternitz and doc. L. Šnobl
in their monograph Classification and identification of Lie algebras. In our work, we make
practical use of the techniques described in their book.

First, the theory necessary for establishing various invariants is introduced. Second,
the classification of considered algebras is presented a finally, the identification process
itself is demonstrated. The result of our work is represented by a simple automatic on-
line identificator, recognising any finite-dimensional real or complex Lie algebra that is
directly composed from indecomposable ideals of dimension at most four.
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Introduction

The following problem arises naturally in various areas of mathematical physics. When
one works with an object having a Lie algebra structure, it is often useful, or sometimes
even necessary, to identify it with some known abstract Lie algebra. In other words,
one aims to recognize which item in the list of all possible non-isomorphic Lie algebras
is isomorphic to the Lie algebra one working with.

The first difficulty lies in obtaining such a list. This represents a very hard challenge
that seems to be even unsolvable in general. However, as we shall discuss in the second
chapter of our work, for particular classes of Lie algebras the solution has been found
and the lists were already prepared. All complex and real Lie algebras up to dimension
six are such a case. Thus, an interesting task to deal with is to identify at least these
low-dimensional Lie algebras. The question that remains is how to do this.

In principle, one way of identification would be to start directly with the definition
of an isomorphism. By the definition, two Lie algebras are isomorphic if and only if
a bijective map between them preserving their Lie bracket structures exists. If we as-
sign this abstract bijection to its matrix with respect to some chosen bases of considered
Lie algebras and apply the conditions on preserving Lie brackets to all pairs of basis
vectors, we obtain a system of quadratic equations for elements of the matrix. It is well-
known that such a system is very difficult to solve in general. Moreover, the number
of equations increases as a cubic function of the dimension of considered Lie algebras.
Another problem is that we would have to conduct these computations repeatedly, un-
til we find the right Lie algebra in the list. Therefore even the use of computer algebra
systems is highly time-demanding and hence improper for this purpose in general.

Instead, the way that is more suitable for practical usage is to compute and to com-
pare the so-called invariants of Lie algebras. Roughly speaking, an invariant is such a
property of Lie algebras that is common to any two isomorphic Lie algebras. Of coarse,
one cannot decide whether two Lie algebras sharing the same value of an invariant are
isomorphic or not, however if an invariant differs between two Lie algebras, then they
may not be related with each other through an isomorphism. If the number of available
invariants is high enough, comparing their values on the identifying Lie algebra with
values on the Lie algebras in the list, we can restrict the list in successive steps until
only one eventuality remains and that one has to be isomorphic to the identifying Lie
algebra. This method has two great advantages. First, the invariants are developed in
such a way that their computation is a linear problem, hence they could be computed
in a real time using computer algebra systems. Second, when a proper set of invariants
is found for a particular list of Lie algebras, i.e. such that each two items are distin-
guished from each other by these invariants, it suffices to compute the invariants only
for the identifying Lie algebras.

In [13], the method of identification of Lie algebras through the use of invariants
was discussed in some detail and a lot of invariants were described as well. Further-
more, the same publication also contains the list of all complex and real indecompos-
able Lie algebras up to dimension six. In our work, we restricted ourselves to the di-
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mension four or less and for each item in this list, we chose and computed the unique
sets of invariants sufficient for identification of any such a Lie algebra. As a result of
our work, we present a simple internet application "LIEIDENTIFICATOR", which is able
to identify any finite-dimensional complex or real Lie algebra that is the direct sum of
at most four-dimensional indecomposable ideals.

The text of our work is organized as follows. In the first chapter we introduce the
fundamentals of Lie algebras theory necessary in further parts for defining various
invariants and using them for identification of Lie algebras. In the second chapter we
describe the process of classifying Lie algebras, we discuss the methods of classification
and the current results. Further, we present the list of those Lie algebras we focus
on in our work, i.e. complex and real indecomposable Lie algebras up to dimension
four. Finally, the third chapter is devoted to the identification of a given Lie algebra
in the presented lists. First, the invariants needed for this purpose are established and
invariance of all of them is verified and second, the computed values of the invariants
for all considered Lie algebras are written out in a tabular manner.
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Chapter 1

Basic Theory of Lie Algebras

The aim of the first chapter of this work is to provide a brief introduction to the theory
of Lie algebras. As announced, we introduce mainly the results necessary for defining
various invariants in further text. The presented theory is mostly the "classical" one (cf.
[5], [8], [10], [11]), except where otherwise emphasized.

1.1 Lie Algebras, Subalgebras and Ideals

Definition 1.1. Let F be a field. A Lie algebra over F is an F-vector space L together with
a bilinear map (the so-called Lie bracket) [ , ] : L× L→ L fulfilling for any x, y, z ∈ L the
two following conditions:

[x, x] = 0, (1.1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (1.2)

Remark 1.1.
(a) We shall consider finite-dimensional vector spaces and Lie algebras entirely.1 Fur-
thermore, we shall restrict ourselves only to the fields of real and complex numbers.
(b) If F ∈ {R, C}, the condition (1.1) is equivalent to antisymmetry of the Lie bracket:
for all y and z from a Lie algebra L we have

0 = [y + z, y + z] = [y, y] + [y, z] + [z, y] + [z, z] = [y, z] + [z, y]

and hence [y, z] = −[z, y]. The condition (1.2) is usually called the Jacobi identity.

Example 1.2. Let V be a real or complex vector space. It is an easy exercise to check that
the vector space gl(V) of all linear transformations of V becomes a Lie algebra over R

or C, respectively, with the Lie bracket [ , ] defined for all x, y ∈ gl(V) as follows:

[x, y] := x ◦ y− y ◦ x. (1.3)

Similarly, one can verify that the vector space gl(n, F) ≡ Fn,n, n ∈N, F ∈ {R, C}, of all
n× n matrices over F together with the Lie bracket defined for all x, y ∈ gl(n, F) by

[x, y] := xy− yx (1.4)

represents another example of a real or complex, respectively, Lie algebra (cf. [12]).

1Talking about such features of a Lie algebra as basis, dimension, etc., one always means the respective
properties of the underlying vector space.
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Definition 1.2. Let L be a Lie algebra over F and let B = (x1, . . . , xn) be a basis for L.
The structure constants of L with respect to the basis B are numbers ak

ij ∈ F; i, j, k ∈ n̂;
such that for all i, j ∈ n̂ we can write

[xi, xj] =
n

∑
k=1

ak
ijxk. (1.5)

Definition 1.3. A Lie algebra L is said to be abelian if for any x, y ∈ L it holds that

[x, y] = 0. (1.6)

Definition 1.4. A (Lie) subalgebra of a Lie algebra L is a vector subspace K ⊂⊂ L such
that for all x, y ∈ K it is satisfied that

[x, y] ∈ K. (1.7)

Definition 1.5. An ideal of a Lie algebra L is a vector subspace I ⊂⊂ L such that for all
x ∈ L and y ∈ I it is satisfied that

[x, y] ∈ I. (1.8)

Remark 1.3. Let L be a Lie algebra. The following assertions are obvious:
(a) a subalgebra K of L becomes a Lie algebra in its own right with the restriction of the
original Lie bracket on L to K× K;
(b) any ideal is a subalgebra;
(c) both 0 and L are ideals of L (an ideal I of L is said to be non-trivial if 0 6= I 6= L);
(d) the intersection of two ideals of L is an ideal of L as well.

Definition 1.6. Let L be a Lie algebra. The center of L is defined as

Z(L) :=
{

x ∈ L
∣∣ for all y ∈ L, [x, y] = 0

}
. (1.9)

Remark 1.4. Since 0 ∈ Z(L), is is clear that Z(L) is an ideal of L.

Definition 1.7. Let I and J be ideals of a Lie algebra L. We define

[I, J] := Span
{
[x, y]

∣∣ x ∈ I, y ∈ J
}

. (1.10)

In particular, L′ := [L, L] denotes the so-called derived algebra of L.

Proposition 1.8. Let I and J be ideals of a Lie algebra L. Then [I, J] is an ideal of L as well.

Proof. For all x ∈ L, y ∈ I and z ∈ J we have [x, [y, z]] = [[x, y], z] + [y, [x, z]] ∈ [I, J].
Clearly, this implies that [x, y] ∈ [I, J] for all x ∈ L and y ∈ [I, J].

Definition 1.9. Let L be a Lie algebra and let I be an ideal of L. The quotient vector
space L/I together with a map [ , ]q : L/I × L/I → L/I : (x + I, y + I) 7→ [x, y] + I,
where [ , ] is the Lie bracket on L, is called the quotient Lie algebra of L by I.

Remark 1.5. One has to verify, that the map [ , ]q from the previous definition is a well-
defined Lie bracket on L/I and therefore the quotient Lie algebra L/I is a Lie algebra
indeed. First, the definition is unambiguous since for arbitrary x, x̃, y, ỹ ∈ L such that
yI := y− ỹ ∈ I and xI := x− x̃ ∈ I we have (using I is an ideal)

[x + I, y + I] = [x, y] + I = [xI + x̃, yI + ỹ] + I = [x̃, ỹ] + I = [x̃ + I, ỹ + I].

Second, it is obvious that the definitory properties of the Lie bracket are all immediately
implied by the respective properties of the Lie bracket on L.
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1.2 Lie Algebra Homomorphisms

Definition 1.10. Let L1 and L2 be Lie algebras. A linear map ϕ : L1 → L2 is called a
homomorphism if for all x, y ∈ L1 it is satisfied that

ϕ([x, y]1) = [ϕ(x), ϕ(y)]2, (1.11)

where [ , ]i is the Lie bracket on Li, i = 1, 2. Furthermore,
(a) if ϕ is bijective, then it is called an isomorphism;
(b) if L1 = L2, then ϕ is called an endomorphism (of L1);
(c) if ϕ is bijective and L1 = L2, then ϕ is called an automorphism (of L1).

Remark 1.6. We say that two Lie algebras L1 and L2 are isomorphic if there exists an
isomorphism ϕ : L1 → L2. We denote this fact L1

∼= L2. It is not hard to see that ∼=
is an equivalence relation: an identity is an obvious isomorphism (reflexivity); each
isomorphism is invertible and its inversion is an isomorphism as well (symmetry); the
composition of two isomorphisms is an isomorphism again (transitivity). Thus, all Lie
algebras are divided into classes of isomorphism through this relation.

Example 1.7. Let L be a Lie algebra. For all x, y ∈ L we define the adjoint homomorphism
ad : L→ gl(L) as follows:

(ad x)(y) := [x, y]. (1.12)

ad is a homomorphism indeed since for all x, x̃, y ∈ L we have

(ad[x, x̃])(y) = [[x, x̃], y] = [x, [x̃, y]]− [x̃, [x, y]] = ([ad x, ad x̃])(y).

Definition 1.11. Let L be a Lie algebra over F. We define the Killing form on L to be the
form κ : L× L→ F sending all x, y ∈ L to

κ(x, y) := Tr(ad x ◦ ad y). (1.13)

Proposition 1.12. The Killing form on a Lie algebra L is bilinear and symmetric.

Proof. First, bilinearity follows from linearity of Tr and ad and from bilinearity of the
composition of two linear maps. Second, symmetry is an immediate consequence of
cyclicity of the trace form.

Proposition 1.13. Let L1 and L2 be Lie algebras and let ϕ : L1 → L2 be a homomorphism.
Then Ker ϕ is an ideal of L1 and Ran ϕ is a subalgebra of L2.

Proof. First of all, it is well-known from linear algebra that both kernel and range of
a linear map are always subspaces. Second, for any x ∈ L1 and y ∈ Ker ϕ we have
ϕ([x, y]) = [ϕ(x), ϕ(y)] = [ϕ(x), 0] = 0 and hence [x, y] ∈ Ker ϕ. Third, given
u, v ∈ Ran ϕ, there exist x, y ∈ L1 such that u = ϕ(x) and v = ϕ(y). Then [u, v] =
[ϕ(x), ϕ(y)] = ϕ([x, y]) ∈ Ran ϕ.

Proposition 1.14. Let L1 and L2 be Lie algebras and let ϕ : L1 → L2 be a homomorphism. If I
is an ideal of L1, then ϕ(I) is an ideal of Ran ϕ ≡ ϕ(L1).

Proof. Let I be an ideal of L1. For any u ∈ ϕ(I) and v ∈ Ran ϕ there are x ∈ I and
y ∈ L1 such that u = ϕ(x) and v = ϕ(y). Then [u, v] = [ϕ(x), ϕ(y)] = ϕ([x, y]) ∈ ϕ(I)
proves ϕ(I) to be an ideal.

Definition 1.15. Let F be a field. Suppose that L is a Lie algebra over F and V is an
F-vector space. A representation of L on V is a homomorphism ρ : L→ gl(V).
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Definition 1.16. Let L1 and L2 be Lie algebras over F, let V1 and V2 be F-vector spaces
and let ρi : Li → gl(Vi), i = 1, 2, be representations of L1 and L2, respectively. We
say that ρ1 and ρ2 are equivalent and we denote ρ1 ∼ ρ2, if there exist an isomorphism
ϕ : L1 → L2 and a bijection φ : V1 → V2 such that for all x ∈ L1 it holds

φ ◦ ρ1(x) = ρ2(ϕ(x)) ◦ φ. (1.14)

Remark 1.8. Considering analogical arguments as in Remark 1.6, one can easily verify
that also ∼ is en equivalence relation indeed.

1.3 Direct Sum Decomposition

Definition 1.17. Let L be a Lie algebra and let I1, . . . , Ik be ideals of L such that, as
vector spaces, L = I1+̇ · · · +̇Ik. We say that L, as a Lie algebra, is the direct sum of ideals
I1, . . . , Ik and we write L = I1 ⊕ · · · ⊕ Ik.

Remark 1.9. Given L = I1 ⊕ · · · ⊕ Ik, any x, y ∈ L decompose uniquely as x = ∑k
i=1 xi

and y = ∑k
i=1 yi, where xi, yi ∈ Ii, i ∈ k̂. Since for all i 6= j we have [xi, yj] ∈ Ii ∩ Ij = 0

(both Ii and Ij are ideals), we can write

[x, y] = [
k

∑
i=1

xi,
k

∑
j=1

yj] =
k

∑
i,j=1

[xi, yj] =
k

∑
i=1

[xi, yi].

Definition 1.18. Let L be a Lie algebra. If there exist non-trivial ideals I and J of L such
that L = I ⊕ J, L is said to be decomposable. Otherwise L is said to be indecomposable.

Proposition 1.19. Let L be a Lie algebra, L 6= 0. There exist indecomposable non-zero ideals
I1, . . . , Ik of L such that L = I1 ⊕ · · · ⊕ Ik.

Proof. We will proceed by induction on dim L. First, each one-dimensional Lie algebra
is obviously indecomposable. For the inductive step, suppose that we proved the as-
sertion for dim L = n− 1 and assume dim L = n. If L is indecomposable, we are done.
Otherwise, there are non-zero ideals I, J of L such that L = I⊕ J. Since dim I, dim J ≥ 1,
it follows that dim I, dim J ≤ n− 1 and hence we can apply our inductive hypothesis
to both I and J in order to obtain the desired decomposition of L.

Remark 1.10. A non-zero abelian Lie algebra is indecomposable precisely when it is
one-dimensional: if it had dimension greater then one, then it would be decomposable
into any one-dimensional subspace and its complement.

Proposition 1.20. Let L1 and L2 be isomorphic Lie algebras. L1 is indecomposable precisely
when L2 is so.

Proof. Let ϕ : L1 → L2 be an isomorphism. If L1 was decomposable via L1 = I ⊕ J, then
both ϕ(I) and ϕ(J) would be non-trivial ideals of L2 (cf. Proposition 1.14). L2 would
be therefore decomposable via L2 = ϕ(I)⊕ ϕ(J). And vice versa.

In Proposition 1.19, we proved the existence of the direct sum decomposition. How-
ever, we still do not know anything about the uniqueness. Maybe surprisingly, this
topic is not discussed in the standard literature (referred at the beginning of this chap-
ter) at all. The ideas presented it the rest of this section were performed in [6].

Definition 1.21. Let L be a Lie algebra. An endomorphism ϕ : L → L is said to be
normal if for all x ∈ L it holds that ϕ ◦ ad x = ad x ◦ ϕ.
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Remark 1.11.
(a) Clearly, the composition of two (or finitely many) normal endomorphisms is a nor-
mal endomorphism again.
(b) Let L be a Lie algebra and let K be a subalgebra of L. If ϕ is a normal endomorphism
of L such that ϕ(K) ⊂ K, then the restriction of ϕ to K is a normal endomorphism of K.

Example 1.12. Let us keep the notation from Remark 1.9. For all i ∈ k̂ we define the
projection πi : L→ L : x 7→ xi onto Ii. Then for any x, y ∈ L and i ∈ k̂ we can write

πi([x, y]) = πi

(
k

∑
j=1

[xj, yj]

)
= [xi, yi] = [πi(x), πi(y)] =

k

∑
j=1

[πj(x), πi(y)] = [x, πi(y)],

from which one can deduce that all πi, i ∈ k̂, are normal endomorphisms.

Lemma 1.22. Let L be a Lie algebra and let ϕ : L → L be a normal endomorphism such that
Ker ϕ = Ker ϕ2 and Ran ϕ = Ran ϕ2. Then L = Ker ϕ⊕ Ran ϕ.

Proof. According to Proposition 1.13, Ker ϕ is an ideal of L. We must verify that Ran ϕ
is so: for any x ∈ Ran ϕ and y ∈ L, there is u ∈ L such that x = ϕ(u) and we have

[y, x] = [y, ϕ(u)] = ϕ([y, u]) ∈ Ran ϕ,

provided ϕ is normal. Now it remains to show that L = Ker ϕ+̇Ran ϕ. First, Ker ϕ +
Ran ϕ ⊂ L, obviously. Second, given any x ∈ L, ϕ(x) ∈ Ran ϕ = Ran ϕ2, there is
y ∈ Ran ϕ such that ϕ(y) = ϕ(x). Then ϕ(x − y) = ϕ(x) − ϕ(y) = 0 and hence we
have x = (x− y) + y ∈ Ker ϕ + Ran ϕ. Finally, let us take any x ∈ Ker ϕ ∩ Ran ϕ. Then
x = ϕ(y) for some y ∈ L. Since ϕ2(y) = ϕ(x) = 0, it follows y ∈ Ker ϕ2 = Ker ϕ which
means x = ϕ(y) = 0.

Corollary 1.23. Let L be an indecomposable Lie algebra and let ϕ : L → L be a normal endo-
morphism. Then ϕ is either bijective or nilpotent.

Proof. For all n ∈ N, Ran ϕn and Ker ϕn are ideals of L, moreover Ran ϕn+1 ⊂ Ran ϕn

and Ker ϕn+1 ⊃ Ker ϕn. Since L is finite-dimensional, there exists n0 ∈ N such that for
any n ≥ n0 it holds Ran ϕn = Ran ϕn0 and Ker ϕn = Ker ϕn0 . In particular, Ran ϕ2n0 =
Ran ϕn0 and Ker ϕ2n0 = Ker ϕn0 . Thus, by the previous lemma, L = Ker ϕn0 ⊕ Ran ϕn0 .
But as L is indecomposable, it follows that either Ker ϕn0 = 0 and hence Ker ϕ = 0 or
Ran ϕn0 = 0 implying ϕn0 = 0.

Theorem 1.24. Let L be a Lie algebra, L 6= 0, and let L = I1 ⊕ · · · ⊕ Ik = J1 ⊕ · · · ⊕ Jl be
decompositions of L into the direct sum of indecomposable ideals. Then k = l and the summands
can be numbered such that for each i ∈ k̂ it holds that Ii

∼= Ji. Furthermore, if Z(L) = 0 or
L′ = L, then the numbering could be done in such a way that for each i ∈ k̂ it holds that Ii = Ji.

Proof. Let πi and ψj be projections onto Ii and Jj, respectively, i ∈ k̂, j ∈ l̂, as defined in
Example 1.12. According to Remark 1.11, all πiψj|Ii and ψjπi|Jj , i ∈ k̂, j ∈ l̂, are normal
endomorphisms and hence, by Corollary 1.23, they are either bijective or nilpotent.
Furthermore, since (πiψj|Ii)

n = πi(ψjπi|Jj)
n−1ψj|Ii and (ψjπi|Jj)

n = ψj(πiψj|Ii)
n−1πi|Jj

hold for all n ∈N, πiψj|Ii and ψjπi|Jj are either both bijective or both nilpotent.
Take any i ∈ k̂. If Ii is abelian then dim Ii = 1. Because

0 6= Ii = πi(Ii) = (πi1)(Ii) =

(
πi

l

∑
j=1

ψj

)
(Ii) = πi(ψ1(Ii)) + · · ·+ πi(ψl(Ii)),
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there exists j ∈ l̂ such that πi(ψj(Ii)) 6= 0, but this is enough to prove that πiψj|Ii is a
bijection. Now assume that Ii is non-abelian. Choose an arbitrary j ∈ l̂ and suppose
that πiψj|Ii is nilpotent. Take any x ∈ Ii such that (1− πiψj)(x) = 0. Then (πiψj)(x) =
x and consequently (πiψj)

n(x) = x for all n ∈ N. It follows that x = 0 and hence
(1− πiψj)|Ii is bijective. Therefore we have

Ii = (1− πiψj)(Ii) = πi(1− ψj)(Ii) ⊂ πi( Ĵj), where Ĵj := (1− ψj)(L) =
⊕
q 6=j

Jq.

Thus

I′i = [Ii, Ii] ⊂ [πi( Ĵj), Ii] = πi([ Ĵj, Ii]) = [ Ĵj, πi(Ii)] = [ Ĵj, Ii] ⊂ Ĵj

and hence ψj(I′i ) = 0. If this hold for all j ∈ l̂, then we would reach a contradiction:

0 6= I′i = 1(I′i ) =

(
l

∑
j=1

ψj

)
(I′i ) = ψ1(I′i ) + · · ·+ ψl(I′i ) = 0.

Accordingly, independently of abelianness of Ii, there exists j ∈ l̂ such that πiψj|Ii is
a bijection, so is ψjπi|Jj and thus it follows that all the restrictions ψj : Ii → ψj(Ii),
πi : ψj(Ii)→ Ii, πi : Jj → πi(Jj) and ψj : πi(Jj)→ Jj are bijections. Moreover from

Ii = (πiψj)(Ii) ⊂ πi(Jj) ⊂ Ii

we obtain πi(Jj) = Ii, similarly we could get ψj(Ii) = Jj and hence πi|Jj : Jj → Ii and
ψj|Ii : Ii → Jj are isomorphisms. All in all, for any i ∈ k̂, there is j ∈ l̂ such that Ii

∼= Jj.
Furthermore,

I′i = [Ii, Ii] = [Ii, πi(Jj)] = [πi(Ii), Jj] = [Ii, ψj(Jj)] = [ψj(Ii), Jj] = [Jj, Jj] = J′j (1.15)

and since J′q ⊂ Jq for all q ∈ l̂, it is clear that if Ii is not abelian, then such j ∈ l̂ is
determined uniquely. We could repeat the whole process for an arbitrary j ∈ l̂ and we
would obtain an analogous result, naturally. Thus, we conclude that all non-abelian
ideals among I1, . . . , Ik and J1, . . . , Jl , respectively, are in one-to-one correspondence
and that the corresponding ideals are mutually isomorphic. Comparing the sums of
dimensions, we deduce that the same holds also for (one-dimensional) abelian ideals.
The first part of the theorem is now obvious.

For the second part, assume that we have already denote the ideals such that Ii
∼= Ji,

i ∈ k̂. First, if L′ = L, then for all i ∈ k̂ we have I′i = Ii and J′i = Ji and hence, by (1.15),
Ii = Ji. Second, take i ∈ k̂ and suppose that Ii 6= Ji. Thus assume, without loss of
generality, that there exists a non-zero x ∈ Ii such that x /∈ Ji. Since πi : Ji → Ii is a
bijection, there is z ∈ Ji such that πi(z) = x. Then x̃ := x− ψi(x) ∈ Ĵi is not equal to the
zero vector and for all y ∈ Ĵi we have

[x̃, y] = [x, y]− [ψi(x), y] = [x, y] = [πi(z), y] = πi[z, y] = πi(0) = 0.

Therefore 0 6= x̃ ∈ Z( Ĵi) and, as the center of the direct sum of ideals is the direct sum
of their centers, obviously, we conclude that Z(L) 6= 0. All in all, if Z(L) = 0, then the
equality Ii = Ji holds for all i ∈ k̂.2

2For brevity, we omit the sign "◦" for composition of two maps in this proof. It is, however, always
clear from context that we mean the map composition rather than any kind of multiplication.
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1.4 Solvable and Nilpotent Lie Algebras

Definition 1.25. Let L be a Lie algebra.

(a) The derived series of L is the sequence
(

L(n)
)∞

n=0
with terms

L(0) = L and L(n) = [L(n−1), L(n−1)], for n ≥ 1. (1.16)

If there exists n ∈N such that L(n) = 0, then L is said to be solvable.
(b) The lower central series of L is the sequence (Ln)∞

n=0 with terms

L0 = L and Ln = [L, Ln−1], for n ≥ 1. (1.17)

If there exists n ∈N such that Ln = 0, then L is said to be nilpotent.
(c) The upper central series of L is the sequence (Zn(L))∞

n=0 with terms

Z0(L) = 0 and Zn(L) =
{

x ∈ L
∣∣ for all y ∈ L, [x, y] ∈ Zn−1(L)

}
, for n ≥ 1. (1.18)

Remark 1.13.
(a) Notice that L(1) = L1 = L′ and Z1(L) = Z(L).
(b) Since each Lie algebra is an ideal of itself, it is obvious from Proposition 1.8 that L(n)

and Ln are ideals of L for all n ∈N0. One can easily show this by induction on n.
(c) We show that also Zn(L), n ∈ N0, are ideals of L. Again we use induction on n.
When n = 0, Z0(L) ≡ 0 and there is nothing to prove. For the inductive step, assume
Zn−1(L) to be an ideal and take arbitrary x ∈ Zn(L) and y, z ∈ L. Then we have
[[x, z], y] = [x, [z, y]] + [[x, y], z] ∈ Zn−1(L), since [z, y] ∈ L and [x, y] ∈ Zn−1(L), and
hence [x, z] ∈ Zn(L), as desired.
(d) In view of the fact that all terms of these so-called characteristic series of ideals are
ideals indeed, one can easily see that for all n ∈ N0 it holds that L(n) ⊃ L(n+1) and
Ln ⊃ Ln+1, while Zn(L) ⊂ Zn+1(L).
(e) It is easily seen by induction that for all n ∈ N0 it holds L(n) ⊂ Ln and hence each
nilpotent Lie algebra is solvable.

Lemma 1.26. Let L and M be Lie algebras and let ϕ : L → M be a homomorphism. Then for
all n ∈N0 it holds that
(a) ϕ(L(n)) = ϕ(L)(n),
(b) ϕ(Ln) = ϕ(L)n.

Proof. We use induction on n.
(a) First, for n = 0 we have L(0) = L and the assertion is a tautology. For the inductive
step, suppose that ϕ(L(n−1)) = ϕ(L)(n−1). Then we can write

ϕ(L(n)) = ϕ
(

Span
{
[x, y]

∣∣ x, y ∈ L(n−1)
})

= Span
{
[ϕ(x), ϕ(y)]

∣∣ x, y ∈ L(n−1)
}

= Span
{
[u, v]

∣∣ u, v ∈ ϕ(L)(n−1)
}
= ϕ(L)(n).

(b) Analogically to (a).

Corollary 1.27. A homomorphic image of a solvable / nilpotent Lie algebra is solvable / nilpo-
tent Lie algebra as well.

Proof. It follows immediately from parts (a) and (b), respectively, of Lemma 1.26.
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Proposition 1.28. Let I be an ideal of a Lie algebra L. Then for all n ∈ N0, I(n) and In are
ideals of L as well.

Proof. We use induction on n to show the statement for I(n). For In, the proceeding is
completely analogous. First, I ≡ I(0) is an ideal. For the inductive step, assume that
I(n−1) is an ideal and take arbitrary x ∈ I(n) and y ∈ L. Then there exist k ∈ N and
x1, . . . , xk, y1, . . . , yk ∈ I(n−1) such that x = ∑k

i=1[xi, yi] and therefore

[x, y] =
k

∑
i=1

[[xi, yi], y] = −
k

∑
i=1

([[y, xi], yi] + [[yi, y], xi]) ∈ I(n),

since for all i ∈ k̂, both [y, xi] and [yi, y] belong to I(n−1).

Lemma 1.29. Let I and J be ideals of a Lie algebra L. Then
(a) I + J is an ideal of L;
(b) if I and J are solvable, then I + J is solvable;
(c) if I and J are nilpotent, then I + J is nilpotent.

Proof.
(a) Each x ∈ I + J can be written as x = xI + xJ , where xI ∈ I and xJ ∈ J. Then for all
y ∈ L we have [x, y] = [xI , y] + [xJ , y] ∈ I + J.
(b) Obviously, J is an ideal of I + J. We define a map ϕ : I → (I + J)/J : x 7→ x + J. Since

ϕ([x, y]) = [x, y] + I = [x + I, y + I] = [ϕ(x), ϕ(y)]

holds for all x, y ∈ I, ϕ is a homomorphism. Further for any xI + xJ + J = xI + J ∈
(I + J)/J we have ϕ(xI) = xI + J and hence ϕ(I) = (I + J)/J. Now Corollary 1.27
gives that (I + J)/J is solvable.

Next, we claim that ((I + J)/J)(k)=((I + J)(k) + J)/J, k ∈N0. For k = 0 it is nothing
to prove, thus suppose for the inductive step that this assertion holds for k− 1. Then

((I + J)/J)(k) =
(
((I + J)/J)(k−1)

)′
=
(
((I + J)(k−1) + J)/J

)′
= Span

{
[x + y + J, x̃ + ỹ + J]

∣∣ x, x̃ ∈ (I + J)(k−1); y, ỹ ∈ J
}

= Span
{
[x, x̃] + ˜̃y + J

∣∣ x, x̃ ∈ (I + J)(k−1), ˜̃y ∈ J
}
= ((I + J)(k) + J)/J.

Since both J and (I + J)/J are solvable, there exist m, n ∈N such that ((I + J)/J)(m) = 0
and J(n) = 0. Therefore (I + J)(m) ∈ J and finally (I + J)(m+n) = ((I + J)(m))(n) = 0.
(c) Surely there exists n ∈ N such that In = Jn = 0. By part (a) and Proposition 1.28,
(I + J)2n is an ideal in L. Each element of this ideal has to be a (finite) sum of terms
having the following form:

[x2n + y2n, [x2n−1 + y2n−1, · · · [x1 + y1, x0 + y0] · · · ]], (1.19)

where for all i ∈ 2̂n, xi ∈ I and yi ∈ J. Such a term (1.19) can be further expressed
as a (finite) sum of multiple commutators in the form a := [a2n, [a2n−1, · · · [a1, a0] · · · ]],
where for all i ∈ 2̂n, ai = xi ∈ I or ai = yi ∈ J. It is obvious that there are at least n + 1
vectors from I or at least n + 1 vectors from J among 2n + 1 vectors a0, . . . , a2n. Since
both I and J are ideals, it follows that either a ∈ In or a ∈ Jn. In both cases we have
a = 0 and consequently (I + J)2n = 0.
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Corollary 1.30. Let L be a Lie algebra. There exists a unique solvable / nilpotent ideal of L
which is maximal, i.e. containing any other solvable / nilpotent ideal of L.

Proof. We show the "solvable" case. For the other part, it suffices to replace the word
"solvable" by "nilpotent". Thus, let R be a solvable ideal of L having maximal dimension
and let I be any other solvable ideal of L. By part (b) of the previous lemma, R + I is a
solvable ideal again. But dim R ≥ dim(R + I) and hence I ⊂ R.

Definition 1.31. Let L be a Lie algebra. The maximal solvable / nilpotent ideal of L is
called the radical / nilradical of L and is denoted by Rad(L) / NilRad(L).3

Proposition 1.32. Let L1 and L2 be Lie algebras and let ϕ : L1 → L2 be an isomorphism. Then
ϕ(Rad(L1)) = Rad(L2).

Proof. According to Corollary 1.27, ϕ(Rad(L1)) is a solvable ideal of L2. If a solvable
ideal I of L2 existed such that I 6⊂ ϕ(Rad(L1)), then ϕ−1(I) would be a solvable ideal
of L1 not included in Rad(L1), a contradiction.

1.5 Semisimple and Simple Lie Algebras

Definition 1.33. A Lie algebra L is said to be semisimple if L 6= 0 and Rad(L) = 0.

Definition 1.34. A Lie algebra L is said to be simple if it is not abelian and its only ideals
are 0 and L.

Remark 1.14. Clearly, any simple Lie algebra is indecomposable as well as semisimple.
The following theorem put simple and semisimple Lie algebras into the relation-

ship. Its proof is fairly long since a lot of auxiliary assertions are needed (cf. [10]), so
we omit it here.

Theorem 1.35. Let L be a Lie algebra. Then L is semisimple if and only if there are simple
ideals I1, . . . , Ik of L such that L = I1 ⊕ · · · ⊕ Ik.

Remark 1.15. It is obvious directly from the definition of the center that it is a solvable
(even abelian) ideal. Hence, Z(L) = 0 for each semisimple Lie algebra L. Now it fol-
lows from Remark 1.14 and from Theorem 1.24 that the decomposition in the previous
theorem is unique up to the ordering of ideals.

At this place we state a crucial theorem describing the structure of a general Lie
algebra. For its statement and proof see [2]. Before, we establish notation of the so-
called "semidirect sum" (cf. [4]).

Definition 1.36. Let L be a Lie algebra, let I be an ideal of L and let K be a subalgebra of
L such that, as vector spaces, L = I+̇K. We say that L, as a Lie algebra, is the semidirect
sum of I and K and we write L = I⊂+ K.

Theorem 1.37 (Levi - Malcev). Let L be a Lie algebra. If Rad(L) 6= L, then there exists a
semisimple subalgebra K of L such that

L = K⊃+ Rad(L). (1.20)

Moreover, if K̃ is any other semisimple subalgebra of L satisfying (1.20), then there exists an
automorphism ϕ : L→ L such that ϕ(K) = K̃.4

Remark 1.16. According to Proposition 1.32 and uniqueness of the radical, if ϕ is an
automorphism of a Lie algebra L, one has ϕ(Rad(L)) = Rad(L).

3To avoid any misunderstanding, note that the slash does not mean the factor vector space here at all.
4In its original version, the theorem even further specify such an automorphism, namely to be a so-

called special automorphism of L (cf. [2]).
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1.6 Derivations and Their Generalizations

Definition 1.38. Let L be a Lie algebra. A linear map D : L → L is called a derivation of
L if the following identity is satisfied for all x, y ∈ L:

D([x, y]) = [D(x), y] + [x, D(y)]. (1.21)

We denote the set of all derivations of L as Der(L).

Proposition 1.39. Let L be a Lie algebra. Der(L) is a subalgebra of gl(L).

Proof. It is easily seen that the condition (1.21) is linear in D, hence Der L ⊂⊂ gl(L).
Further, one can readily check that for all D, E ∈ Der L and x, y ∈ L it holds

[D, E]([x, y]) = [[D, E](x), y] + [x, [D, E](y)]

(cf. [12]). Thus [D, E] ∈ Der L and Der L is a subalgebra of gl(L) indeed.5

In contrast with the above part of the first chapter, the following definition is not
included in the "classical" theory of Lie algebras. This concept that generalize the defi-
nition of a derivation of a Lie algebra by adding three scalar parameters was introduced
quite recently in [14] and it turns out to be extremely useful for the identification of Lie
algebras, at least in low dimensions.

Definition 1.40. Let L be a Lie algebra over F and let α, β, γ ∈ F. A linear map D : L→ L
is called an (α, β, γ)-derivation of L if the following identity is satisfied for all x, y ∈ L:

αD([x, y]) = β[D(x), y] + γ[x, D(y)]. (1.22)

We denote the set of all (α, β, γ)-derivations of L as Der(α,β,γ)(L).

Remark 1.17. It is obvious from the bilinearity of the Lie bracket that for any α, β, γ ∈ F,
equality (1.22) is satisfied for each linear combination of operators from Der(α,β,γ)(L)
and therefore it holds Der(α,β,γ)(L) ⊂⊂ gl(L). However, this subspace do not need to
became a Lie subalgebra in general. In fact, this happens in very few cases (cf. [14]),
one example of such a case we have already introduced above, namely α = β = γ = 1.

Yet further generalization of (α, β, γ)-derivations is possible. In [15], the authors of
[14] generalized the concept of the so-called cohomology cocycles of Lie algebras (cf.
[3]) in the analogical way as in the case of derivations, i.e. through consideration of
additional parameters. In a special case, this generalization coincides with (α, β, γ)-
derivations precisely (cf. Remark 1.18 below). Also this tool turns out to be very useful
for the identification, particularly in the cases that are resistant to (α, β, γ)-derivations.

Definition 1.41. Let L be a Lie algebra over F, let k ∈N and letK be a (k + 1)× (k + 1)
symmetric matrix over F. A totally antisymmetric multilinear map c : L×k → L is called
a K-twisted cocycle on L if for any x1, . . . , xk+1 ∈ L it holds that

0 =
k+1

∑
i=1

(−1)i+1Kii[xi, c(x1, . . . , xi−1, xi+1 . . . , xk+1)]

+ ∑
1≤i<j≤k+1

(−1)i+jKijc([xi, xj], x1, . . . , xi−1, xi+1 . . . , xj−1, xj+1 . . . , xk+1).
(1.23)

We denote the set of all K-twisted cocycles on L as Zk(L, ad,K).6

5We do not discriminate between the Lie brackets on L and gl(L) here, but it is clear from the context
which one we mean at the moment.

6Here "ad" denotes the adjoint representation of L. The reason for us not to omit it here is that one
could define twisted cocycles for general representation ρ : L → gl(V) of L and the definition differs
among various representations (cf. [15]). The definition we present here is a special case V = L and
ρ = ad.
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Proposition 1.42. Let L be a Lie algebra over F, let k ∈ N and let K be a (k + 1)× (k + 1)
symmetric matrix over F. Then Zk(L, ad,K) forms a vector space over F, with addition and
scalar multiplication defined pointwise.

Proof. Given any c1, c2 ∈ Zk(L, ad,K) and α ∈ F, it is clear directly from the definition
of addition and scalar multiplication on Zk(L, ad,K) that αc1 + c2 is multilinear and
totally antisymmetric. Furthermore, the second sum in (1.23) is obviously linear in c,
the first one is so since the Lie bracket is bilinear, and hence (1.23) holds for αc1 + c2. All
in all, αc1 + c2 ∈ Zk(L, ad,K) and thus Zk(L, ad,K) is a subspace of the vector space of
all multilinear mappings from: L×k → L.

Remark 1.18. For k = 1 and K =

(
γ α
α β

)
the condition (1.23) is precisely (1.22) and

hence for this K one has Z1(L, ad,K) = Der(α,β,γ)(L).
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Chapter 2

Classification of Lie Algebras

Naturally, as for any other mathematical structures, one aims to classify all Lie alge-
bras that may occur. Of coarse, it only makes sense to execute the classification up to
isomorphism, i.e. to classify all possible classes of isomorphism.

In other words, the final goal of the classification process is to provide a list of mu-
tually non-isomorphic Lie algebras such that any Lie algebra is isomorphic to precisely
one item in the list. This task turns out, however, to be very complicated problem in
general and thus nowadays only certain classes of Lie algebras are completely classi-
fied, despite the great interest of many mathematicians in this topic. Recall that we are
still talking about finite-dimensional real or complex Lie algebras entirely.

In the second chapter we present list of those indecomposable Lie algebras which
we shall be able to identify later using methods that we shall introduce in Chapter
3. Namely, we list all indecomposable Lie algebras up to dimension four. Before, we
explain why it is sufficient to take only indecomposable Lie algebras into consideration
and we briefly sketch out the ways in which the listings were obtained.

2.1 Decomposition into the Direct Sum

We have seen that each Lie algebra decomposes into the direct sum of its indecom-
posable ideals and that the decomposition is unique up to isomorphisms of particular
ideals and up to the ordering of ideals in the sum (cf. Section 1.3).

Consider two isomorphic Lie algebras, say L and M, and ϕ : L → M, an isomor-
phism between them. Let L = I1 ⊕ · · · ⊕ Ik be a decomposition of L into the direct
sum of its indecomposable ideals. It follows from Proposition 1.14 and from bijectivity
of ϕ that M = ϕ(L) = ϕ(I1) ⊕ · · · ⊕ ϕ(Ik) is a direct sum decomposition into ideals
of M. Moreover, for all i ∈ k̂ it holds ϕ(Ii) ∼= Ii and hence, according to Proposition
1.20, all these ideals are indecomposable. The uniqueness of such a decomposition, as
described above, then guarantees that isomorphic Lie algebras are directly composed
of respectively isomorphic indecomposable ideals.

Conversely, let L = I1 ⊕ · · · ⊕ Ik and M = J1 ⊕ · · · ⊕ Jk be decompositions of Lie
algebras L and M into their indecomposable ideals such that, for all i ∈ k̂, there exists
an isomorphism ϕi : Ii → Ji. Then the map ϕ : L → M defined for all x = ∑k

i=1 xi ∈ L,
xi ∈ Ii, as ϕ(x) := ∑k

i=1 ϕi(xi) is an isomorphism obviously and hence L ∼= M.
All in all, the following holds: two Lie algebras are isomorphic if and only if they are

directly composed of respectively isomorphic indecomposable ideals. This fact allows us to
restrict ourselves only to the classification of indecomposable Lie algebras.
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2.2 Methods of Classification

2.2.1 General Structure of Indecomposable Lie Algebras

Let L be a (finite-dimensional real or complex) Lie algebra assumed from now on to
be moreover indecomposable. Depending on the radical of L, one distinguishes three
general cases of structure of L. First, if Rad(L) = 0, then L is semisimple and therefore
simple, since it is indecomposable (cf. Remark 1.14). Second, if Rad(L) = L, then L is
obviously solvable. Finally, consider the case 0 6= Rad(L) 6= L. Such a Lie algebra is
neither semisimple nor solvable and, according to the theorem of Levi and Malcev, L
decomposes non-trivially as L = K⊃+ Rad(L), where K is a semisimple subalgebra of
L. In this case, L is said to be Levi decomposable. Let us discussed this last possibility in
some detail now.

Thus, assume L to be non-trivially Levi decomposable, i.e. L = K+̇R, where K is
semisimple, R := Rad(L), [R, R] ⊂ R, [K, K] ⊂ K and [K, R] ⊂ R. In view of the last
inclusion, we may associate to L a representation ρ : K → gl(R) of the chosen subalgebra
K on the radical R: for all k ∈ K and r ∈ R we define

(ρ(k))(r) := [k, r]. (2.1)

It follows easily from the Jacobi identity on L that ρ is a representation indeed and also
that ρ(K) ⊂ Der(R).

Contrariwise, consider a semisimple Lie algebra K, a solvable Lie algebra R and
a representation ρ : K → gl(R) such that ρ(K) ⊂ Der(R). Then we may define a Lie
algebra L to be the vector space K+̇R with the Lie bracket [ , ] given for all k1, k2 ∈ K
and r1, r2 ∈ R as follows:

[k1 + r1, k2 + r2] := [k1, k2]K + (ρ(k1))(r2)− (ρ(k2))(r1) + [r1, r2]R, (2.2)

where [ , ]K and [ , ]R are the Lie brackets on K and R, respectively.7 It is an easy
exercise to verify that (2.2) defines the Lie bracket indeed (here one needs the defi-
nitional property (1.11) of a representation as well as the fact that ρ(K) ⊂ Der(R)).
Furthermore, it is clear that R = Rad(L) and hence L = K⊃+ R is a Levi decomposition
of L. Finally, comparing (2.1) with (2.2), one can obviously identify L with the Levi
decomposable Lie algebra considered in the previous paragraph. Thus, each Levi de-
composition K⊃+ R is completely characterized by a triplet K, R, ρ satisfying the above
properties.

2.2.2 Current Results on Classifying Lie Algebras

According to the previous subsection, the classification of all indecomposable Lie alge-
bras requires solution of the following tasks (cf. [13]):

(I) classifying simple Lie algebras;
(II) classifying indecomposable solvable Lie algebras;

(III) classifying possible triplets (K, R, ρ), where R is a solvable Lie algebra, K is a
semisimple Lie algebra and ρ is a representation of K on R compatible (in the
sense described above) with the Lie algebra structure of R.

Up to now, only the first task is solved completely. The classification of complex
simple Lie algebras were obtained already at the end of the nineteenth century by

7More precisely, we first define L := K × R. Then it is clear that (K, 0) and (0, R) are subspaces of
L such that L = (K, 0)+̇(0, R). Thus we may identify K ≡ (K, 0) and R ≡ (0, R) and we may regard
elements from L to be sums of two parts from K and R, respectively, rather then ordered pairs.
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W. Killing and E. Cartan. Their work is based on classifying the so-called root systems,
i.e. certain subsets of the vector space dual to the so-called Cartan subalgebra. Nowa-
days, this achievement is a part of the standard Lie theory and one can found it e.g. in
[11], Chap. 4. Over R, the classification problem of simple Lie algebras was solved a
few years later, at the beginning of the twentieth century, again by E. Cartan. His ap-
proach lay in studying of involutive automorphisms, i.e. those automorphisms whose
square is the identity, of complex simple Lie algebras (cf. [7]).

In contrast, (indecomposable) solvable Lie algebras over both R and C, respectively,
are completely classified only in low dimensions, namely up to dimension six. Only
certain classes of solvable Lie algebras are classified in higher or even in all dimensions.
This is the case of solvable Lie algebras with a given nilpotent Lie algebra as the non-
trivial nilradical. For summary of results on this topic as well as for classification of
low-dimensional nilpotent Lie algebras, see [13].

Although all possible (non-equivalent) representations of semisimple Lie algebras
are known, the complete classification of all Levi decomposable Lie algebras cannot
be obtained, since we have not uncovered all solvable Lie algebras, i.e. all potential
radicals. However, also in this case, the classification problem is solved at least in low
dimensions. Namely all Levi decomposable Lie algebras up to dimension nine (over R

as well as over C) were found in [16] and [17]. Another approach to the same results
was described in [13], Chap. 14.

2.3 List of Indecomposable Lie Algebras up to Dimension Four

In this section we list all complex and real, respectively, indecomposable Lie algebras
up to dimension four. These listings were adopted from [13] together with the notation
used there.

Items independent of any parameters denote single Lie algebras whereas items de-
pending on one or two parameters denote one- or two-, respectively, parametric class
of mutually non-isomorphic Lie algebras. In the second case, specification of parame-
ters is always attached in order to avoid any repetitions in the list. Precisely as in [13],
Latin letters denote the complex parameters while Greek letters stand for the real ones.

2.3.1 Lie Algebras over C

Nilpotent one-dimensional Lie algebra:

• n1,1 abelian.

Solvable two-dimensional Lie algebra with the nilradical n1,1 ≡ Span{e1}:

• s2,1 [e2, e1] = e1.

Nilpotent three-dimensional Lie algebra:

• n3,1 [e2, e3] = e1.

Solvable three-dimensional Lie algebras with the nilradical 2n1,1 ≡ Span{e1, e2}:

• s3,1(a)C-I [e3, e1] = e1, [e3, e2] = ae2;

• s3,2 [e3, e1] = e1, [e3, e2] = e1 + e2.

Simple three-dimensional Lie algebra:

• sl(2, C) [e1, e2] = 2e1, [e1, e3] = −e2, [e2, e3] = 2e3.
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Nilpotent four-dimensional Lie algebra:

• n4,1 [e2, e4] = e1, [e3, e4] = e2.

Solvable four-dimensional Lie algebras with the nilradical 3n1,1 ≡ Span{e1, e2, e3}:

• s4,1 [e4, e2] = e1 , [e4, e3] = e3;

• s4,2 [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = e2 + e3;

• s4,3(a, b)C-II [e4, e1] = e1, [e4, e2] = ae2, [e4, e3] = be3;

• s4,4(a)C-III [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = ae3.

Solvable four-dimensional Lie algebras with the nilradical n3,1 ≡ Span{e1, e2, e3}:

• s4,6 [e4, e2] = e2, [e4, e3] = −e3, [e2, e3] = e1;

• s4,8(a)C-IV [e4, e1] = (1 + a)e1, [e4, e2] = e2, [e4, e3] = ae3, [e2, e3] = e1;

• s4,10 [e4, e1] = 2e1, [e4, e2] = e2, [e4, e3] = e2 + e3, [e2, e3] = e1;

• s4,11 [e4, e1] = e1, [e4, e2] = e2, [e2, e3] = e1.

Parameters specification:
(C-I) 0 < |a| ≤ 1, if |a| = 1 then arg(a) ≤ π;

(C-II) 0 < |b| ≤ |a| ≤ 1,
if |b| = |a| < 1 then arg(a) ≤ arg(b),
if |b| < |a| = 1 then arg(a) ≤ π and if arg(a) = π then arg(b) < π,
if |b| = |a| = 1 then arg(a) ≤ 2

3 π, arg(a) ≤ arg(b) ≤ 4
3 π and

if arg(a) = 2
3 π then arg(b) = 4

3 π;
(C-III) a 6= 0;
(C-IV) 0 < |a| ≤ 1, if |a| = 1 then arg(a) < π.

2.3.2 Lie Algebras over R

Nilpotent one-dimensional Lie algebra:

• n1,1 abelian.

Solvable two-dimensional Lie algebra with the nilradical n1,1 ≡ Span{e1}:

• s2,1 [e2, e1] = e1.

Nilpotent three-dimensional Lie algebra:

• n3,1 [e2, e3] = e1.

Solvable three-dimensional Lie algebras with the nilradical 2n1,1 ≡ Span{e1, e2}:

• s3,1(α)
R-I [e3, e1] = e1, [e3, e2] = αe2;

• s3,2 [e3, e1] = e1, [e3, e2] = e1 + e2;

• s3,3(α)R-II [e3, e1] = αe1 − e2, [e3, e2] = e1 + αe2.

Simple three-dimensional Lie algebras:

• sl(2, R) [e1, e2] = 2e1, [e1, e3] = −e2, [e2, e3] = 2e3;

• so(3, R) [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1.

Nilpotent four-dimensional Lie algebra:

• n4,1 [e2, e4] = e1, [e3, e4] = e2.
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Solvable four-dimensional Lie algebras with the nilradical 3n1,1 ≡ Span{e1, e2, e3}:

• s4,1 [e4, e2] = e1 , [e4, e3] = e3;

• s4,2 [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = e2 + e3;

• s4,3(α, β)R-III [e4, e1] = e1, [e4, e2] = αe2, [e4, e3] = βe3;

• s4,4(α)
R-IV [e4, e1] = e1, [e4, e2] = e1 + e2, [e4, e3] = αe3;

• s4,5(α, β)R-V [e4, e1] = αe1, [e4, e2] = βe2 − e3, [e4, e3] = e2 + βe3.

Solvable four-dimensional Lie algebras with the nilradical n3,1 ≡ Span{e1, e2, e3}:

• s4,6 [e4, e2] = e2, [e4, e3] = −e3, [e2, e3] = e1;

• s4,7 [e4, e2] = −e3, [e4, e3] = e2, [e2, e3] = e1;

• s4,8(α)
R-VI [e4, e1] = (1 + α)e1, [e4, e2] = e2, [e4, e3] = αe3, [e2, e3] = e1;

• s4,9(α)
R-VII [e4, e1] = 2αe1, [e4, e2] = αe2 − e3, [e4, e3] = e2 + αe3, [e2, e3] = e1;

• s4,10 [e4, e1] = 2e1, [e4, e2] = e2, [e4, e3] = e2 + e3, [e2, e3] = e1;

• s4,11 [e4, e1] = e1, [e4, e2] = e2, [e2, e3] = e1.

Solvable four-dimensional Lie algebra with the nilradical 2n1,1 ≡ Span{e1, e2}:

• s4,12 [e3, e1] = e1, [e3, e2] = e2, [e4, e1] = −e2, [e4, e2] = e1.

Parameters specification:
(R-I) 0 < |α| ≤ 1;

(R-II) α ≥ 0;
(R-III) 0 < |β| ≤ |α| ≤ 1,

if |β| = |α| < 1 then β ≤ α,
if α = −1 and |β| < 1 then β > 0,
if |β| = |α| = 1 then α = 1;

(R-IV) α 6= 0;
(R-V) α > 0;

(R-VI) 0 < |α| ≤ 1, α 6= −1;
(R-VII) α > 0.
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Chapter 3

Invariants of Lie Algebras

Given a real or complex indecomposable Lie algebra of dimension less or equal four, it
must be isomorphic to precisely one item in the list of all such Lie algebras presented in
Section 2.3. In this final chapter we describe the way of recognising such a Lie algebra
among those in the list.

As anticipated, we shall use various invariants for this purpose. We shall proceed
separately for complex and real Lie algebras, the identification process is, however,
exactly the same. First, we have to find a set of invariants such that the sets of their
values are pairwise distinct for any two Lie algebras from the lists in Section 2.3. Such a
set of invariants is said to be complete. Then, given a Lie algebra to identify, we compute
the values of invariants from the complete set on it and we restrict the list of eventually
isomorphic Lie algebras until the last possibility remains.

3.1 Introduction of Invariants

First, we establish the invariants needed for identification. The invariants introduced
here were chosen among those described in [13], Chapter 4. To make the identification
process rigorous, we prove here that each single invariant stays unchanged under the
action of an isomorphism of Lie algebras, i.e. that it is "invariant" indeed.

3.1.1 Dimensions of Ideals

Lemma 3.1. Let L1 and L2 be isomorphic Lie algebras. Then dim L1 = dim L2.

Proof. Since L1 and L2 are isomorphic, there exists a linear bijection between them.
Consequently, they must have the same dimensions.

Lemma 3.2. Let L1 and L2 be isomorphic Lie algebras. Then for all n ∈N0 it holds that

(a) dim L(n)
1 = dim L(n)

2 ;
(b) dim Ln

1 = dim Ln
2 ;

(c) dim Zn(L1) = dim Zn(L2).

Proof. Let ϕ : L1 → L2 be an isomorphism.

(a) According to part (a) of Lemma 1.26, even ϕ(L(n)
1 ) = ϕ(L1)

(n) = L(n)
2 holds for all

n ∈ N0. The equality of dimensions is now obvious since the dimension of a subspace
is preserved by a linear bijection.
(b) Analogically to (a).
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(c) Again it suffices to show that ϕ(Zn(L1)) = Zn(L2) holds for all n ∈ N0. We use
induction on n. First, for n = 0 we have Z0(Li) = 0, i = 1, 2, and the assertion is
obvious. Second, assume that ϕ(Zn−1(L1)) = Zn−1(L2). Then for any x ∈ L1 it holds

x ∈ Zn(L1) ⇐⇒ for all y ∈ L1, [x, y] ∈ Zn−1(L1)

⇐⇒ for all y ∈ L1, [ϕ(x), ϕ(y)] ∈ ϕ(Zn−1(L1))

⇐⇒ for all z ∈ L2, [ϕ(x), z] ∈ Zn−1(L2)

⇐⇒ ϕ(x) ∈ Zn(L2).

and it follows that ϕ(Zn(L1)) = Zn(L2).

3.1.2 Signature of the Killing Form

Let us recall some well-known results from linear algebra at this place (cf. [9]).

Remark 3.1. Let V be an n-dimensional real vector space, let B := (b1, . . . , bn) be a ba-
sis of V and let f : V × V → R be a symmetric bilinear form. To the form f , one can
associate the (symmetric) matrix A ∈ Rn,n with entries Aij = f (bi, bj), i, j ∈ n̂. Then
the signature of the form f is defined to be the ordered triplet of non-negative integers
(π, ν, δ), where π, ν and δ denote the numbers of positive, negative and zero, respec-
tively, eigenvalues (including repetitions) of A. Since A is symmetric and hence diago-
nalisable, it holds that π + ν + δ = n. Furthermore, it is a theorem (due to Sylvester, cf.
[1]) that the signature does not depend on the choice of basis B.

Lemma 3.3. Let L1 and L2 be isomorphic real Lie algebras. Let κi be the Killing form on Li,
i=1,2. Then the signatures of κ1 and κ2 are the same.

Proof. Let us choose a basis of L1, say X := (x1, . . . , xn) and let us denote the structure
constants of L with respect to X as ak

ij; i, j, k ∈ n̂. Thus for all i, j ∈ n̂ we have

[xi, xj] =
n

∑
k=1

ak
ijxk.

Further, let ϕ : L1 → L2 be an isomorphism and consider Y := (y1, . . . , yn), where
yi := ϕ(xi), i ∈ n̂. Y forms a basis of L2 obviously. Moreover, for all i, j ∈ n̂ we have

[yi, yj] = [ϕ(xi), ϕ(xj)] = ϕ([xi, xj]) =
n

∑
k=1

ak
ij ϕ(xk) =

n

∑
k=1

ak
ijyk.

Now it is clear that the matrices of κ1 and κ2 with respect to basesX and Y , respectively,
are identical. It follows that the signatures of κ1 and κ2 are equal.

Lemma 3.4. Let L1 and L2 be isomorphic real Lie algebras. Let κi be the Killing form on
Der(Li), i=1,2. Then the signatures of κ1 and κ2 are the same.

Proof. Let ϕ : L1 → L2 be an isomorphism. We define

φ :Der(L1)→ Der(L2) : D 7→ ϕ ◦ D ◦ ϕ−1.

First, we must check that φ is well-defined. For any x, y ∈ L2 and D ∈ Der(L1) we have

φ(D)[x, y] = (ϕ ◦ D ◦ ϕ−1)[x, y]

= (ϕ ◦ D)[ϕ−1(x), ϕ−1(y)]

= ϕ[(D ◦ ϕ−1)(x), ϕ−1(y)] + ϕ[ϕ−1(x), (D ◦ ϕ−1)(y)]
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= [(ϕ ◦ D ◦ ϕ−1)(x), y] + [x, (ϕ ◦ D ◦ ϕ−1)(y)]
= [φ(D)(x), y] + [x, φ(D)(y)].

As a composition of linear maps, φ(D) is linear as well and thus φ(D) ∈ Der(L2).
Since ϕ is a bijection, it is clear that φ(D) = 0 if and only if D = 0 and that the map

φ−1 : Der(L2) → Der(L1) : D 7→ ϕ−1 ◦ D ◦ ϕ is the inverse of φ. Thus φ is a bijection.
Further, one can easily see that φ is linear. Finally, for any D, E ∈ Der(L1) we can write
(the commutators are taken on Der(L1) and Der(L2), respectively)

φ([D, E]) = ϕ ◦ D ◦ ϕ−1 ◦ ϕ ◦ E ◦ ϕ−1 − ϕ ◦ E ◦ ϕ−1 ◦ ϕ ◦ D ◦ ϕ−1

= φ(D) ◦ φ(E)− φ(E) ◦ φ(D)

= [φ(D), φ(E)]

to show that φ is a homomorphism. All in all, we have proved that Der(L1) ∼= Der(L2)
and hence we can use Lemma 3.3 in order to get the statement.

3.1.3 Invariant Functions Ψ and Φ

Definition 3.5. Let L be a complex Lie algebra. We define the function ΨL : C → N0
associated to the Lie algebra L as follows:

ΨL(α) := dim Der(α,1,1)(L), α ∈ C. (3.1)

Lemma 3.6. Let L1 and L2 be isomorphic complex Lie algebras. Then ΨL1 = ΨL2 .

Proof. We must show that for all α ∈ C it holds dim Der(α,1,1)(L1) = dim Der(α,1,1)(L2).
Let ϕ : L1 → L2 be an isomorphism. Take an arbitrary α ∈ C and let us define

φ :Der(α,1,1)(L1)→ Der(α,1,1)(L2) : D 7→ ϕ ◦ D ◦ ϕ−1.

We must check that φ is well-defined . For any x, y ∈ L2 and D ∈ Der(α,1,1)(L1) we have

αφ(D)[x, y] = α(ϕ ◦ D ◦ ϕ−1)[x, y]

= α(ϕ ◦ D)[ϕ−1(x), ϕ−1(y)]

= ϕ[(D ◦ ϕ−1)(x), ϕ−1(y)] + ϕ[ϕ−1(x), (D ◦ ϕ−1)(y)]

= [(ϕ ◦ D ◦ ϕ−1)(x), y] + [x, (ϕ ◦ D ◦ ϕ−1)(y)]
= [φ(D)(x), y] + [x, φ(D)(y)].

As a composition of linear maps, φ(D) is linear as well and thus φ(D) ∈ Der(α,1,1)(L2).
Since ϕ is a bijection, it is clear that φ(D) = 0 if and only if D = 0 and that the map

φ−1 : Der(L2) → Der(L1) : D 7→ ϕ−1 ◦ D ◦ ϕ is the inverse of φ. Thus, φ is a bijection
and the equality between dimensions holds.

Definition 3.7. Let L be a complex Lie algebra. For each α ∈ C, let

Kα =

α 1 1
1 α 1
1 1 α

 . (3.2)

We define the function ΦL :C→N0 associated to the Lie algebra L as follows:

ΦL(α) := dim Z2(L, ad,Kα), α ∈ C. (3.3)
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Remark 3.2. For k = 2 and Kα established by (3.2), the condition (1.23) takes the form

0 = α{[x1, c(x2, x3)]− [x2, c(x1, x3)] + [x3, c(x1, x2)]}
− c([x1, x2], x3) + c([x1, x3], x2)− c([x2, x3], x1).

(3.4)

Lemma 3.8. Let L1 and L2 be isomorphic complex Lie algebras. Then ΦL1 = ΦL2 .

Proof. We must show that for all α ∈ C it holds dim Z2(L1, ad,Kα) = dim Z2(L2, ad,Kα).
Let ϕ : L1 → L2 be an isomorphism. Take an arbitrary α ∈ C and let us define

φ : Z2(L1, ad,Kα)→ Z2(L2, ad,Kα) : c 7→ φ(c),

where φ(c) is for any x, y ∈ L2 defined as φ(c)(x, y) := (ϕ ◦ c)(ϕ−1(x), ϕ−1(y)). We
must check that φ is well-defined . For any x, y, z ∈ L2 and c ∈ Z2(L1, ad,Kα) we have

α[x, φ(c)(y, z)] = α[(ϕ ◦ ϕ−1)(x), (ϕ ◦ c)(ϕ−1(y), ϕ−1(z))]

= ϕ
(

α[ϕ−1(x), c(ϕ−1(y), ϕ−1(z))]
)

and similarly

−φ(c)([x, y], z) = −(ϕ ◦ c)(ϕ−1([x, y]), ϕ−1(z)) = ϕ
(
−c([ϕ−1(x), ϕ−1(y)], ϕ−1(z))

)
.

Now one can easily see that the condition (3.4) is satisfied. Further, as a composition of
(multi-)linear maps, φ(c) is multilinear as well and therefore φ(c) ∈ Z2(L2, ad,Kα).

Since ϕ is a bijection, it is clear that φ(c) = 0 if and only if c = 0 and that the map

φ−1 : Z2(L2, ad,Kα)→ Z2(L1, ad,Kα) : c 7→ φ−1(c),

where φ(c) is for any x, y ∈ L1 defined as φ−1(c)(x, y) := (ϕ−1 ◦ c)(ϕ(x), ϕ(y)) is the
inverse of φ. Thus, φ is a bijection and the equality between dimensions holds.

Definition 3.9. Let L be a real Lie algebra. The complexification of L is the complex vec-
tor space LC := SpanR

{
x1 + ix2

∣∣ x1, x2 ∈ L
}

with addition and scalar multiplication
defined for all x = x1 + ix2, y = y1 + iy2 ∈ LC and α = Re(α) + i Im(α) ∈ C as

x + y := (x1 + y1) + i(x2 + y2), (3.5)
αx := (Re(α)x1 − Im(α)x2) + i(Re(α)x2 + Im(α)x1), (3.6)

equipped with the map [ , ]C : LC× LC → LC defined for all x = x1 + ix2, y = y1 + iy2 ∈
LC as

[x, y]C := ([x1, y1]− [x2, y2]) + i([x1, y2] + [x2, y1]), (3.7)

where [ , ] is the Lie bracket on L.8

Remark 3.3. It is a routine matter to verify that LC has a vector space structure indeed.
Furthermore, one can readily check, that the map [ , ]C fulfills all conditions on the Lie
bracket and hence that the complexification of L is a (complex) Lie algebra.

One can easily see that if (xi)
n
i=1 is a basis of L, then (xi + i · 0)n

i=1 is a basis of LC. In
particular, dim L = dim LC.

8Here i stands for the imaginary unit. Note that all sums of the type x + iy in this definition are
only formal. More precisely, we should define LC to be the space of ordered pairs of elements from L.
However, the notation we used is more illustrative since the same formalism applies to the notation of
complex numbers.
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Proposition 3.10. Let L1 and L2 be real Lie algebras. If L1
∼= L2 then (L1)C

∼= (L2)C.

Proof. Let ϕ : L1 → L2 be an isomorphism. We show that the map φ : (L1)C → (L2)C

sending x1 + ix2 to ϕ(x1) + iϕ(x2) is an isomorphism as well. First, the zero vector
in LC is 0 + i · 0 obviously and the condition φ(x1 + ix2) = 0 imply x1 = x2 = 0.
As dim(L1)C = dim L1 = dim L2 = dim(L2)C, φ is a bijection. Second, for arbitrary
x = x1 + ix2, y = y1 + iy2 ∈ LC we have

φ([x, y]C) = ϕ([x1, y1]− [x2, y2]) + iϕ([x1, y2] + [x2, y1])

= ([ϕ(x1), ϕ(y1)]− [ϕ(x2), ϕ(y2)]) + i([ϕ(x1), ϕ(y2)] + [ϕ(x2), ϕ(y1)])

= [ϕ(x1) + iϕ(x2), ϕ(y1) + iϕ(y2)]C

= [φ(x), φ(y)]C.

It remains to verify linearity of φ but this can be done in the very same manner as
above, using just the definitions (3.5) and (3.6) together with linearity of ϕ.

Lemma 3.11. Let L1 and L2 be isomorphic real Lie algebras. Then Ψ(L1)C
= Ψ(L2)C

and
Φ(L1)C

= Φ(L2)C
.

Proof. Trivial consequence of Lemmas 3.6, 3.8, respectively, and Proposition 3.10.

3.2 Complete Sets of Invariants for Indecomposable Lie
Algebras up to Dimension Four

In this section we present the computed complete sets of invariants for all Lie algebras
from the list in Section 2.3. As anticipated, we proceed separately for complex and
real Lie algebras. For both fields, Lie algebras are further divided by their dimensions,
which is the first very rough invariant in fact (cf. Lemma 3.1). Then, for each dimen-
sion, concrete invariants are established and tables with their computed values follow.
The mark "−" in the tables means that the value of the respective invariant is irrelevant.

For the sake of clarity, if the number of needed invariants is too large to comprise
all of them in one table, then the references to appendix tables are attached. In these
appendices, some other invariants or invariant properties occur in columns denoted
"Further specification" in addition to those established at the beginning of each part.

All invariants were computed using MAPLE 18 computer algebra system. More
precisely, we used procedures contained in DifferentialGeometry package and its sub-
package LieAlgebras, namely Series for computing the dimensions of ideals in the char-
acteristic series, Killing for obtaining the matrix of the Killing form and Derivations in
order to compute the basis of the Lie algebra of derivations of a Lie algebra.

For computing the invariant functions Ψ and Φ, we had to implement our own pro-
cedures. The principle is as folows. Given a Lie algebra L with a basis B = (x1, . . . , xn),
for any α ∈ C we have a system of linear equations for n2 independent elements of an
(α, 1, 1)-derivation, with respect to B. If A denotes the matrix of such a system, then

ΨL(α) = n2 − rank(A). (3.8)

Analogously, for any α ∈ C we may consider a system of equations for n2(n−1)
2 inde-

pendent elements of a Kα-twisted cocycle, where Kα is defined by (3.2), with respect to
B. If A denotes the matrix of this system now, it holds

ΦL(α) =
n2(n− 1)

2
− rank(A). (3.9)

Here we used MAPLE procedures Rank, Matrix and GaussianElimination, all included in
package LinearAlgebra.
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3.2.1 Lie Algebras over C

Dimension one - only one possibility: n1,1.

Dimension two - only one possibility: s2,1.

Dimension three - the following invariants are used for identification:

I1(L) := dim(L′),
I2(L) := number of singularities of ΨL,
I3(L) := ΨL(1),

I4(L) := Ψ(−1)
L (4) ∩ B1,

I5(L) := Ψ(−1)
L (4) ∩C+.

L I1(L) I2(L) I3(L) I4(L) I5(L)

n3,1 1 − − − −

s3,2 2 1 4 − −

s3,1(1) 2 1 6 − −

s3,1(−1) 2 2 − − −

s3,1(a), |a| 6= 1 2 3 − {a} −

s3,1(a), |a| = 1, a 6= ±1 2 3 − ∅ {a}

sl(2, C) 3 − − − −

Table 3.1: Three-dimensional complex Lie algebras

Dimension four - the following invariants are used for identification:

I1(L) := dim(Z3(L)),

I2(L) :=
(

dim(L(1)), dim(L(2))
)

,

I3(L) := number of singularities of ΨL,
I4(L) := ΨL(1),

I5(L) := Φ(−1)
L (15),

I6(L) := Ψ(−1)
L (6)/{1},

I7(L) := Φ(−1)
L (13) + 1,

I8(L) := Ψ(−1)
L (5) ∩ B1,

I9(L) := Ψ(−1)
L (4) ∩ S1 ∩C+,

I10(L) := Ψ(−1)
L (4) ∩ B1.
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L I1(L) I2(L) I3(L) I4(L) Appendix

s4,11 0 (2, 0) − − −

s4,2 0 (3, 0) 1 6 −

s4,4(1) 0 (3, 0) 1 8 −

s4,3(1, 1) 0 (3, 0) 1 12 −

s4,4(−1) 0 (3, 0) 2 5 −

s4,3(1,−1) 0 (3, 0) 2 8 −

s4,3(− 1
2 + i

√
3

2 ,− 1
2 − i

√
3

2 ) 0 (3, 0) 3 6
Table 3.3

s4,4(a), a 6= ±1 0 (3, 0) 3 6

s4,3(1, b), b 6= ±1 0 (3, 0) 3 8
Table 3.4

s4,3(a, a), a 6= 1 0 (3, 0) 3 8

s4,3(i,−1) 0 (3, 0) 4 − −

s4,3(b2, b), b /∈ {±1,− 1
2 − i

√
3

2 } 0 (3, 0) 5 −
Table 3.5

s4,3(a, a2), a /∈ {±1,− 1
2 + i

√
3

2 } 0 (3, 0) 5 −

s4,3(−1, b) 0 (3, 0) 6 −

Table 3.6s4,3(a,−1), a /∈ {1, i} 0 (3, 0) 6 −

s4,3(a,−a), a 6= 1 0 (3, 0) 6 −

s4,3(a, b), a /∈ {±1,±b, b2},
0 (3, 0) 7 − Table 3.7b /∈ {±1, a2}

s4,10 0 (3, 1) 2 5 −

s4,8(1) 0 (3, 1) 2 7 −

s4,8(
1
2 ) 0 (3, 1) 3 − −

s4,8(a), a /∈ { 1
2 , 1} 0 (3, 1) 4 − Table 3.9

s4,6 1 − − − −

s4,1 2 − − − −

n4,1 4 − − − −

Table 3.2: Four-dimensional complex Lie algebras

L Further specification

s4,3(− 1
2 + i

√
3

2 ,− 1
2 − i

√
3

2 ) 7 ∈ ΨL(C)

s4,4(a), a 6= ±1

7 /∈ ΨL(C);
Ψ(−1)

L (5) = {a, 1
a},

{a + 1, 1
a + 1} ∩Φ(−1)

L (13)− 1 = {a}

Table 3.3: Four-dimensional complex Lie algebras - appendix 1
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L I5(L) Further spec.

s4,3(1, b), |b| < 1 {b} |b| < 1

s4,3(1, b), |b| = 1, b 6= ±1 {b} |b| = 1, arg(b) ∈ (0, 4
3 π)

s4,3(a, a), |a| < 1 { 1
a}

∣∣ 1
a

∣∣ > 1

s4,3(a, a), |a| = 1, a 6= 1 { 1
a}

∣∣ 1
a

∣∣ = 1, arg( 1
a ) ∈ ( 4

3 π, 2π)

Table 3.4: Four-dimensional complex Lie algebras - appendix 2

L I6(L) Further specification

s4,3(b2, b),
{b, 1

b}
|b| =

∣∣ 1
b

∣∣ = 1,
b /∈ {±1,− 1

2 − i
√

3
2 } arg(b) ∈ (π, 4

3 π), arg( 1
b ) ∈ ( 2

3 π, π)

s4,3(a, a2), |a| < 1 {a, 1
a} |a| < 1,

∣∣ 1
a

∣∣ > 1

s4,3(a, a2), |a| = 1
{a, 1

a}
|a| =

∣∣ 1
a

∣∣ = 1,
a /∈ {±1,− 1

2 + i
√

3
2 } arg(a) ∈ (0, 2

3 π), arg( 1
a ) ∈ ( 4

3 π, 2π)

Table 3.5: Four-dimensional complex Lie algebras - appendix 3

L I7(L) Further specification

s4,3(−1, b) {b,−b}
|b| = |−b| < 1,
arg(b) ∈ 〈0, π), arg(−b) ∈ 〈π, 2π)

s4,3(a,−1),
{a,−a}

|a| = |−a| = 1,
a /∈ {1, i} arg(a) ∈ (0, 2

3 π), arg(−a) ∈ (π, 5
3 π)

s4,3(a,−a),
{ 1

a ,− 1
a}

∣∣ 1
a

∣∣ = ∣∣− 1
a

∣∣ > 1,
|a| < 1 arg( 1

a ) ∈ (π, 2π) ∪ {0}, arg(− 1
a ) ∈ (0, π〉

s4,3(a,−a), a 6= 1
{ 1

a ,− 1
a}

∣∣ 1
a

∣∣ = ∣∣− 1
a

∣∣ = 1,
|a| = 1, a 6= 1 arg( 1

a ) ∈ ( 5
3 π, 2π), arg(− 1

a ) ∈ ( 2
3 π, π)

Table 3.6: Four-dimensional complex Lie algebras - appendix 4

L = s4,3(a, b) I8(L) Further specification

|b| < |a| < 1, b 6= a2 {a, b, b
a}

|b| < min{|a| , | ba |};
b + a ∈ Φ(−1)

L (13), b + b
a /∈ Φ(−1)

L (13)

|b| = |a| < 1, a 6= ±b {a, b} arg(a) ≤ arg(b)

|b| < |a| = 1, a 6= ±1 {b, b
a} arg(b · a

b ) ∈ (0, π), arg( 1
b ·

b
a ) ∈ (π, 2π)

|b| = |a| = 1, a /∈ {1, b2}
{a, 1

a , b, 1
b , a

b , b
a} appendix - Table 3.8b /∈ {±1,±a, a2}

Table 3.7: Four-dimensional complex Lie algebras - appendix 5
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L = s4,3(a, b), |b| = |a| = 1,
Further specificationa /∈ {1, b2}, b /∈ {±1,±a, a2}

|a| < | ba | < min{arg(z)
∣∣ z = 1

a , b, 1
b , a

b}
1
a +

b
a ∈ Φ(−1)

L (13)

|a| <
∣∣ 1

b

∣∣ < min{arg(z)
∣∣ z = 1

a , b, a
b , b

a}
1
a +

1
b /∈ Φ(−1)

L (13);
arg( 1

b ) ≥
2
3 π

| ba | < |a| < min{arg(z)
∣∣ z = 1

a , b, 1
b , a

b}
a
b + a /∈ Φ(−1)

L (13);
arg(a) < 2

3 π

Table 3.8: Four-dimensional complex Lie algebras - appendix 6

L I9(L) I10(L)

s4,8(a), |a| = 1, a 6= 1 {a} −

s4,8(a), |a| < 1, a 6= 1
2 ∅ {a}

Table 3.9: Four-dimensional complex Lie algebras - appendix 7

27



3.2.2 Lie Algebras over R

Dimension one - only one possibility: n1,1.

Dimension two - only one possibility: s2,1.

Dimension three - the following invariants are used for identification:

I1(L) := dim(L′),
I2(L) := number of singularities of ΨLC

,
I3(L) := ΨLC

(1),

I4(L) := Ψ(−1)
LC

(4) ∩ B1,

I5(L) := Ψ(−1)
LC

(4) ∩C+/{1},
I6(L) := signature of the Killing form on L.

L I1(L) I2(L) I3(L) I4(L) I5(L) I6(L)

n3,1 1 − − − − −

s3,2 2 1 4 − − −

s3,1(1) 2 1 6 − − −

s3,1(−1) 2 2 − − − (1, 0, 2)

s3,3(0) 2 2 − − − (2, 1, 0)

s3,1(α), |α| 6= 1 2 3 − {α} − −

s3,3(α), α 6= 0 2 3 − ∅ { α2−1+i2α
α2+1 } −

sl(2, R) 3 − − − − (2, 1, 0)

so(3, R) 3 − − − − (0, 3, 0)

Table 3.10: Three-dimensional real Lie algebras

Dimension four - the following invariants are used for identification:

I1(L) := dim(Z3(L)),

I2(L) :=
(

dim(L(1)), dim(L(2))
)

,

I3(L) := number of singularities of ΨLC
,

I4(L) := ΨLC
(1),

I5(L) := signature of the Killing form on Der(L),

I6(L) := Φ(−1)
LC

(15),

I7(L) := Ψ(−1)
LC

(6)/{1},

I8(L) := Φ(−1)
LC

(13) + 1,

I9(L) := Ψ(−1)
LC

(5) ∩ B1,

I10(L) := Ψ(−1)
LC

(5)/S1,
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I11(L) := Ψ(−1)
LC

(4) ∩ B1,

I12(L) := Ψ(−1)
LC

(4) ∩ S1.

L I1(L) I2(L) I3(L) I4(L) I5(L) Appendix

s4,11 0 (2, 0) − 5 − −

s4,12 0 (2, 0) − 4 − −

s4,2 0 (3, 0) 1 6 − −

s4,4(1) 0 (3, 0) 1 8 − −

s4,3(1, 1) 0 (3, 0) 1 12 − −

s4,4(−1) 0 (3, 0) 2 5 − −

s4,3(1,−1) 0 (3, 0) 2 8 − −

s4,4(α), α 6= ±1 0 (3, 0) 3 6 −
Table 3.12

s4,5(
2√
3
,− 1√

3
) 0 (3, 0) 3 6 −

s4,3(1, β), β 6= ±1 0 (3, 0) 3 8 −
Table 3.13

s4,3(α, α), α 6= 1 0 (3, 0) 3 8 −

s4,5(1, 0) 0 (3, 0) 4 − − −

s4,3(α, α2), α 6= ±1 0 (3, 0) 5 − −
Table 3.14

s4,5(
√

1 + β2, β), β 6= − 1√
3

0 (3, 0) 5 − −

s4,3(−1, β) 0 (3, 0) 6 − −

Table 3.15s4,3(α,−α), α 6= 1 0 (3, 0) 6 − −

s4,5(α, 0), α 6= 1 0 (3, 0) 6 − −

s4,3(α, β), α /∈ {±1,±β},
0 (3, 0) 7 − (3, 0, 3) Table 3.16

β /∈ {±1, α2}

s4,5(α, β), α 6=
√

1 + β2, β 6= 0 0 (3, 0) 7 − (2, 1, 3) Table 3.17

s4,10 0 (3, 1) 2 5 − −

s4,8(1) 0 (3, 1) 2 7 − −

s4,8(
1
2 ) 0 (3, 1) 3 − − −

s4,8(α), α /∈ { 1
2 , 1} 0 (3, 1) 4 − (2, 0, 3) Table 3.18

s4,9(α) 0 (3, 1) 4 − (1, 1, 3) Table 3.19

s4,6 1 − − − (2, 0, 3) −

s4,7 1 − − − (1, 1, 3) −

s4,1 2 − − − − −

n4,1 4 − − − − −

Table 3.11: Four-dimensional real Lie algebras
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L Further specification

s4,4(α), α 6= ±1

7 /∈ ΨLC
(C);

Ψ(−1)
LC

(5) = {α, 1
α},

{α + 1, 1
α + 1} ∩Φ(−1)

LC
(13)− 1 = {α}

s4,5(
2√
3
,− 1√

3
) 7 ∈ ΨLC

(C)

Table 3.12: Four-dimensional real Lie algebras - appendix 1

L I6(L) Further spec.

s4,3(1, β), β 6= ±1 {β} |β| < 1

s4,3(α, α), α 6= 1 { 1
α}

∣∣ 1
α

∣∣ > 1

Table 3.13: Four-dimensional real Lie algebras - appendix 2

L I7(L) Further specification

s4,3(α, α2), α 6= ±1 {α, 1
α} |α| < 1,

∣∣ 1
α

∣∣ > 1

s4,5(
√

1 + β2, β), β 6= − 1√
3

{ β+i√
β2+1

, β−i√
β2+1

} ∣∣ β+i√
β2+1

∣∣ = ∣∣ β−i√
β2+1

∣∣ = 1

Table 3.14: Four-dimensional real Lie algebras - appendix 3

L I8(L) Further specification

s4,3(−1, β) {β,−β} ±β ∈ R; |β| = |−β| < 1; β > 0,−β < 0

s4,3(α,−α), α 6= 1 { 1
α ,− 1

α} ± 1
α ∈ R;

∣∣ 1
α

∣∣ = ∣∣− 1
α

∣∣ > 1; 1
α > 0,− 1

α < 0

s4,5(α, 0), α 6= 1 {iα,−iα} ±iα /∈ R; Im(iα) > 0, Im(−iα) < 0

Table 3.15: Four-dimensional real Lie algebras - appendix 4

L I9(L) Further specification

s4,3(α, β), α /∈ {±1,±β},
{α, β, β

α}
|β| < min{|α| , | βα |};

β /∈ {±1, α2} β + α ∈ Φ(−1)
LC

(13), β + β
α /∈ Φ(−1)

LC
(13)

Table 3.16: Four-dimensional real Lie algebras - appendix 5

L I10(L) Further specification

s4,5(α, β), {
β+i

α , β−i
α , (β+i)α

β2+1 , (β−i)α
β2+1

} β+i
α = β−i

α , (β+i)α
β2+1 = (β−i)α

β2+1 ;

α 6=
√

1 + β2, β+i
α + β−i

α ∈ Φ(−1)
LC

(13),

β 6= 0 (β+i)α
β2+1 + (β−i)α

β2+1 /∈ Φ(−1)
LC

(13)

Table 3.17: Four-dimensional real Lie algebras - appendix 6
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L I11(L)

s4,8(α), α /∈ { 1
2 , 1} {α}

Table 3.18: Four-dimensional real Lie algebras - appendix 7

L I12(L) Further specification

s4,9(α)
{

α2−1+i2α
α2+1 , α2−1−i2α

α2+1

}
Re( α2−1+i2α

α2+1 ) = Re( α2−1−i2α
α2+1 ) = α2−1

α2+1

Table 3.19: Four-dimensional real Lie algebras - appendix 8

3.3 LIEIDENTIFICATOR

As we have already found and computed the complete sets of invariants for all items
in the list of indecomposable Lie algebras up to dimension four, we are now able to
identify an arbitrary such a Lie algebra by computing the same invariants on it and by
comparing with the values of the invariants computed on the items of the list. Natu-
rally, we may use the same algorithms as for computing invariants for Lie algebras in
the list, i.e. the ones described at the beginning of Section 3.2.

To automatize this process, we created a MAPLE procedure where we used all dis-
cussed algorithms and we considered all eventualities that may occur. This resulted
into a programme identifying any indecomposable Lie algebra of dimension at most
four. Besides, we made use of procedure Decompose, contained in subpackage LieAl-
gebras for decomposing a Lie algebra into the direct sum of its indecomposable ideals.
Furthermore, a controlling php script for our MAPLE algorithm was written in order to
put the procedure on-line.

All in all, the outcome of our work is a simple internet application, which we named
LIEIDENTIFICATOR, that automatically identifies any finite-dimensional complex or
real Lie algebra that is directly composed of at most four-dimensional indecomposable
ideals. LIEIDENTIFICATOR is available on-line at

http://kmlinux.fjfi.cvut.cz/~kotrbja2/LieIdentificator/.
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Conclusion

In our work we have focused on the automatic identification of Lie algebras over R

or over C, having the dimension four or less. For this purpose, we have made use of
invariants.

First, we have introduced the basics of Lie algebras theory needed for establishing
various invariants. Second, according to [13], we have listed all indecomposable Lie
algebras up to dimension four. Finally, using methods described in [13], we have found
complete sets of invariants for all Lie algebras in the list and we have used computed
invariants for identification of any other such a Lie algebra among those in the list.

The classification process have been automatized by implementing in MAPLE 18
computer algebra system. Furthermore, this implementation have been put on-line as
a simple internet application LIEIDENTIFICATOR, that automatically identify an arbi-
trary complex or real Lie algebra directly composed of indecomposable Lie algebras of
dimensions at most four.
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