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Abstract

This thesis is devoted to the construction of the Chevalley basis for a simple Lie alge-
bra, the first task in the construction of bases for representations of simple Lie algebras.
First, the fundamentals of Lie algebras theory necessary for the construction are intro-
duced and second, the construction itself is demonstrated. As a result of our work,
we present a program for computation of the Chevalley bases for both classical and
exceptional simple Lie algebras of an arbitrary type. The Maple 16 source code of our
program and the computed bases for all simple Lie algebras up to the rank 4 are at-
tached in appendices.

Keywords: simple Lie algebra, Chevalley basis, root systems, structure constants

Abstrakt

V této práci se zabýváme konstrukcí Chevalleyovy báze prosté Lieovy algebry. Vyřešení
tohoto problému je prvním krokem komplexnější úlohy konstrukce bází pro reprezen-
tace prostých Lieových algeber. V první části práce vyložíme potřebné základy teorie
Lieových algeber a jejich reprezentací, v části druhé pak představíme samotnou kon-
strukci Chevalleyovy báze. Výsledkem našeho snažení je program, jež dokáže napočí-
tat Chevalleyovu bázi pro libovolnou (klasickou i výjimečnou) prostou Lieovu algebru.
K práci je přiložen zdrojový kód implementace našeho programu do systému počí-
tačové algebry Maple 16 a uvedeny jsou též napočtené báze pro všechny prosté Lieovy
algebry až do hodnosti 4.

Klíčová slova: prostá Lieova algebra, Chevalleyova báze, kořenové systémy, strukturní
konstanty
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Introduction

Lie algebras and their representations occur naturally in many areas of both mathe-
matics and physics and therefore it is not surprising that Lie theory became one of the
major points of interest of modern mathematics. One of the problems to concern with
in this field is the construction of bases for representations (more precisely, representa-
tion spaces) of the so-called simple Lie algebras. First, several different kinds of these
bases are known and hence an interesting task is to investigate whether there are any
relations among them. Second, some bases are defined just for certain types of simple
Lie algebras and the question is whether and how they can be generalized for each sim-
ple Lie algebra. Last but not least, one aims to develop the algorithms for the proper
computing the bases.

The construction of any basis for a representation of a given simple Lie algebra con-
sists of two basic steps. At first one establishes the set of basis vectors and then one de-
fines how the Lie algebra acts on these vectors. This general action is fully determined
by the action of basis vectors of the Lie algebra. Consequently, the very first challenge
is to construct a basis of a simple Lie algebra and this is the main topic of this thesis
actually. The original goal was to study the bases for representations as well however
the rigorous analysis of the construction of bases for simple Lie algebras turned out to
be the most convenient to start the work with.

The thesis is organized as follows. In the first chapter we introduce the very funda-
mentals of Lie algebras theory. Further we define semisimple and simple Lie algebras
and we show the relation between them. In the second chapter we present an introduc-
tion to representation theory. Predominantly, we introduce the results needed for the
classification of semisimple Lie algebras. In the third chapter we define the so-called
roots and root systems, we classify them and then we use the obtained results to catego-
rize all semisimple Lie algebras. Finally, the fourth chapter is devoted to the construc-
tion of a basis for a simple Lie algebra. First, the constructed basis is introduced and
second, we present the algorithms for computation of the structure constants. These
algorithms were implemented into several Maple 16 procedures to provide the univer-
sal program for computing the Chevalley basis for a simple Lie algebra of an arbitrary
type. The source code is attached in the first appendix. In the second appendix some
examples of the computed bases are presented as an illustration.
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Chapter 1

Lie Algebras

1.1 Basic Definitions and Properties

1.1.1 Definition of Lie Algebras

At the very beginning we introduce the definition of Lie algebras and basic related
terms. We give also a few common examples as an illustration (cf. [9], p. 1, 2).

Definition 1.1. Let F be a field. A Lie algebra over F is an F-vector space together with
a bilinear map [ , ] : L × L → L fulfilling for any x, y, z from L the two following
conditions:

[x, x] = 0, (1.1)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (1.2)

The map [ , ] is called the Lie bracket and the vector [x, y] is often called the commu-
tator of x and y. The condition (1.2) is known as the Jacobi identity. Sometimes we use
the notation (L; [ , ]) to specify which Lie bracket on the vector space L we consider.

Throughout this work we study entirely Lie algebras over the field of complex
numbers. Such Lie algebras are said to be complex. Moreover, we do not deal with
infinite-dimensional Lie algebras at all. From now on, “Lie algebra” will always mean a
finite-dimensional Lie algebra over C and, similarly, “vector space” without any further
specification will always denote a finite-dimensional complex vector space.
Remark 1.1. Working over C, one can show anticommutativity of the Lie bracket. Let L
be a (complex) Lie algebra and take arbitrary x, y ∈ L. Putting x = y + z in (1.1), we
obtain

0 = [y + z, y + z] = [y, y] + [y, z] + [z, y] + [z, z] = [y, z] + [z, y]

and hence [y, z] = −[z, y].

Definition 1.2. Let L be a Lie algebra. A basis for the Lie algebra L is a basis for the
vector space L. Similarly, by the dimension of the Lie algebra we mean the dimension of
the underlying vector space.

Contrary to a vector space without any further structure, basis alone is not sufficient
to determine the corresponding Lie algebra. Because of the Lie-bracket structure, we
also need to establish commutation relations of basis elements. Due to bilinearity of
the Lie bracket, we may then uncover the commutators of all vector pairs.

Definition 1.3. Let L be a Lie algebra and let B = (x1, . . . , xn) be a basis for L. The
structure constants of L with respect to the basis B are complex numbers ak

ij such that for
all i, j ∈ n̂ we can write

[xi, xj] =
n

∑
k=1

ak
ijxk. (1.3)
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Example 1.2. Suppose that V is a vector space. By gl(V) we denote the set of all linear
maps from V to V. It is well-known that gl(V) is a vector space as well (cf. [11]).
Furthermore, it becomes a Lie algebra with the Lie bracket [ , ] defined for all x, y ∈
gl(V) by

[x, y] := x ◦ y− y ◦ x. (1.4)

Clearly, [ , ] is bilinear, it maps into gl(V) and for all x ∈ gl(V) we have

[x, x] = x ◦ x− x ◦ x = 0,

thus it remains to check that the Jacobi identity holds. Suppose arbitrary x, y, z ∈ gl(V),
substituting by (1.4), we obtain

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = x ◦ y ◦ z− x ◦ z ◦ y− y ◦ z ◦ x + z ◦ y ◦ x
+ y ◦ z ◦ x− y ◦ x ◦ z− z ◦ x ◦ y + x ◦ z ◦ y
+ z ◦ x ◦ y− z ◦ y ◦ x− x ◦ y ◦ z + y ◦ x ◦ z

= 0.

Hence (gl(V); [ , ]) is a Lie algebra indeed. This Lie algebra is called the general linear
algebra.

Example 1.3. Let n ∈N. By gl(n, C) we denote the set of all n× n matrices with entries
from C. This is again a vector space. To upgrade gl(n, C) to the Lie algebra, we define
the Lie bracket [ , ] for all x, y ∈ gl(n, C) by

[x, y] := xy− yx. (1.5)

Replacing the map composition “◦” by the multiplication of matrices, we can iterate
the procedure from Example 1.2 to check that also in this case [ , ] is the Lie bracket
and hence (gl(n, C); [ , ]) is a Lie algebra.

Definition 1.4. The Lie algebra L is said to be abelian if for any x, y ∈ L it holds true
that

[x, y] = 0. (1.6)

1.1.2 Subalgebras and Ideals

Given a Lie algebra L, one often concerns with the subspaces of L which have the same
algebraic structure as L. Such subspaces are called subalgebras (cf. [7], Sec. 1.3).

Definition 1.5. Let L be a Lie algebra. A Lie subalgebra of L is a vector subspace K ⊂⊂ L
such that for all x, y ∈ K it is satisfied that

[x, y] ∈ K. (1.7)

Remark 1.4. It can be easily seen that K (a Lie subalgebra of (L; [ , ])) becomes a Lie
algebra in its own right with the Lie bracket [ , ]K defined as follows:

[ , ]K := [ , ]|K×K. (1.8)

Example 1.5. Let n(n, C) denote the subset of gl(n, C) consisting of all strictly upper
triangular n × n matrices over C. Since n(n, C) is closed under addition and scalar
multiplication, n(n, C) ⊂⊂ gl(n, C). In addition, because matrix product of strictly
upper triangular matrices is a strictly upper triangular matrix (see Example 1.17 where
we prove even stronger result), n(n, C) is a Lie subalgebra of gl(n, C). In addition, by
Remark 1.4, (n(n, C), [ , ]) with the Lie bracket [ , ] defined by (1.5) creates a Lie algebra
again.
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Definition 1.6. Let L be a Lie algebra. An ideal of L is a vector subspace I ⊂⊂ L such
that for all x ∈ L and y ∈ I it is satisfied that

[x, y] ∈ I. (1.9)

Obviously, any ideal is a subalgebra as well. Now, we illustrate how the definition
property (1.9) of an ideal is mainly used, we give one useful example of an ideal and
then we introduce three different ways of construction with ideals (cf. [7], Chap. 2).

Remark 1.6. Suppose that L is a Lie algebra and L1, . . . , Lk are ideals of L such that, as
vector spaces, L = L1 ⊕ · · · ⊕ Lk. The fact that L can be written as a direct sum of its
ideals simplifies the Lie bracket on L. Any x, y ∈ L can be uniquely decomposed as
x = xi + · · ·+ xk and y = yi + · · ·+ yk where xi, yi ∈ Li for all i ∈ k̂. The commutator
of x, y is as follows:

[x, y] = [
k

∑
i=1

xi,
k

∑
j=1

yj] =
k

∑
i,j=1

[xi, yj].

Now, for all i 6= j we have [xi, yj] = 0 because, as both Li and Lj are ideals, [xi, yj] ∈
Li ∩ Lj = 0. After this simplification we may write

[x, y] =
k

∑
i=1

[xi, yi]. (1.10)

Example 1.7. Let L be a Lie algebra. We define the center of L by

Z(L) :=
{

x ∈ L
∣∣ for all y ∈ L, [x, y] = 0

}
. (1.11)

Since 0 ∈ Z(L), it is clear that Z(L) is an ideal of L.

Proposition 1.7. Suppose that L is a Lie algebra and L1, . . . , Lk are ideals of L such that
L = L1 ⊕ · · · ⊕ Lk. Then Z(L) = Z(L1)⊕ · · · ⊕ Z(Lk).

Proof. According to (1.10), for an arbitrary x = ∑k
i=1 xi ∈ L, where xi ∈ Li, i ∈ k̂, we

have: x ∈ Z(L) if and only if [x, y] = ∑k
i=1[xi, yi] = 0 holds true for all y = ∑k

i=1 yi ∈ L,
where yi ∈ Li, i ∈ k̂. This arises if and only if xi ∈ Z(Li) for all i ∈ k̂ because [xi, yi] ∈ Li

for all i ∈ k̂ and L = L1 ⊕ · · · ⊕ Lk. Uniqueness of the decomposition of x ∈ Z(L)
into ∑k

i=1 xi, xi ∈ Z(Li), is obvious since Z(L) ⊂⊂ L, Z(Li) ⊂⊂ Li for all i ∈ k̂ and
L = L1 ⊕ · · · ⊕ Lk.

Definition 1.8. Let I and J be ideals of a Lie algebra L. We define

[I, J] := Span
{
[x, y]

∣∣ x ∈ I, y ∈ J
}

. (1.12)

In particular, L′ := [L, L] denotes the so-called derived algebra of L.

Proposition 1.9. Let I and J be ideals of a Lie algebra L. Then [I, J] is an ideal of L as well.

Proof. First, [I, J] is a subspace by its definition. Second, we have to show that the
condition (1.9) is satisfied. Given x ∈ L and y ∈ [I, J], there exist n ∈ N; u1, . . . , un ∈
I; v1, . . . , vn ∈ J and complex numbers α1, . . . , α1 such that y = ∑n

i=1 αi[ui, vi]. Then
bilinearity, Jacobi identity and anticommutativity for each summand give

[x, y] = [x,
n

∑
i=1

αi[ui, vi]] =
n

∑
i=1

αi[x, [ui, vi]] = −
n

∑
i=1

αi[ui, [vi, x]]−
n

∑
i=1

αi[vi, [x, ui]]

=
n

∑
i=1

αi[ui, [x, vi]] +
n

∑
i=1

αi[[x, ui], vi].
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Since I and J are ideals, for all i ∈ n̂ we have [x, vi] ∈ J and [x, ui] ∈ I. Thus, for all
i ∈ n̂ it holds true that [ui, [x, vi]] ∈ [I, J] and [[x, ui], vi] ∈ [I, J] and, because [I, J] is a
subspace, [x, y] also lies in [I, J].

Definition 1.10. Let (L; [ , ]) be a Lie algebra and let I be an ideal of L. The quotient
vector space L/I together with a map [ , ]q : L/I× L/I → L/I defined for all x̃, ỹ ∈ L/I
by

[x̃, ỹ]q := [̃x, y], x ∈ x̃ and y ∈ ỹ, (1.13)

is called the quotient Lie algebra of L by I.

Remark 1.8. We have to check that the map [ , ]q from Definition 1.10 is well-defined
i.e. [x̃, ỹ]q does not depend on the choice of representatives x ∈ x̃ and y ∈ ỹ. Suppose
x, x′ ∈ x̃, x 6= x′ and y, y′ ∈ ỹ, y 6= y′. Then there exist u, v ∈ I ⊂ L such that x− x′ = u
and y− y′ = v. Using bilinearity of [ , ], we obtain

[x, y] = [x′ + u, y′ + v] = [x′, y′] + [x′, v] + [u, y′] + [u, v],

where [x′, v] + [u, y′] + [u, v] =: z ∈ I because I is an ideal. Then we can write

[x̃, ỹ]q = [̃x, y] = ([x′, y′] + z)∼ = [̃x′, y′] = [x̃′, ỹ′]q.

Proposition 1.11. Let L be a Lie algebra and let I be an ideal of L. The quotient Lie algebra of
L by I is a Lie algebra.

Proof. L/I is a vector space thus it remains to show that [ , ]q is the Lie bracket. Suppose
x̃, ỹ, z̃ ∈ L/I, x ∈ x̃, y ∈ ỹ and z ∈ z̃. First, bilinearity is obviously consequence by
bilinearity of the Lie bracket on L. Second,

[x̃, x̃]q = [̃x, x] = 0̃ = 0 ∈ L/I.

Third,

[x̃, [ỹ, z̃]q]q + [ỹ, [z̃, x̃]q]q + [z̃, [x̃, ỹ]q]q = [x̃, [̃y, z]]q + [ỹ, [̃z, x]]q + [z̃, [̃x, y]]q

= ˜[x, [y, z]] + ˜[y, [z, x]] + ˜[z, [x, y]]
= ([x, [y, z]] + [y, [z, x]] + [z, [x, y]])∼

= 0̃ = 0 ∈ L/I.

At the very end of this part we introduce two examples of subalgebras which we
shall need later (cf. [9], p. 7).

Definition 1.12. Let L be a Lie algebra.

(a) Let A be a subalgebra of L. The normalizer of A in L is defined by

NL(A) :=
{

x ∈ L
∣∣ for all a ∈ A, [x, a] ∈ A

}
. (1.14)

(b) Let X be a subset of L. The centralizer of X in L is defined by

CL(X) :=
{

x ∈ L
∣∣ for all y ∈ X, [x, y] = 0

}
. (1.15)

5



Proposition 1.13. Let L be a Lie algebra.

(a) Let A be a subalgebra of L. NL(A) is also a subalgebra of L.

(b) Let X be a subset of L. CL(X) is a subalgebra of L.

Proof. We use the Jacobi identity.

(a) Take arbitrary x, y ∈ NL(A) and a ∈ A. Then

[[x, y], a] = −[a, [x, y]] = [x, [y, a]] + [y[a, x]] = [x, [y, a]]− [y[x, a]] ∈ A

and hence [x, y] ∈ NL(A).

(b) Analogous to (a).

1.1.3 Lie Algebra Homomorphisms

One might wonder whether two Lie algebras are “similar” in some sense i.e. whether
there exists a map between them, preserving their algebraic structure. Like in other
areas of algebra, such map is called a homomorphism or an isomorphism, if it is “one-
to-one”, and in case it exists, the respective Lie algebras are said to be homomorphic or
isomorphic, eventually. Hereinafter, we state the precise definition, we give two exam-
ples and in the end we prove two important relations, the so-called First and Second
isomorphism theorems (cf. [7]).

Definition 1.14. Let (L1; [ , ]1) and (L2; [ , ]2) be Lie algebras. A linear map ϕ : L1 → L2
is called a homomorphism if for all x, y ∈ L1 it is satisfied that

ϕ([x, y]1) = [ϕ(x), ϕ(x)]2. (1.16)

We say that ϕ is an isomorphism when it is also bijective.

Remark 1.9. Lie algebras L1 and L2 are said to be isomorphic if there exists an isomor-
phism ϕ : L1 → L2. We denote this relation L1

∼= L2.

Remark 1.10. Let L1, L2 be Lie algebras and let I and J be ideals of L1. It is clear from
Definition 1.14 that if ϕ : L1 → L2 is a homomorphism, then ϕ([I, J]) = [ϕ(I), ϕ(J)], in
particular ϕ(I′) = (ϕ(I))′.

Example 1.11. Let V be an n-dimensional vector space. Let gl(V) and gl(n, C) be the
Lie algebras defined in Examples 1.2 and 1.3, respectively. When we fix a basis of V,
we can define a map φ : gl(V) → gl(n, C) sending a linear transformation of V to its
transformation matrix with respect to the fixed basis. It is well-known from linear al-
gebra that φ is a linear bijection and also that the transformation matrix of composition
of two maps is the product of the transformation matrices of single maps. From the
second fact it is easily seen that the Lie brackets (1.4) and (1.5) are “compatible” with
each other and φ is an isomorphism. Hence gl(V) ∼= gl(n, C).

Example 1.12. Let (L; [ , ]) be a Lie algebra. For all x, y ∈ L we define the adjoint homo-
morphism ad : L→ gl(L) as follows:

(ad x)(y) := [x, y]. (1.17)

Bilinearity of the Lie bracket implies both linearity of ad and linearity of ad x for all
x ∈ L. Hence, to prove that ad is a homomorphism indeed, we have to check only that

6



(1.16) holds with the Lie bracket on gl(L) defined by (1.4). Using the Jacobi identity,
bilinearity and anticommutativity of the Lie bracket on L, for any x, y, z ∈ L we have

ad([x, y])(z) = [[x, y], z] = −[z, [x, y]] = [x, [y, z]] + [y, [z, x]] = [x, [y, z]]− [y, [x, z]]
= ad x(ad y(z))− ad y(ad x(z)) = (ad x ◦ ad y− ad y ◦ ad x)(z),

as required.
If we define the adjoint homomorphism as ad : L → ad(L), then it is always surjec-

tive. Since Ker(ad) = Z(L), as one can see from

x ∈ Ker(ad)⇐⇒ ad x = 0⇐⇒ for all y ∈ L, ad x(y) = [x, y] = 0⇐⇒ x ∈ Z(L),

homomorphism ad : L → ad(L) is bijective, and hence it becomes an isomorphism, if
and only if Z(L) = 0.

Lemma 1.15 (First Isomorphism Theorem). Let ϕ : L1 → L2 be a homomorphism of Lie
algebras. Then Ker ϕ is an ideal of L1 and Ran ϕ is a subalgebra of L2. Moreover,

L1/ Ker ϕ ∼= Ran ϕ.

Proof. First, suppose arbitrary x ∈ L1 and y ∈ Ker ϕ. Then

ϕ([x, y]) = [ϕ(x), ϕ(y)] = [ϕ(x), 0] = 0.

Hence [x, y] ∈ Ker ϕ and, since kernel of a linear map is always a subspace, Ker ϕ is
an ideal. Second, given u, v ∈ Ran ϕ, there exist x, y ∈ L1 such that u = ϕ(x) and
v = ϕ(y). Then

[u, v] = [ϕ(x), ϕ(y)] = ϕ([x, y])

and thus [u, v] ∈ Ran ϕ. Since range of a linear map is a subspace again, Ran ϕ is a
subalgebra. Finally, we prove that L1/ Ker ϕ and Ran ϕ are isomorphic. For all x̃ ∈
L1/ Ker ϕ we define a map ψ : L1/ Ker ϕ→ Ran ϕ by

ψ(x̃) := ϕ(x), x ∈ x̃.

Because it holds for any x, x′ ∈ x̃ that x− x′ ∈ Ker ϕ and ϕ(x) = ϕ(x′) consequently, ψ
is well-defined. Since L1/ Ker ϕ is a linear space and ϕ is a linear map, for all complex
α and x̃, ỹ ∈ L1/ Ker ϕ we can write

ψ(αx̃ + ỹ) = ψ(α̃x + y) = ϕ(αx + y) = αϕ(x) + ϕ(y) = αψ(x̃) + ψ(ỹ).

This proves linearity of ψ. Injectivity of ψ results from the following implications:

ψ(x̃) = 0⇐⇒ ϕ(x) = 0⇐⇒ x ∈ Ker ϕ⇐⇒ x̃ = 0̃.

Next, given y ∈ Ran ϕ, there exists x ∈ L1 such that ϕ(x) = y. It suffices to put
ψ(−1)(y) = x̃ to prove surjectivity of ψ. Finally, considering ϕ is a homomorphism, we
show that ψ is a homomorphism as well. Given any x̃, ỹ ∈ L1/ Ker ϕ, we can write

ψ([x̃, ỹ]) = ψ([̃x, y]) = ϕ([x, y]) = [ϕ(x), ϕ(y)] = [ψ(x̃), ψ(ỹ)].

Hence ψ is the required isomorphism between L1/ Ker ϕ and Ran ϕ.

Corollary 1.16 (Second Isomorphism Theorem). Let I an J be ideals of a Lie algebra L.
Then

I/(I ∩ J) ∼= (I + J)/J.
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Proof. For all x ∈ I we define a map ϕ : I → (I + J)/J by

ϕ(x) := x̃.

First, we explore the kernel of ϕ. For any x ∈ I we have

ϕ(x) = 0̃ ∈ (I + J)/J ⇐⇒ x ∈ J

and hence Ker ϕ = I ∩ J. Second, we show surjectivity of ϕ. Take any ỹ ∈ (I + J)/I.
There exist a ∈ I and b ∈ J such that y = a + b ∈ I + J and we claim that one might put
ϕ(−1)(ỹ) = a. Indeed, ϕ(a) = ã = ã + b = ỹ, and therefore Ran ϕ = (I + J)/J. After
all, we prove that ϕ is a homomorphism. For arbitrary x, y ∈ I we have

ϕ([x, y]) = [̃x, y] = [x̃, ỹ] = [ϕ(x), ϕ(y)].

Thus ϕ is a homomorphism with Ker ϕ = I ∩ J and Ran ϕ = (I + J)/J. Now we can
apply Lemma 1.15 in order to get the statement.

1.1.4 sl(n, C) and sl(V)

In this final part of the first section we describe important examples of subalgebras of
two Lie algebras that we have already introduced. We shall use the following examples
later, mainly in Chapter 2.

Example 1.13. Suppose n ∈N. Let sl(n, C) denote the subset of gl(n, C) consisting of all
n× n complex matrices of trace 0. Clearly, since the trace form is linear (cf. [1], p. 127),
sl(n, C) ⊂⊂ gl(n, C). Further, for any A, B ∈ gl(n, C) we have

Tr([A, B]) =
n

∑
i=1

(AB− BA)ii =
n

∑
i,j=1

AijBji −
n

∑
i,j=1

Bij Aji = 0. (1.18)

In particular, when we take A, B from sl(n, C) only, (1.18) implies that sl(n, C) is a sub-
algebra of gl(n, C).

Moreover, (1.18) means that (gl(n, C))′ ⊂ sl(n, C). We claim that even gl(n, C)′ =
sl(n, C). To prove this statement, we first apply the rank-nullity theorem (cf. [11], page
61) to the trace map Tr : gl(n, C) → C. Obviously, Ker Tr = sl(n, C) and Ran Tr = C.
Hence we obtain

dim sl(n, C) = dim(Ker Tr) = dim gl(n, C)− dim Ran Tr = n2 − 1.

Now, let us consider the standard basis of gl(n, C):{
Eij ∈ gl(n, C)

∣∣ i, j ∈ n̂ and for all k, l ∈ n̂,
(
Eij
)

kl = δikδjl

}
.

For all i, j, k, l, a, b ∈ n̂ we have

[Eij, Ekl ]ab =
n

∑
m=1

(Eij)am(Ekl)mb −
n

∑
m=1

(Ekl)am(Eij)mb

=
n

∑
m=1

δiaδjmδkmδlb −
n

∑
m=1

δkaδlmδimδjb

= δiaδjkδlb − δkaδilδjb

= δjk(Eil)ab − δil(Ekj)ab
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and hence for all i, j, k, l ∈ n̂ it holds true that [Eij, Ekl ] = δjkEil − δilEkj. Particularly,
for any i, j ∈ n̂ such that i 6= j we have [Eij, Ejj] = Eij ∈ gl(n, C)′ and further for any

i ∈ n̂− 1 we have [Ei,i+1, Ei+1,i] = Ei,i − Ei+1,i+1 ∈ gl(n, C)′. In this way we have found
(n2 − n) + (n − 1) = n2 − 1 linearly independent vectors from gl(n, C)′. Now, since
gl(n, C)′ ⊂ sl(n, C) and dim sl(n, C) = n2 − 1, it is clear that gl(n, C)′ = sl(n, C), as
desired.

Example 1.14. Suppose V is a vector space. Similarly as in Example 1.13, let sl(V) denote
the subset of gl(V) consisting of those linear transformations of V whose trace is zero.
We use the previous example together with the fact that gl(V) ∼= gl(n, C), where n =
dim V (cf. Example 1.11), to show also that gl(V)′ = sl(V). Fix a basis of V and consider
the isomorphism φ : gl(n, C) → gl(V) sending a matrix to the linear map which the
matrix stands for (with respect to the fixed basis). Note that φ is the inverse of the
isomorphism considered in Example 1.11. According to Remark 1.10, we then may
write

gl(V)′ = φ(gl(n, C))′ = φ(gl(n, C)′) = φ(sl(n, C)).

Now, it suffices to realize that a linear operator has trace 0 precisely when its matrix
(with respect to an arbitrary basis) has the zero trace as well (cf. [14], p. 386) and thus
gl(V)′ = φ(sl(n, C)) = sl(V), as anticipated.

1.2 Decomposition of Lie Algebras

In this section we introduce three particular classes of Lie algebras, the so-called nilpo-
tent, solvable and semisimple Lie algebras. Then we show that each Lie algebra has the
unique biggest (in the sense of inclusion) solvable ideal and the quotient of the Lie
algebra by this ideal is always semisimple (cf. [7], Chap. 4). Note that nilpotent Lie
algebras are in a close relationship with Lie algebras of two other types as discussed in
Section 1.3 below.

Definition 1.17. Let L be a Lie algebra. The lower central series of L is the sequence
{Ln}∞

n=0 with terms

L0 = L and

Ln = [L, Ln−1] for n ≥ 1.
(1.19)

Definition 1.18. Let L be a Lie algebra. The derived series of L is the sequence
{

L(n)
}∞

n=0
with terms

L(0) = L and

L(n) = [L(n−1), L(n−1)] for n ≥ 1.
(1.20)

Remark 1.15. According to Proposition 1.9, L(n) and Ln are ideals of L for all n ∈N0.

Remark 1.16. Notice that L1 = L(1) = L′.

Lemma 1.19. Let L1 and L2 be Lie algebras and let ϕ : L1 → L2 be a surjective homomorphism.
Then for all n ∈N0 it holds that

(a) ϕ(Ln
1) = Ln

2 ,

(b) ϕ(L(n)
1 ) = L(n)

2 .
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Proof. We use induction on n. If n = 0, we have L0
1 = L(0)

1 = L1 and L0
2 = L(0)

2 = L2. It
follows directly from the definition of surjection that ϕ(L0

1) = L0
2 and ϕ(L(0)

1 ) = L(0)
2 .

(a) Now suppose that ϕ(Ln−1
1 ) = Ln−1

2 . Then, since ϕ is a homomorphism,

ϕ(Ln
1) = ϕ([L1, Ln−1

1 ]) = [ϕ(L1), ϕ(Ln−1
1 )] = [L2, Ln−1

2 ] = Ln
2 .

(b) Analogous to (a). Suppose that ϕ(L(n−1)
1 ) = L(n−1)

2 , then

ϕ(L(n)
1 ) = ϕ([L(n−1)

1 , L(n−1)
1 ]) = [ϕ(L(n−1)

1 ), ϕ(L(n−1)
1 )] = [L(n−1)

2 , L(n−1)
2 ] = L(n)

2 .

Definition 1.20. The Lie algebra L is said to be nilpotent if there exists n ∈ N such that
Ln = 0.

Example 1.17. We claim that n(n, C) (defined in Example 1.5) is a nilpotent Lie algebra.
To prove this, we first show that for all A1, . . . , Ak ∈ n(n, C), where k is an arbitrary
number from n̂, it holds true that

(
k

∏
i=1

Ai)ab = 0 (1.21)

whenever a > b− k. We use incomplete induction on k ∈ n̂. If k = 1, we have only one
single strictly upper triangular matrix and our claim follows from its definition. For
the inductive step assume that a > b − k + 1 implies Bab := (∏k−1

i=1 Ai)ab = 0. Then,
when we realize which summands are zero, we can write

(
k

∏
i=1

Ai)ab =
n

∑
c=1

Bac(Ak)cb =
b−1

∑
c=a+k−1

Bac(Ak)cb

which clearly equals to zero when a > b− k. Thus we have proved (1.21) for all k ∈ n̂.
Particularly, putting k = n, for all a, b ∈ n̂ we obtain (∏n

i=1 Ai)ab = 0 and hence
product of n strictly upper triangular matrices is always the zero matrix. Now, con-
sidering how the respective Lie bracket is defined, one can see easily that n(n, C) is
nilpotent, indeed.

Lemma 1.21. Let L be a Lie algebra.

(a) If L is nilpotent, then every subalgebra and every homomorphic image of L are nilpotent.

(b) If L/Z(L) is nilpotent, then L is nilpotent.

Proof.

(a) Suppose L1 is a subalgebra of L. Clearly, for all k ∈ N0 it holds Lk
1 ⊂ Lk, thus if

Lm = 0, then also Lm
1 = 0. For the second part, let us consider a homomorphism

ϕ : L → ϕ(L) which is obviously surjective. Then, according to Lemma 1.19 (a),
Lm = 0 implies (ϕ(L))m = 0.

(b) For all x ∈ L we define a map ϕ : L→ (L+Z(L))/Z(L) by ϕ(x) := x̃. By exactly the
same arguments as in the proof of Corollary 1.16, ϕ is a surjective homomorphism
and hence we may use part (a) of Lemma 1.19 for all k ∈N0 to obtain

(L/Z(L))k = ((L + Z(L))/Z(L))k = (ϕ(L))k = ϕ(Lk) = (Lk + Z(L))/Z(L).

Then, since there exists m ∈ N0 such that (L/Z(L))m = 0, Lm ⊂ Z(L) and hence
Lm+1 = [L, Lm] ⊂ [L, Z(L)] = 0.
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Definition 1.22. The Lie algebra L is said to be solvable if there exists n ∈ N such that
L(n) = 0.

Lemma 1.23. Let L be a Lie algebra.

(a) If L is solvable, then every subalgebra and every homomorphic image of L are solvable.

(b) If I is an ideal of L such that both I and L/I are solvable, then L is solvable.

(c) If I and J are solvable ideals of L, then I + J is a solvable ideal of L.

Proof.

(a) Let L1 be a subalgebra of L. Since for all k ∈ N0 it holds L(k)
1 ⊂ L(k), if L(m) = 0,

then also L(m)
1 = 0. For the second part, suppose ϕ : L→ ϕ(L) is a homomorphism.

ϕ is surjective by definition and hence, according to Lemma 1.19 (b), (ϕ(L))(m) = 0
results from L(m) = 0.

(b) For all x ∈ L we define a map ϕ : L → (L + I)/I by ϕ(x) := x̃. Again, exactly
repeating the proof of Corollary 1.16, one can show that ϕ is a surjective homomor-
phism and when we use part (b) of Lemma 1.19, for all k ∈N0 we obtain

(L/I)(k) = ((L + I)/I)(k) = (ϕ(L))(k) = ϕ(L(k)) = (L(k) + I)/I.

Now, as (L/I)(m) = 0 for some m, L(m) ⊂ I and hence, because I(n) = 0 for some n,
L(m+n) = (L(m))(n) ⊂ I(n) = 0.

(c) Again, for all x ∈ I we define a map ϕ : I → (I + J)/J by ϕ(x) := x̃ and again it is a
surjective homomorphism by the proof of Corollary 1.16. Then, since I is solvable,
(I + J)/J is also solvable by part (a) of this lemma and finally, since J is solvable,
part (b) implies solvability of I + J.

Corollary 1.24. For each Lie algebra L there exists a unique solvable ideal of L containing
every solvable ideal of L.

Proof. Let R be a solvable ideal of L such that any other solvable ideal L does not have
larger dimension than R (recall that we assume L to be finite-dimensional). Let I be one
of the other solvable ideals. By part (c) of Lemma 1.23, R + I is a solvable ideal again
and clearly dim(R + I) ≥ dim R. In addition, by our assumption, dim R ≥ dim(R + I)
and hence dim R = dim(R + I) and I ⊂ R.

Definition 1.25. Let L be a Lie algebra. The largest solvable ideal of L from Corollary
1.24 is said to be the radical of L and it is denoted by rad L.

Definition 1.26. The Lie algebra L is said to be semisimple if rad L = 0.

Proposition 1.27. Let L be a semisimple Lie algebra. Then:

(a) every isomorphic image of L is semisimple as well;

(b) Z(L) = 0.

Proof.

(a) Suppose that ϕ : L→ ϕ(L) is an isomorphism of Lie algebras such that rad ϕ(L) 6= 0
and hence ϕ(L) has a non-trivial solvable ideal, say J. But part (a) of Lemma 1.23
implies that ϕ−1(J) is a non-trivial solvable ideal of L, a contradiction.
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(b) Given a Lie algebra L, its center Z(L) is, from its definition (see Example 1.7), a
solvable ideal of L: [Z(L), Z(L)] ⊂ [L, Z(L)] = 0. As L is semisimple, Z(L) = 0.

Lemma 1.28. Let L be a Lie algebra. Then L/ rad L is semisimple.

Proof. Let I be a solvable ideal of L/ rad L. We define J :=
{

x ∈ L
∣∣ x̃ ∈ I

}
and we

show that it is an ideal of L. For any x, y ∈ J we have [̃x, y] = [x̃, ỹ] ∈ I and hence, by
the definition of J, [x, y] ∈ J, indeed. In addition, it is easily seen from the definition
of J that I = J/ rad L. Both rad L and J/ rad L are solvable and part (b) of Lemma
1.23 then implies solvability of J. As a solvable ideal of L, J is contained in rad L,
thus I = J/ rad L = 0. This holds for each solvable ideal I of L/ rad L and hence
rad(L/ rad L) = 0.

1.3 Semisimple Lie Algebras

1.3.1 Theorems of Engel and Lie

At the beginning of this section we state two theorems that are crucial in the theory of
semisimple Lie algebras, namely Engel’s Theorem and Lie’s Theorem. The proofs of both
these theorems are quite long and technical, so we omit them. They can be found e.g.
in [10].

Theorem 1.29 (Engel). Let V be a vector space and let L be a Lie subalgebra of gl(V) such
that each x ∈ L is a nilpotent linear map. Then there exists a basis of V in which each x ∈ L is
represented by a strictly upper triangular matrix.

Corollary 1.30. The Lie algebra L is nilpotent if and only if for any x ∈ L (ad x) : L→ L is a
nilpotent linear map.

Proof. To prove the “only if” direction, we suppose that L is a nilpotent Lie algebra. In
other words

[[. . . [[L

m times︷ ︸︸ ︷
, L]L], . . . , L], L] = 0⇐⇒

m times︷ ︸︸ ︷
[L, [L, . . . , [L, [L, L]] . . . ]] = 0.

Hence for all x1, x2, . . . , xm+1 ∈ L we have [x1, [x2, . . . , [xm−1, [xm, xm+1]] . . . ]] = 0, par-
ticularly for all x, y ∈ L it holds true that

(ad x)m(y) =

m times︷ ︸︸ ︷
[x, [x, . . . , [x, y] . . . ]] = 0.

For the second direction, we assume nilpotency of ad x for any x ∈ L. By Engel’s
Theorem, there exists a basis B of L such that, with respect to B, for all x ∈ L, ad x
is represented by a strictly upper triangular matrix. As ad : L → gl(L) is a homomor-
phism, by Lemma 1.15, ad(L) = Ran(ad) is a subalgebra of gl(L) which is isomorphic
to gl(dim L, C) according to Example 1.11. In agreement with this example we con-
sider an isomorphism φ sending a linear transformation of L to its transformation ma-
trix with respect to B. Obviously, the image of ad(L) under this isomorphism is also
a subalgebra (of gl(dim L, C)). Moreover, φ(ad(L)) ⊂ n(dim L, C) and hence φ(ad(L))
is nilpotent. Contrariwise, as φ−1 is a homomorphism as well, part (a) of Lemma 1.21
gives that ad(L) is also nilpotent. In addition, Lemma 1.15 together with Example 1.12
imply that ad(L) ∼= L/Z(L), hence L/Z(L) is also nilpotent and finally, by Lemma 1.21
(b), L is nilpotent as well.

Theorem 1.31 (Lie). Let V be a vector space and let L be a solvable Lie subalgebra of gl(V).
Then there exists a basis of V in which each x ∈ L is represented by an upper triangular matrix.
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1.3.2 Jordan Decomposition

In this subsection we introduce, without proof, a useful result from linear algebra con-
cerning the so-called Jordan decomposition of a linear map (cf. [2], p. 53, 54). Then,
we may apply it to variant subalgebras of general linear algebra which contains right
linear maps (cf. [9], Sec. 4.2).

Lemma 1.32. Let V be a vector space and let x : V → V be a linear map. Then there exist
unique linear maps d : V → V and n : V → V such that d is diagonalisable, n is nilpotent, d
and n commute and

x = d + n. (1.22)

Definition 1.33. Let x be a linear transformation of the vector space V. Equation (1.22),
where d and n are the maps from the previous lemma, is called the Jordan decomposition
of x.

Remark 1.18. From now on, we will use the following convention. Talking about the
Jordan decomposition of a linear map, we will always keep to the same order of the
two summands in the decomposition. The order will be such that the first summand
is diagonalisable and the second one is nilpotent. To avoid an ambiguity, even if any
summand is zero, we will never omit it.

Lemma 1.34. Let V be a vector space. Suppose that x ∈ gl(V) has Jordan decomposition
d + n. Then ad x :gl(V)→ gl(V) has Jordan decomposition ad d + ad n.

Proof. First of all, linearity of ad implies ad(d + n)=ad d + ad n. Since ad x is a linear
map, it suffices to show that if d is diagonalisable, n is nilpotent and d and n com-
mute, then ad d is diagonalisable, ad n is nilpotent and ad d and ad n commute. Then,
uniqueness of the Jordan decomposition already proves the lemma.

Suppose that d ∈ gl(V) is a diagonalisable map. There exists a basisB = (b1, . . . , bm)
of V consisting of eigenvectors for d entirely. Let (λi)

m
i=1 denote the respective eigen-

values, so for all i ∈ m̂ we have d(bi) = λibi. Remark that each b ∈ V can be uniquely
decomposed as b = ∑m

i=1 αibi. Now, let us denote

A :=
{

Aij ∈ gl(V)
∣∣ i, j ∈ m̂ and for all k, l ∈ m̂,

(
BAij

)
kl
= δikδjl

}
.

It is not hard to see thatA is a basis for gl(V). For arbitrary Aij ∈ A and b = ∑m
i=1 αibi ∈

V we can write

(ad d(Aij))(b) = [d, Aij](b) = (d ◦ Aij − Aij ◦ d)(
m

∑
k=1

αkbk) = d(αjbi)− Aij(
m

∑
k=1

αkλkbk)

= αjλibi − αjλjbi = (λi − λj)αjbi = (λi − λj)Aij(
m

∑
k=1

αkλkbk)

= (λi − λj)Aij(b)

to show that A consists of eigenvectors for ad d and thus ad d is diagonalisable.
For the second part suppose that there exists r ∈ N such that nr = 0. For an

arbitrary y ∈ gl(V), if we write out (ad n)2r(y) =

2r times︷ ︸︸ ︷
[n, [n, . . . , [n, y] . . . ]] by the definition

of the Lie bracket on gl(V), we obtain a sum of linear maps from gl(V) such that each
summand is of the form njyn2r−j for some j ∈ 2̂r and thus, since nr = 0, it equals to
zero. Overall, (ad n)2r is the zero map and hence ad n is nilpotent.

Finally, as ad is a homomorphism and d and n commute, we have

[ad d, ad n] = ad[d, n] = 0.
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Remark 1.19. It results directly from the previous proof that if a diagonalisable map
d ∈ gl(V) has eigenvalues (λi)

m
i=1, then ad d has eigenvalues

(
λi − λj

)m
i,j=1.

At the end of this subsection we state one more lemma related to the Jordan de-
composition that we shall need later. Again we omit the proof which is based only on
results from linear algebra and which can be found in [7], Appendix A.

Lemma 1.35. Let x be a linear transformation of the vector space V. Suppose that x = d + n
is the Jordan decomposition of x.

(a) There is a polynomial p(t) ∈ C[t] such that p(x) = d.

(b) Let B be a basis of V in which D := Bd is a diagonal matrix. Let d be a linear map such
that Bd = DH. Then there is a polynomial q(t) ∈ C[t] so that q(x) = d.

Remark 1.20. A simple corollary of part (a) of the previous lemma is that there also
exists a polynomial p̂(t) ∈ C[t] such that p̂(x) = n. Obviously, this is satisfied for
p̂(t) = t− p(t), where p(t) is the polynomial from the lemma.

1.3.3 Decomposition of Semisimple Lie Algebras

In this final part of the first chapter, using previous results, we show that each semisim-
ple Lie algebra is further decomposed into the direct sum of the so-called simple Lie
algebras. As the titles suggest, the structure of simple Lie algebras is even simpler than
the structure of semisimple ones; a simple Lie algebra, has even no ideals except itself
and the zero subspace (cf. [7], Chap. 9).

Definition 1.36. Let L be a Lie algebra. The Killing form on L is the form κ : L× L → C

defined for all x, y ∈ L by
κ(x, y) := Tr(ad x ◦ ad y). (1.23)

Proposition 1.37. The Killing form on a Lie algebra L is bilinear, symmetric and associative,
in the sense that for all x, y, z ∈ L it is satisfied that

κ([x, y], z) = κ(x, [y, z]). (1.24)

Proof. The trace form Tr : gl(L) → C is a linear functional satisfying for any maps
A, B ∈ gl(L) the following identity:

Tr(A ◦ B) = Tr(B ◦ A) (1.25)

(cf. [1], p. 127 and [14], p. 386). Now, linearity of the Killing form results clearly from
linearity of ad, bilinearity of the composition of two maps and linearity of Tr. Next,
(1.25) implies symmetry of κ. Finally, using (1.25) again, for arbitrary x, y, z ∈ L we can
write

κ([x, y], z) = Tr(ad[x, y] ◦ ad z) = Tr([ad x, ad y] ◦ ad z)
= Tr(ad x ◦ ad y ◦ ad z− ad y ◦ ad x ◦ ad z)
= Tr(ad x ◦ ad y ◦ ad z)− Tr(ad y ◦ (ad x ◦ ad z))
= Tr(ad x ◦ ad y ◦ ad z)− Tr((ad x ◦ ad z) ◦ ad y)
= Tr(ad x ◦ ad y ◦ ad z− ad x ◦ ad z ◦ ad y)
= Tr(ad x ◦ [ad y, ad z]) = Tr(ad x ◦ ad[y, z])
= κ(x, [y, z])
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Proposition 1.38. Let L be a Lie algebra with the Killing form κ. Let I be an ideal of L with
the Killing form κI . Then κI = κ|I×I .

Proof. Let A be a basis of I and let B be the basis A extended to the basis of L. Since I
is an ideal, for any x, y ∈ I we obtain the following block matrices:

B(ad x) =
(A(ad x) •

0 0

)
and B(ad y) =

(A(ad y) •
0 0

)
,

where “•” denotes an unspecified insignificant block. Hence

B(ad x ◦ ad y) = B(ad x) · B(ad y) =
(A(ad x) · A(ad y) •

0 0

)
and finally κ(x, y) = Tr(B(ad x ◦ ad y)) = Tr(A(ad x) · A(ad y)) = κI(x, y).

Lemma 1.39. Let V be a vector space and let L be a Lie subalgebra of gl(V). If Tr(x ◦ y) = 0
for all x, y ∈ L, then L is solvable.

Proof. First, we consider the derived algebra L′ and we show that each x ∈ L′ is a
nilpotent linear map. Suppose an arbitrary x ∈ L′ with Jordan decomposition x =
d + n. Our aim is to show that d = 0. Putting x into Jordan canonical form (cf. [2],
Chap. 5), one can see that we may choose a basis B of V such that Bd is diagonal and
Bn is strictly upper triangular. Let (λi)

m
i=1, where m = dim V, be the diagonal entries

of Bd. To prove that d is the zero map, it is necessary and sufficient to show that all λi
equal to zero.

Consider d ∈ gl(V) such that Bd = (Bd)H, hence Bd is diagonal with entries
(λi)

m
i=1. By Lemma 1.34, the Jordan decomposition of ad x is ad d + ad n and part (b)

of Lemma 1.35 then implies existence of a polynomial q(t) such that q(ad x) = ad d,
where Aad d = (A ad d)H for the basis A of gl(V) from the proof of Lemma 1.34. More-
over, it results from that proof that ad d = ad d. Now, as q(ad x) clearly maps L into L,
ad d does so. Since x is from L′, there exist u, v ∈ L such that x = [u, v] and we have
ad d(u) = [d, u] ∈ L so we may apply our assumption to conclude Tr([d, u] ◦ v) = 0.
Using the properties of the trace form discussed in the proof of Proposition 1.37, we
may continue as follows:

0 = Tr([d, u] ◦ v) = Tr(d ◦ u ◦ v− u ◦ d ◦ v) = Tr(d ◦ u ◦ v)− Tr(u ◦ (d ◦ v))

= Tr(d ◦ u ◦ v)− Tr((d ◦ v) ◦ u) = Tr(d ◦ u ◦ v− d ◦ v ◦ u) = Tr(d ◦ [u, v])

= Tr(d ◦ x) = Tr(d ◦ (d + n)) = Tr(d ◦ d) + Tr(d ◦ n)

= Tr(Bd · Bd) + Tr(Bd · Bn).

We claim that the second term is zero. Indeed, for all i ∈ m̂ we have

(Bd · Bn)ii =
m

∑
j=1

(Bd)ij(
Bn)ij = (Bd)ii(

Bn)ii = 0

because Bn is strictly upper triangular. Thus,

0 = Tr(Bd · Bd) =
m

∑
i=1

λiλi =
m

∑
i=1
|λi|2

and hence λi = 0 for all i ∈ m̂, as required.
Now, when we know that L′ contains only nilpotent maps, we obtain nilpotency

of L′ from Corollary 1.30. Finally, if L′ is nilpotent, then L′ is obviously solvable and
hence L is solvable as well. This completes the proof.
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At this time, as we have defined the Killing form and we have showed its properties,
we may use it together with the previous lemma to determination of solvability and
semisimplicity of Lie algebras; we introduce so-called Cartan’s criteria (cf. [7]).

Theorem 1.40 (Cartan’s Criterion for Solvability). The Lie algebra L is solvable if and only
if κ(x, y) = 0 for all x ∈ L and y ∈ L′.

Proof. For the “only if” direction let us suppose that L is solvable and dim L = m. Then
part (a) of Lemma 1.23 implies that ad(L), as a homomorphic image of L, is a solvable
subalgebra of gl(L) and hence, by Lie’s Theorem, there exists a basisB of L such that, for
any x ∈ L, Ax := B(ad x) is an upper triangular matrix. Now, given an arbitrary y ∈ L′,
there exist u, v ∈ L such that y = [u, v]. Since ad and φ : A ∈ gl(L) 7−→ BA ∈ gl(m, C)
are both homomorphisms, we can write

Ay = B(ad[u, v]) = B([ad u, ad v]) = [B(ad u), B(ad v)] = [Au, Av] = Au Av − Av Au

whereas Au and Av are upper triangular matrices. We claim that Ay is even strictly
upper triangular. Because the product and the difference of two upper triangular ma-
trices is an upper triangular matrix again, it suffices to focus on diagonal entries of Ay.
Considering which entries in Au and Av are zero for sure, for all i ∈ m̂ we have

(Ay)ii =
m

∑
j=1

(Au)ij(Av)ji −
m

∑
j=1

(Av)ij(Au)ji =
i

∑
j=i

(Au)ij(Av)ji −
i

∑
j=i

(Av)ij(Au)ji

= (Au)ii(Av)ii − (Av)ii(Au)ii = 0

which proves strictly-upper-triangularity of Ay. Further, we claim that for any x ∈ L
and y ∈ L′ the product Ax Ay is also strictly upper triangular. Indeed, in the same way
as above, for all i ∈ m̂ we obtain

(Ax Ay)ii =
m

∑
j=1

(Ax)ij(Ay)ji =
i−1

∑
j=i

(Ax)ij(Ay)ji = 0.

All in all, using the definition of the trace form, for any x ∈ L and y ∈′ L we have

κ(x, y) = Tr(ad x ◦ ad y) = Tr(Ax Ay) = 0.

Conversely, we assume that for all x ∈ L and y ∈ L′ and thus for all x, y ∈ L′ it holds
true that κ(x, y) = Tr(ad x ◦ ad y) = 0. Equivalently, we may say that this holds for all
ad x, ad y ∈ ad(L′) and from Lemma 1.39 we obtain solvability of ad(L′). According
to Lemma 1.15, we have ad(L′) ∼= L′/Z(L′) and part (a) of Lemma 1.23 then implies
that L′/Z(L′), as a homomorphic image of solvable ad(L′), is solvable as well. Finally,
since Z(L′) is obviously solvable, part (b) of Lemma 1.23 proves solvability of L′ which
results clearly in solvability of L.

Definition 1.41. Let I be an ideal of a Lie algebra L and let κ be the Killing form on L.
We define

I⊥ :=
{

x ∈ L
∣∣ for all y ∈ I, κ(x, y) = 0

}
. (1.26)

Proposition 1.42. Let I be an ideal of a Lie algebra L. Then I⊥ is also an ideal of L.

Proof. First, it is clear from bilinearity of κ that I⊥ is a subspace of L. Second, using
associativity of κ, for arbitrary x, y ∈ I⊥ and z ∈ I we have κ([x, y], z) = κ(x, [y, z]) = 0
because [y, z] ∈ I since I is an ideal. Hence, [x, y] ∈ I⊥.
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Theorem 1.43 (Cartan’s Criterion for Semisimplicity). The Lie algebra L is semisimple if
and only if the Killing form κ on L is non-degenerate.

Proof. We start with the “only if” direction. Assume that L is semisimple. By Propo-
sition 1.42, L⊥ is an ideal of L. Hence for all x ∈ L⊥ and y ∈ (L⊥)′ ⊂ L we have
κ(x, y) = 0. Now, Theorem 1.40 implies solvability of L⊥ which must be trivial con-
sidering L is semisimple. Thus, for all non-zero x ∈ L there exists y ∈ L such that
κ(x, y) 6= 0 and κ is non-degenerate.

For the “if” direction, suppose that L is not semisimple and hence rad L 6= 0. Ac-
cording to the definition of radical, there exists m ∈N such that (rad L)(m) = 0. Denote
j := max

{
i ∈ m̂− 1

∣∣ (rad L)(i) 6= 0
}

and A := (rad L)(j). It is clear from the definition
of j that A is an abelian ideal of L. For any a ∈ A and x, y ∈ L we have

(ad a ◦ ad x ◦ ad a ◦ ad x)(y) = [a, [x, [a, [x, y]]]] = 0

because [x, y] ∈ L, [a, [x, y]] ∈ A, [x, [a, [x, y]]] ∈ A and A is abelian. Consequently,
ad a ◦ ad x ◦ ad a ◦ ad x = (ad a ◦ ad x)2 is the zero map, hence ad a ◦ ad x is nilpotent
and there is a basis of L in which ad a ◦ ad x is represented by a strictly upper triangular
matrix. Therefore, κ(a, x) = Tr(ad a ◦ ad x) = 0. It means that there exists a non-zero
a ∈ A ⊂ L such that for each x ∈ L it is satisfied κ(a, x) = 0 and thus κ is degenerate, a
contradiction.

In the very last part of the first chapter we introduce simple Lie algebras and show
that each (finite dimensional) semisimple Lie algebra falls uniquely into finite many
simple ones.

Definition 1.44. The Lie algebra L is said to be simple if it is not abelian and its only
ideals are 0 and L.

Remark 1.21. Naturally, any simple Lie algebra is semisimple. To verify this assertion,
consider a Lie algebra L which is simple but not semisimple. From the definition of
semisimplicity, L has a non-trivial solvable ideal. In other words, as L is simple, L itself
is solvable. But because [L, L] is an ideal of L, either [L, L] = L contrary to solvability
of L, or [L, L] = 0 and thus L is abelian, a contradiction again.

Proposition 1.45. Let L be a simple Lie algebra. Then:

(a) Z(L) = 0;

(b) [L, L] = L.

Proof.

(a) Results trivially from Proposition 1.27 (b) and Remark 1.21.

(b) By Remark 1.15, [L, L] is an ideal of L, hence it could be either 0 or L. But if [L, L] =
0, L would be abelian, a contradiction.

Lemma 1.46. Let I be an ideal of a semisimple Lie algebra L. Then L = I ⊕ I⊥ and moreover
both I and I⊥ are semisimple.

Proof. Let κ be the Killing form on L. Consider a map ϕ : L → I∗ defined for all x ∈ L
and y ∈ I by ϕ(x)(y) := κ(x, y). As ϕ is linear, we may apply the rank-nullity theorem:

dim L = dim(Ran ϕ) + dim(Ker ϕ)
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(cf. [11], page 61). First, we explore Ker ϕ:

x ∈ Ker ϕ⇐⇒ ϕ(x) = 0 ∈ I∗ ⇐⇒ for all y ∈ I, ϕ(x)(y) = κ(x, y) = 0⇐⇒ x ∈ I⊥.

Second, we claim that Ran ϕ = I∗. ϕ may be regarded as the composition of two maps
ϕ = ϕ2 ◦ ϕ1, where ϕ1 : L→ L∗ is defined for all x ∈ L and y ∈ L by ϕ1(x)(y) := κ(x, y)
and ϕ2 : L∗ → I∗ is the restriction to I defined for all f ∈ L∗ as ϕ2( f ) := f |I . In the same
way as for ϕ, we discover that Ker ϕ1 = L⊥ and, since κ is non-degenerate, Ker ϕ1 =
L⊥ = 0. Moreover, the rank-nullity theorem used for ϕ1 gives that Ran ϕ1 = L∗ and
hence ϕ1 is a bijection. For ϕ2, we claim that Ran ϕ2 = I∗. Suppose B = (xi)

dim I
i=1 is

a basis for I (notice that B = ∅ in case I = 0) and let us extend it to A = (xi)
dim L
i=1 , a

basis for L. Now for an arbitrary f ∈ I∗ we define g ∈ L∗ as follows: g(xi) := f (xi),
for i = 1, . . . , dim I, and g(xi) := 0, for i = dim I + 1, . . . , dim L. In this way we have
found ϕ

(−1)
2 = g and hence we have proved surjectivity of ϕ2. Altogether, Ran ϕ =

Ran(ϕ2 ◦ ϕ1) = Ran ϕ2 = I∗ and, by the rank-nullity theorem,

dim L = dim I∗ + dim I⊥ = dim I + dim I⊥.

Further, by Proposition 1.42, I⊥ is an ideal of L. Clearly, the intersection of two ideals
is an ideal as well. In our case, this applies to I ∩ I⊥. Moreover, the restriction of the
Killing form to (I ∩ I⊥)× (I ∩ I⊥) is identically zero and hence, according to Proposi-
tion 1.38 and Theorem 1.40, I ∩ I⊥ is a solvable ideal of L. Then, since L is semisimple,
I ∩ I⊥ = 0 and therefore L = I ⊕ I⊥.

For the second part of the lemma assume that I is not semisimple. By Theorem
1.43, the Killing form on I is degenerate which implies existence of x ∈ I such that
κ(x, y) = 0 for all y ∈ I. By Proposition 1.38 and because L = I ⊕ I⊥, κ(x, y) = 0
even for all y ∈ L. But this means that the Killing form on L is degenerate, contrary
to semisimplicity of L. For I⊥, the procedure is analogous, it suffices to realize that
(I⊥)⊥ = I.

Theorem 1.47. Let L be a Lie algebra. Then L is semisimple if and only if there are simple
ideals I1, . . . , Ik of L such that L = I1 ⊕ · · · ⊕ Ik. In addition, the decomposition is unique up
to the labelling of the simple ideals.

Proof. We prove the “only if” direction proceeding the following algorithm whereby
we construct a finite sequence (Li)

k
i=1 of semisimple Lie algebras. First, L1 := L. Sec-

ond, we denote an ideal of Li of the smallest possible positive dimension by Ii. We
use Lemma 1.46 to obtain Li = Ii ⊕ I⊥i . Ii does not have any non-trivial ideals because
if it does, then this ideal of smaller dimension than dim Ii would be an ideal of Li as
well, contrary to the choice of Ii, hence Ii is a simple ideal of Li. By Lemma 1.46, I⊥i is
semisimple and dim I⊥i < dim Li additionally. We put Li+1 := I⊥i . The process ends
when Ii = Li. Denote the final step as k-th. Since dim Li < dim Li+1 for all i ∈ k̂− 1
and L1 = L is finite-dimensional, it is clear that our procedure has to come to the end.
In this way we obtain the decomposition L = I1 ⊕ · · · ⊕ Ik, where for all i ∈ k̂ it holds
true that Ii is a simple ideal of Li. Finally, using incomplete induction on i ∈ k̂, we show
that I1, . . . , Ik are also simple ideals of L. I1 is a simple ideal of L by construction. For
the inductive step we assume that I1, . . . , Ii−1 are simple ideals of L. Then

[L, Ii] = [I1 ⊕ · · · ⊕ Ii−1 ⊕ I⊥i−1, Ii] = [I1 ⊕ · · · ⊕ Ii−1 ⊕ Li, Ii]

= [I1, Ii]⊕ · · · ⊕ [Ii−1, Ii]⊕ [Li, Ii] ⊂ [I1, Li]⊕ · · · ⊕ [Ii−1, Li]⊕ [Li, Ii] ⊂ Ii

because Li is an ideal of L as well. Hence all Ii are simple ideals of L, as desired.
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For the second direction suppose that L = I1 ⊕ · · · ⊕ Ik, where I1, . . . , Ik are simple
ideals of L. Let R be the radical of L. Then for all i ∈ k̂ it holds true that [R, Ii] ⊂ (R∩ Ii)
and hence [R, Ii] is a solvable ideal of Ii. As Ii is simple, [R, Ii] could be either whole Ii,
or trivial. If [R, Ii] = Ii, then (Ii)

(m) = Ii for an arbitrary m ∈ N and it would not be
solvable. Thus, for all i ∈ k̂ we have [R, Ii] = 0 and

[R, L] = [R, I1 ⊕ · · · ⊕ Ik] = [R, I1]⊕ · · · ⊕ [R, Ik] = 0.

Hence R ⊂ Z(L) = Z(I1)⊕ · · · ⊕ Z(Ik), according to Proposition 1.7. Finally, by Propo-
sition 1.45 (a), Z(Ii) = 0 for all i ∈ k̂, so R = 0 and L is semisimple.

Finally, let L = I1 ⊕ I2 ⊕ · · · ⊕ Ik and L = J1 ⊕ J2 ⊕ · · · ⊕ Jl be two different decom-
positions of L into simple ideals (different in the sense {I1, I2, . . . , Ik} 6= {J1, J2, . . . , Jl}).
Consequently, there exist i ∈ k̂ and j ∈ l̂ such that at once Ii ∩ Jj 6= 0 and Ii 6= Jj. Clearly,
Ii ∩ Jj is an ideal of L and hence of both Ii and Jj as well. Moreover, as Ii 6= Jj, Ii ∩ Jj is a
proper ideal of at least one Ii or Jj, contradicting their simplicity.

Corollary 1.48. If L is a semisimple Lie algebra, then [L, L] = L.

Proof. As L is semisimple, Theorem 1.47 implies existence of simple ideals I1, . . . , Ik of
L such that L = I1 ⊕ · · · ⊕ Ik. Using this fact together with Remark 1.6 and Proposition
1.45 (b), we may write

[L, L] = [I1 ⊕ · · · ⊕ Ik, I1 ⊕ · · · ⊕ Ik] = [I1, I1]⊕ · · · ⊕ [Ik, Ik] = I1 ⊕ · · · ⊕ Ik = L.

Proposition 1.49. If L is a semisimple Lie algebra and I is an ideal of L, then L/I is semisimple.

Proof. We use the fact that, according to part (a) of Remark 1.27, an isomorphic image
of a semisimple Lie algebra is semisimple as well. By Lemma 1.46, L = I ⊕ I⊥ and I⊥

is semisimple subsequently. But by Corollary 1.16,

I⊥ = I⊥/0 = I⊥/(I⊥ ∩ I) ∼= (I⊥ + I)/I = L/I

and hence L/I is semisimple as well.

Proposition 1.50. Let I be a semisimple ideal of a Lie algebra L. Then L = I ⊕ I⊥.

Proof. The procedure is analogous to the first part of the proof of Lemma 1.46. Let
κ be the Killing form on L. We consider the same map ϕ : L → I∗ as in that proof,
thus Ker ϕ = I⊥. Again we view ϕ as the composition of two maps ϕ = ϕ2 ◦ ϕ1, but
now ϕ1 is the projection of L on I ⊂⊂ L and ϕ2 : I → I∗ is defined for all x ∈ I and
y ∈ I by ϕ2(x)(y) := κ(x, y). Obviously, Ran ϕ1 = I. Further, since the Killing form
κI = κ|I×I on I is non-degenerate, Ker ϕ2 = I⊥I = 0 (where ⊥I is taken with respect
to κI) and hence, according to the rank-nullity theorem, ϕ2 is a bijection. All in all,
Ran ϕ = ϕ2(Ran ϕ1) = Ran ϕ2 = I∗ and the rank-nullity theorem gives

dim L = dim I∗ + dim I⊥ = dim I + dim I⊥.

Further, it suffices to realize that if I ∩ I⊥ is a solvable ideal of L (as showed in the proof
of Lemma 1.46), then it is a solvable ideal of I as well. But, as I is semisimple, then
necessarily I ∩ I⊥ = 0 and hence L = I ⊕ I⊥.
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Chapter 2

Representations of Lie Algebras

2.1 Basic Representation Theory

At the beginning of the second chapter we explain fundamentals of the representation
theory. As the title “representation” suggests, this area of Lie algebras theory stud-
ies how an abstract Lie algebra can be represented by more illustrative Lie algebra of
linear maps or matrices, respectively. However, the original purpose of studying rep-
resentations is not to represent Lie algebras in this way. In fact, the most common Lie
algebras occur naturally as Lie algebras of matrices. The primary reason for research
on the representation theory is to investigate the action of a Lie algebra on a vector
space (so-called module). Such actions arise in many areas of mathematics as well as in
physics.

2.1.1 Representations and Modules

We introduce both representations and modules and then we show that they are just two
different points of view on the same thing. Consequently, we may choose which way
is more preferable for us to use in a particular situation (cf. [7], Chap. 7).

Definition 2.1. Suppose that L is a Lie algebra and V is a vector space. A representation
of L is a Lie algebra homomorphism ϕ : L→ gl(V).

Definition 2.2. Let L be a Lie algebra. An L-module is a vector space V together with
a bilinear map L × V → V : (x, y) 7→ x · v fulfilling for all x, y ∈ L and v ∈ V the
following condition:

[x, y] · v = x · (y · v)− y · (x · v). (2.1)

Instead of “an L-module” one can say also “a Lie module for L” or briefly “a module for
L” (cf. [7]). Similarly as in the case of Lie algebras, talking about a module, we usually
mention only the vector space alone and we assume automatically that the respective
bilinear map is defined as well. Sometimes two or more different module maps may
occur in one expression, but it is always clear from the context which module does a
map relate to. Recall that, as for any other vector spaces, we consider entirely finite-
dimensional representation spaces and modules.

Remark 2.1. Let L be a Lie algebra. Given a representation ϕ : L → gl(V), we may
always construct an L-module in this way: V is the vector space and the module map
is defined for all x ∈ L and v ∈ V by

x · v := ϕ(x)(v). (2.2)
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Clearly, x · v ∈ V. Bilinearity results from linearity of ϕ and linearity of ϕ(x) ∈ gl(V)
for an arbitrary x ∈ L. Hence, it remains to verify that the condition (2.1) is fulfilled.
Given any x, y ∈ L and v ∈ V, we have

[x, y] · v = ϕ([x, y])(v) = [ϕ(x), ϕ(y)](v) = ϕ(x)(ϕ(y)(v))− ϕ(y)(ϕ(x)(v))
= x · (y · v)− y · (x · v),

as required.
Contrariwise, if we have an L-module, we use (2.2) again to define required repre-

sentation homomorphism ϕ. Obviously, ϕ : L → gl(V) and hence we must only check
that it is a Lie algebra homomorphism. Indeed, we take any x, y ∈ L and v ∈ V again
and we obtain

ϕ([x, y])(v) = [x, y] · v = x · (y · v)− y · (x · v) = ϕ(x)(ϕ(y)(v))− ϕ(y)(ϕ(x)(v))
= [ϕ(x), ϕ(y)](v).

Evidently, there is no ambiguity in relation (2.2) and thus the construction in both
directions (representation→module; module→ representation) is unique.

Definition 2.3. Let L be a Lie algebra. The representation ϕ of L is said to be faithful
when ϕ : L→ ϕ(L) ⊂ gl(V) is a bijection.

It is clear that faithfulness is a very important property of a representation. Working
with a non-faithful representation, we generally lose some information about the Lie
algebra structure. Hence we are interested mainly in faithful representations which
tell us as much as possible about the represented Lie algebra. Now, we give several
examples of representations as an illustration (cf. [7], Sec. 7.1).

Example 2.2. Given an arbitrary Lie algebra L, one representation of L is always avail-
able: when we put V = L and ϕ = ad, we obtain the so-called adjoint representation.
By Example 1.12, Ker(ad) = Z(L) and therefore this representation is faithful if and
only if Z(L) = 0.

Example 2.3. Another example of representation that can be defined for any Lie alge-
bra is the trivial representation. In this case ϕ is the zero map and V may be chosen
arbitrarily. However, this representation is never faithful unless L is trivial.

Example 2.4. Let L be a subalgebra of gl(V). Then we may define the natural representa-
tion as the restriction of the identity on gl(V) to L. It is obvious that this representation
is always faithful.

2.1.2 Schur’s Lemma

As in the case of Lie algebras, it also makes sense to concern with the subspaces of
modules which satisfy themselves the definition of module. And, similarly as for Lie
algebras, we can examine whether two modules have the same algebraic structure i.e.
whether there exists a homomorphism between them. We state precise definitions and
at the end of this subsection we introduce a very important lemma describing the ho-
momorphisms from a Lie module into itself (cf. [7], Chap. 7).

Definition 2.4. Let V be an L-module. An L-submodule of V is a vector subspace W ⊂⊂
V such that for all x ∈ L and w ∈W it is satisfied that

x · w ∈W, (2.3)

where “·” denotes the bilinear map appertaining to L-module V.
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Definition 2.5. Let L be a Lie algebra. The L-module V is said to be irreducible if it has
precisely two different submodules.

Remark 2.5. Let V be a module for a Lie algebra L. Certainly, both V and the zero
subspace of V satisfy the definition of submodule. If V is a non-zero vector space, then
the “precisely two different submodules” in the previous definition are 0 and V. In case
that V = 0, the only subspace of V is the zero subspace and thus the L-module V = 0
is not irreducible by our definition.

Definition 2.6. Let V and W be modules for a Lie algebra L. A linear map φ : V →W is
called an L-module homomorphism if for all v ∈ V and x ∈ L it is satisfied that

φ(x · v) = x · φ(v). (2.4)

If φ is bijective in addition, we say that φ is an L-module isomorphism.

Lemma 2.7 (Schur). Let V be an irreducible module for a Lie algebra L. A map φ : V → V is
an L-module homomorphism if and only if there exists λ ∈ C such that φ = λ1V .

Proof. The “if” direction is clear since for any x ∈ L and v ∈ V we can write

φ(x · v) = λ(x · v) = x · (λv) = x · φ(v).

For the second direction suppose that φ : V → V is an L-module homomorphism. φ
has, as a linear map between complex vector spaces, an eigenvalue. We denote this
eigenvalue λ and the respective eigenvector vλ. In addition we denote ψλ := φ− λ1V .
Now, for any v ∈ V and x ∈ L we have

ψλ(x · v) = φ(x · v)− λ(x · v) = x · (φ(v)− λv) = x · ψλ(v)

and hence ψλ is an L-module homomorphism. In particular, when we take v ∈ Ker ψλ,
we can see that ψλ(x · v) = x · ψλ(v) = x · 0 = 0 for any x ∈ L which means that Ker ψλ

is a submodule of V. Moreover, since vλ ∈ Ker ψλ, this submodule is non-trivial and,
as V is irreducible, necessarily Ker ψλ = V. But this is equivalent to 0 ≡ ψλ = φ− λ1V
which completes the proof.

2.1.3 Weyl’s Theorem

In the final part of this section we state Weyl’s Theorem, an extremely important tool in
the representation theory. Its proof is fairly long and technical so we omit it. It can be
found for example in [9], Sec. 6.3.

Definition 2.8. Let L be a Lie algebra. The L-module V is said to be completely reducible
if there exist irreducible L-modules V1, V2, . . . , Vk such that V = V1 ⊕V2 ⊕ · · · ⊕Vk.

Remark 2.6. We define the terms “irreducible” and “completely reducible” also for rep-
resentations. Naturally, the representation is irreducible or completely reducible, respec-
tively, precisely when the respective module (in the sense of Remark 2.1) is.

Lemma 2.9. Let L be a semisimple Lie algebra and let ϕ : L → gl(V) be its representation.
Then ϕ(L) ⊂ sl(V).

Proof. First, by Corollary 1.48, [L, L] = L. Next, considering Remark 1.10 and Example
1.14, we have

ϕ(L) = ϕ([L, L]) = [ϕ(L), ϕ(L)] ⊂ [gl(V), gl(V)] = sl(V).
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Theorem 2.10 (Weyl). Let L be a semisimple Lie algebra. If ϕ is a representation of L, then ϕ
is completely reducible.

Proposition 2.11. Let V be a module for a semisimple Lie algebra L. The decomposition of V
into irreducible modules (according to Weyl’s Theorem) is unique, up to the order of terms in
the direct sum.

Proof. Let V = V1 ⊕ V2 ⊕ · · · ⊕ Vk and V = W1 ⊕W2 ⊕ · · · ⊕Wl be two different de-
compositions of V into irreducible submodules (different in the sense as above i.e.
{V1, V2, . . . , Vk} 6= {W1, W2, . . . , Wl}). Consequently, there exist i ∈ k̂ and j ∈ l̂ such
that at once Vi ∩Wj 6= {0} and Vi 6= Wj. Clearly Vi ∩Wj is a subspace of both Vi and
Wj, moreover, as Vi 6= Wj, Vi ∩Wj is a proper subspace of at least one of Vi and Wj.
Without loss of generality, suppose that Vi ∩Wj is a proper subspace of Vi. But, because
both Vi and Wj are closed under the action of L, the same has to be true for Vi ∩Wj
which is therefore a non-trivial proper submodule of Vi, contradicting the irreducibil-
ity of Vi.

2.2 Generalization of Jordan Decomposition

This section is based on the results introduced in Subsection 1.3.2. In that part of the
first chapter we have concerned ourselves with the Jordan decomposition of linear maps.
Now, when we already know how to “represent” an arbitrary Lie algebra with the Lie
algebra of linear maps, it is time to generalize the Jordan decomposition for elements of
any abstract Lie algebra. Unfortunately, the generalization is not very straightforward,
we have to look at the set of so-called derivations of a Lie algebra at first (cf. [9], Sec.
5.3).

2.2.1 Derivations

Definition 2.12. Let L be a Lie algebra. A linear map D : L → L is called a derivation of
L if it satisfies for all x, y ∈ L

D([x, y]) = [D(x), y] + [x, D(y)]. (2.5)

We denote the set of all derivations of L by Der L.

Remark 2.7. Let L be a Lie algebra. Clearly, Der L ⊂ gl(L). Further, bilinearity of the Lie
bracket implies that Der L ⊂⊂ gl(L). Additionally, one can show that Der L is even a
subalgebra of gl(L). Indeed, for all D, E ∈ Der L and x, y ∈ L we have

[D, E]([x, y]) = (D ◦ E)([x, y])− (E ◦ D)([x, y])
= D([E(x), y] + [x, E(y)])− E([D(x), y] + [x, D(y)])
= [D(E(x)), y] + [E(x), D(y)] + [D(x), E(y)] + [x, D(E(y))]
− [E(D(x)), y]− [D(x), E(y)]− [E(x), D(y)]− [x, E(D(y))]

= [D(E(x))− E(D(x)), y] + [x, D(E(y))− E(D(y))]
= [[D, E](x), y] + [x, [D, E](y)]

and thus [D, E] ∈ Der L. Notice that we do not discriminate between the Lie brackets
on L and gl(L) here but it is easily seen from the context which one we mean at the
moment.

Proposition 2.13. If L is a semisimple Lie algebra, then ad(L) = Der L.

23



Proof. First, given arbitrary x, y, z ∈ L, Jacobi identity implies that ad x ∈ Der L:

(ad x)([y, z]) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]] = [[x, y], z] + [y, [x, z]]
= [(ad x)(y), z] + [y, (ad x)(z)].

Moreover, for any x, y ∈ L and D ∈ Der L we have

[D, ad x](y) = D([x, y])− ad x(D(y)) = [D(x), y] + [x, D(y)]− [x, D(y)]
= ad(D(x))(y),

therefore [D, ad x] ∈ ad(L) and hence ad(L) is an ideal of Der L. Further, as L is
semisimple, part (b) of Proposition 1.27 gives Z(L) = Ker(ad) = 0, thus ad : L→ ad(L)
is a Lie algebra isomorphism and, by Proposition 1.27 (a), ad(L) is semisimple as
well. Now we can apply Proposition 1.50 to obtain Der L = ad(L) ⊕ (ad(L))⊥. By
Proposition 1.42, (ad(L))⊥ is an ideal of Der L as well and hence [ad(L), (ad(L))⊥] ⊂
ad(L) ∩ (ad(L))⊥ = 0. Consequently, for any D ∈ (ad(L))⊥ and x ∈ L we have
0 = [D, ad x] = ad(D(x)) and thus, since ad is an isomorphism here, D(x) = 0 for all
x ∈ L. This is equivalent to D ≡ 0. All in all, (ad(L))⊥ = 0 and Der L = ad(L), as
desired.

2.2.2 Abstract Jordan Decomposition

At this place we introduce another useful result from linear algebra, the so-called Pri-
mary Decomposition Theorem. The proof can be found in [2], Chap. 3. Before we state
the theorem, we need to define what the so-called minimum polynomial is (cf. [1], Chap.
10).

Definition 2.14. Let V be a vector space and let A be a linear transformation of V.
The minimum polynomial of A is the polynomial p(t) ∈ C[t] of least degree such that
p(A) = 0.

Remark 2.8. Let A be a linear transformation of a vector space V and let

p(t) = (t− λ1)
m1 . . . (t− λr)

mr ,

where λ1, . . . , λr are pairwise distinct, be the minimum polynomial of A. It can be
shown (cf. [1], Chap. 10, and [13], Chap. 7) that

(a) the minimum polynomial is unique,

(b) σ(A) = {λ1, . . . , λr},

(c) if q(t) ∈ C[t] is a polynomial such that q(A) = 0, then p(t) divides q(t),

(d) for all i ∈ r̂ it holds true that mi = index(λi), where index(λi) is the smallest
positive integer ki such that Ker(A− λi1)

ki = Ker(A− λi1)
ki+1,

(e) A is diagonalisable if and only if m1 = m2 = · · · = mr = 1.

Lemma 2.15 (Primary Decomposition Theorem). Suppose a vector space V and A ∈ gl(V).
Let the minimum polynomial of A be

p(t) = (t− λ1)
m1 . . . (t− λr)

mr ,

where λ1, . . . , λr are pairwise distinct. For all i ∈ r̂ let us denote Vi := Ker(A− λi1)
mi . Then

for any i ∈ r̂ it is satisfied that A(Vi) ⊂ Vi (each subspace Vi is “A-invariant”) and moreover
V = V1 ⊕ · · · ⊕Vr.
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Now we use the introduced results from linear algebra to define the abstract Jordan
decomposition, the Jordan decomposition for elements of an arbitrary semisimple Lie
algebra (cf. [7], Sec. 9.6). First, we need to study the (usual) Jordan decomposition of
derivations.

Lemma 2.16. Let L be a Lie algebra. Suppose that X ∈ Der L has Jordan decomposition
X = D + N. Then both D, N ∈ Der L.

Proof. For all λ ∈ C, let us denote

Lλ :=
{

x ∈ L
∣∣ there exists m ∈N, (X− λ1)mx = 0

}
.

Obviously, if λ /∈ σ(X), then Lλ is trivial. By Lemma 2.15 and Remark 2.8, L =⊕
λ∈σ(X) Lλ. Now, for all λ ∈ C, let us denote

L̃λ :=
{

x ∈ L
∣∣ there exists m ∈N, (D− λ1)mx = 0

}
.

We claim that Lλ = L̃λ for each λ ∈ C. Indeed. As N is nilpotent, there exists m̂ ∈ N

such that Nm̂ = 0. Take any λ ∈ C and x ∈ Lλ. There exists m ∈ N such that
(X − λ1)mx = 0. We search m̃ ∈ N such that m ∈ N such that (D− λ1)m̃x = 0. Since
N commutes with D (see Lemma 1.32) and hence also with X − λ1 = D + N − λ1, we
may write

(D− λ1)m̃x = (−N + (X− λ1))m̃x =
m̃

∑
k=0

(
m̃
k

)
(−N)m̃−k(X− λ1)kx.

Thus it suffices to put m̃ := 2 max {m, m̂} to prove that Lλ ⊂ L̃λ. The second inclusion
is analogous. In addition, as D is diagonalisable, part (e) of Remark 2.8 permits us to
write

L =
⊕

λ∈σ(D)

Lλ, where Lλ :=
{

x ∈ L
∣∣ (D− λ1)x = 0

}
.

Further, using the fact that X is a derivation, we show by induction on n that for
any λ, µ ∈ C, x, y ∈ L and n ∈N0 it holds true that

(X− (λ + µ)1)n[x, y] =
n

∑
k=0

(
n
k

)
[(X− λ1)kx, (X− µ1)n−ky]. (2.6)

When n = 0, we have 1[x, y] = [1x, 1y], so there is nothing to prove. For the inductive
step suppose that (2.6) holds for n− 1. Then we can write

(X− (λ + µ)1)n[x, y] = (X− (λ + µ)1)(
n−1

∑
k=0

(
n− 1

k

)
[(X− λ1)kx, (X− µ1)n−1−ky])

=
n−1

∑
k=0

(
n− 1

k

)
([X((X− λ1)kx), (X− µ1)n−1−ky]

+
n−1

∑
k=0

(
n− 1

k

)
([(X− λ1)kx, X((X− µ1)n−1−ky)]

+
n−1

∑
k=0

(
n− 1

k

)
([−λ((X− λ1)kx), (X− µ1)n−1−ky]

+
n−1

∑
k=0

(
n− 1

k

)
([(X− λ1)kx,−µ((X− µ1)n−1−ky)]
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=
n−1

∑
k=0

(
n− 1

k

)
([(X− λ1)k+1x, (X− µ1)n−1−ky]

+
n−1

∑
k=0

(
n− 1

k

)
([(X− λ1)kx, (X− µ1)n−ky]

=
n

∑
k=1

(
n− 1
k− 1

)
([(X− λ1)kx, (X− µ1)n−ky]

+
n−1

∑
k=0

(
n− 1

k

)
([(X− λ1)kx, (X− µ1)n−ky]

=
n−1

∑
k=1

((
n− 1
k− 1

)
+

(
n− 1

k

))
[(X− λ1)kx, (X− µ1)n−ky]

+ [(X− λ1)nx, y] + [x, (X− µ1)ny]

=
n

∑
k=0

(
n
k

)
[(X− λ1)kx, (X− µ1)n−ky],

as required. From (2.6) we can conclude that for any λ, µ ∈ C it holds true [Lλ, Lµ] ⊂
Lλ+µ. Indeed. Taken any x ∈ Lλ and y ∈ Lµ, there are integers mx and my such
that (X − λ1)mx x = (X − µ1)my y = 0. As (2.6) holds, it can be easily seen that for
m := 2 max

{
mx, my

}
it is (X− (λ + µ)1)m[x, y] = 0 and hence [x, y] ∈ Lλ+µ.

Finally, given any x, y ∈ L, there exist λ and µ, eigenvalues of D, such that x ∈ Lλ

and y ∈ Lµ, herewith [x, y] ∈ Lλ+µ. As discussed above, since D is diagonalisable, it
holds true that D(x) = λx, D(y) = µy and D([x, y]) = (λ + µ)[x, y]. Altogether, we
have

D([x, y]) = (λ + µ)[x, y] = λ[x, y] + µ[x, y] = [λx, y] + [x, µy] = [D(x), y] + [x, D(y)]

and thus D ∈ Der L. Because Der L is a subspace, then also N = X− D ∈ Der L.

Theorem 2.17. Let L be a semisimple Lie algebra and let x ∈ L. Then there exist unique
d, n ∈ L such that ad d is diagonalisable, ad n is nilpotent, [d, n] = 0 and

x = d + n. (2.7)

Proof. Since ad x ∈ ad(L), Proposition 2.13 implies that ad x ∈ Der L. Let ad x = D+ N
be the Jordan decomposition of ad x. Notice that D and N are unique. By Lemma 2.16,
D, N ∈ Der L = ad(L), hence there exist d, n ∈ L such that ad d = D is diagonalisable
and ad n = N is nilpotent. Since L is semisimple, part (b) of Proposition 1.27 implies
injectivity of ad : L → ad(L), and thus d and n are, as preimages of unique D and N
under (injective) adjoint homomorphism, also unique. All in all, we have

ad x = D + N = ad d + ad n = ad(d + n)

and thus, as ad is injective, x = d + n. Finally, 0 = [ad d, ad n] = ad([d, n]) and injectiv-
ity of ad imply [d, n] = 0.

Definition 2.18. Let L be a semisimple Lie algebra and let x ∈ L. The decomposition
(2.7), where d and n are the elements of L from the previous theorem, is called the ab-
stract Jordan decomposition of x. We call d and n the semisimple and nilpotent, respectively,
part of x.

Remark 2.9. Similarly as in the case of the usual Jordan decomposition, also for the
abstract one we will use the same notation as established in Remark 1.18 i.e. the first
term in the decomposition will always be the semisimple part and the second one will
be the nilpotent one.
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Proposition 2.19. Let L = L1 ⊕ · · · ⊕ Lk be the decomposition of a semisimple Lie algebra
into its simple ideals and let x = ∑k

i=1 xi ∈ L, where xi ∈ Li, i ∈ k̂. The semisimple and
nilpotent part of x are ∑k

i=1 di and ∑k
i=1 ni, respectively, where for all i ∈ k̂ the abstract Jordan

decomposition of xi ∈ Li is xi = di + ni.

Proof. First, x = d + n obviously. Second, take any i ∈ k̂ and any eigenvector y ∈ Li
of ad di. Then ad d(y) = [d, y] = [di, y] and hence y is an eigenvector for ad d as well.
Consequently, the union of single bases for Li consisting of eigenvectors for ad di, i ∈ k̂,
is a basis for L consisting of eigenvectors for ad d. In other words, d is diagonalisable.
Third, for any m ∈N and ∑k

i=1 zi, zi ∈ Li, we can write

(ad n)m(z) = (ad n)m−1([n, z]) = (ad n)m−1(
k

∑
i=1

[ni, zi])

...

=
k

∑
i=1

(ad ni)
m(zi),

from where it is easily seen that n is nilpotent. Finally,

[d, n] = [
k

∑
i=1

di,
k

∑
j=1

nj] =
k

∑
i,j=1

[di, nj] =
k

∑
i,j=1

[ni, dj] = [
k

∑
i=1

ni,
k

∑
j=1

dj] = [n, d].

Suppose that V is a vector space and L is a semisimple subalgebra of gl(V). Then
for any x ∈ L we may consider both “usual” and abstract Jordan decompositions.
Fortunately, as we shall show below, the two compositions agree (cf. [6], Sec. 4.6).

Lemma 2.20. Let V be a vector space and let L be a semisimple subalgebra of gl(V). Suppose
that x ∈ L has usual Jordan decomposition x = d + n. Then both d, n ∈ L.

Proof. V may be regarded as an L-module, the L-module appertaining to the natural
representation representation of L. For any W, an L-submodule of V, we define

LW :=
{

y ∈ gl(V)
∣∣ y(W) ⊂W and Tr(y|W) = 0

}
.

Further, letM denote the set of all L-submodules of V and let

L̃ := Ngl(V)(L) ∩ (
⋂

W∈M
LW).

Suppose W is an L-module, for any y ∈ L and w ∈ W it holds true that y(w) = y · w ∈
W. Further, we claim that the restriction of elements from L to W is a representation of
L (into gl(W)). Indeed. The previous property of elements from L permits us for any
y, z ∈ L to write

[y, z]|W = (y ◦ z)|W − (z ◦ y)|W = y ◦ z|W − z ◦ y|W = y|W ◦ z|W − z|W ◦ y|W = [y|W , z|W ].

When we use Lemma 2.9 now, for any y ∈ L we obtain y|W ∈ sl(W) and consequently
Tr( y|W) = 0. So both conditions are fulfilled and L ⊂ LW for all W ∈ M. Clearly,
since L is a subalgebra, L ⊂ Ngl(V)(L) as well and hence L ⊂ L̃. In addition, because
L̃ is contained in Ngl(V)(L), we have [L̃, L] ⊂ [Ngl(V)(L), L] ⊂ L which means that L is
an ideal of L̃. Then, by Proposition 1.50, L̃ = L⊕ L⊥, where, by Proposition 1.42, L⊥ is
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also an ideal of L̃, and therefore [L, L⊥] ⊂ L∩ L⊥ = 0. Suppose that W is an irreducible
submodule of V and take arbitrary y ∈ L ⊂ LW , z ∈ L⊥ ⊂ LW and w ∈ W. According
to above, it holds true that [y, z] = y ◦ z− z ◦ y = 0 and hence we may write

z(y · w) = (z ◦ y)(w) = (y ◦ z)(w) = y · z(w)

to show that z : W → W is an L-module homomorphism. It now follows from Schur’s
Lemma that z|W is a scalar multiple of the identity on W, but Tr(z|W) = 0 and thus
z|W ≡ 0. Finally, Weyl’s Theorem implies that z ≡ 0 on whole V, hence L⊥ = 0 and
therefore L̃ = L, as required.

Since the (usual) Jordan decomposition of ad x is ad d + ad n, there exist complex
polynomials p(t) and q(t), such that p(ad x) = ad d and q(ad x) = ad n (cf. Section
1.3.2). Remark that ad denotes the adjoint homomorphism on gl(V) here. Clearly,
because L is a subalgebra, ad x(L) ⊂ L and hence ad d(L) = (p(ad x))(L) ⊂ L and
ad n(L) = (q(ad x))(L) ⊂ L, in other words ad d, ad n ∈ Ngl(V)(L). Moreover, let W be
an L-submodule of V, as x ∈ L = L̃, x ∈ LW as well. From linearity of the trace form
we obtain that Tr(d|W) = Tr(x|W) = 0 because the trace of a nilpotent map is always
zero, in particular Tr(n|W) = 0. Finally, since both d and n may be also expressed as
polynomials in x (cf. Section 1.3.2), we have d(W) ⊂ W and n(W) ⊂ W and hence
d, n ∈ LW (for any L-submodule W of V). All in all, d, n ∈ L̃ = L, as desired.

Corollary 2.21. Let V be a vector space and let L be a semisimple subalgebra of gl(V). Suppose
that x ∈ L has usual Jordan decomposition x = d + n and abstract Jordan decomposition
x = d̃ + ñ. Then d = d̃ and n = ñ.

Proof. It results directly from the previous lemma and from uniqueness of both types
of the Jordan decomposition.

We end this section by presenting another fortunate property of (abstract) Jordan
decomposition, namely that the decomposition is preserved by any representation of
the respective semisimple Lie algebra.

Theorem 2.22. Let L be a semisimple Lie algebra and let φ : L → gl(V) be its representation.
Suppose that x ∈ L has abstract Jordan decomposition x = d + n. Then the usual Jordan
decomposition of φ(x) is φ(x) = φ(d) + φ(n).

Proof. By Corollary 2.21, it suffices to find the abstract Jordan decomposition of φ(x),
then the usual one is the same. However, the abstract Jordan decomposition is defined
entirely for elements of a semisimple Lie algebra, thus we must begin with verifica-
tion of semisimplicity of φ(L). By Lemma 1.15, Ker φ is an ideal of L and L/ Ker φ ∼=
Ran φ = φ(L). Moreover, Proposition 1.49 implies that L/ Ker φ is semisimple, hence
φ(L), is semisimple as well.

First, from the definition of abstract Jordan decomposition, ad d is diagonalisable
and thus there exist vectors b1, . . . , bm ∈ L such that L = Span {b1, . . . , bm} and for each
i ∈ m̂ there is a complex number λi such that ad d(bi) = λibi. As φ(L) is a homomor-
phism, we have φ(L) = Span {φ(b1), . . . , φ(bm)} and, for all i ∈ m̂,

(ad φ(d))(φ(bi)) = [φ(d), φ(bi)] = φ([d, bi]) = φ(ad d(bi)) = φ(λibi) = λiφ(bi).

Now it is easily seen that we can choose a basis of φ(L) consisting of eigenvectors for
ad φ(d) which is thereby diagonalisable.

Second, by the definition of abstract Jordan decomposition again, ad n is nilpotent
and hence there exists r ∈ N such that (ad n)r = 0. As φ is a homomorphism, for an
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arbitrary φ(y) ∈ φ(L) we have

(ad φ(n))r(φ(y)) =

r times︷ ︸︸ ︷
[φ(n), [φ(n), . . . , [φ(n), φ(y)] . . . ]] = φ(

r times︷ ︸︸ ︷
[n, [n, . . . , [n, y] . . . ]])

= φ(0) = 0

and hence ad φ(n) is nilpotent.
Third, as ad d commutes with ad n, for an arbitrary φ(y) ∈ φ(L) we may write

(ad φ(n) ◦ ad φ(d))(φ(y)) = [φ(n), [φ(d), φ(y)]] = φ([n, [d, y]]) = φ((ad n ◦ ad d)(y))
= φ((ad d ◦ ad n)(y)) = φ([d, [n, y]]) = [φ(d), [φ(n), φ(y)]]
= (ad φ(d) ◦ ad φ(n))(φ(y))

to show that ad φ(n) and ad φ(d) commute as well.
Finally, ad φ(x) = ad φ(d) + ad φ(n) and thus it follows from the proof of Theorem

2.17 that φ(x) = φ(d) + φ(n) is the required abstract (and hence usual as well) Jordan
decomposition of φ(x).

2.3 Representations of sl(2, C)

In this final section of the second chapter we investigate the irreducible modules for
sl(2, C), the Lie algebra consists of all 2 × 2 complex matrices with zero trace. As
showed in Example 1.13 (where this Lie algebra was defined and where some its prop-
erties were discussed), dim sl(2, C) = 3. Throughout this section we shall consider the
standard basis of sl(2, C) (cf. [7]):

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
. (2.8)

Remark 2.10. We determine the commutation relations among the basis elements.

[e, f ] =
(

0 1
0 0

)
·
(

0 0
1 0

)
−
(

0 0
1 0

)
·
(

0 1
0 0

)
=

(
1 0
0 0

)
−
(

0 0
0 1

)
= h,

[h, e] =
(

1 0
0 −1

)
·
(

0 1
0 0

)
−
(

0 1
0 0

)
·
(

1 0
0 −1

)
=

(
0 1
0 0

)
−
(

0 −1
0 0

)
= 2e,

[h, f ] =
(

1 0
0 −1

)
·
(

0 0
1 0

)
−
(

0 0
1 0

)
·
(

1 0
0 −1

)
=

(
0 0
−1 0

)
−
(

0 0
1 0

)
= −2 f .

2.3.1 Classification of Irreducible sl(2, C)-modules

The main purpose of this subsection is to show that (up to isomorphism) there exist
only countable many irreducible sl(2, C)-modules and moreover that different (non-
isomorphic) modules have different dimensions (cf. [9], Chap. 7). Remind that we still
consider entirely finite-dimensional vector spaces, in particular modules.

Definition 2.23. Let V be an sl(2, C)-module. For all λ ∈ C let us denote

Vλ :=
{

v ∈ V
∣∣ h · v = λv

}
= Ker(h− λ1). (2.9)

Whenever Vλ is non-trivial, we call λ a weight of h in V and we call Vλ a weight space
associated to the weight λ.
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Proposition 2.24. Let V be an sl(2, C)-module and let λ ∈ C. If v ∈ Vλ, then

(a) e · v ∈ Vλ+2,

(b) f · v ∈ Vλ−2.

Proof. We prove (a), (b) can be proved analogically. Using Remark 2.10, we have

h · (e · v) = e · (h · v) + [h, e] · v = e · (λv) + 2e · v = (λ + 2)e · v.

Remark 2.11. Let V be an sl(2, C)-module. According to Remark 2.8 and Lemma 2.15,

V =
⊕

λ∈σ(h)

Vλ,

where

σ(h) =
{

λ ∈ C
∣∣ there exists v ∈ V, v 6= 0 and h · v = λv

}
=
{

λ ∈ C
∣∣ Vλ 6= ∅

}
.

As dim V < +∞, there must exist finite µ := max σ(h). Such µ is called the maximal
weight of V and any vector v ∈ Vµ is said to be a maximal or highest-weight vector.

Remark 2.12. Let v be any vector from an sl(2, C)-module and let k ∈N. From now on,
we will use the following notation:

ek · v =

k times︷ ︸︸ ︷
e · (e · . . . (e ·v) . . . )

and identically for f .

Lemma 2.25. Let V be an irreducible sl(2, C)-module. Let v0 ∈ Vµ be a maximal vector of V.
For all k ∈N let us denote vk := 1

k! f k · v0 and v−1 := 0. Then for all k ∈N0 it holds true that

(a) f · vk = (k + 1)vk+1,

(b) h · vk = (µ− 2k)vk,

(c) e · vk = (µ− k + 1)vk−1.

Proof.

(a) For any k ∈N0 we have

f · vk = f ·
(

1
k!

f k · v0

)
=

1
k!

f k+1 · v0 =
k + 1

(k + 1)!
f k+1 · v0 = (k + 1)vk+1.

(b) We use induction on k. For k = 0 the equation is fulfilled from the choice of v0. For
the inductive step, according to Proposition 2.24 (b), we may write

h · vk =
1
k

h · ( f · vk−1) =
1
k
( f · (h · vk−1) + [h, f ] · vk−1)

=
1
k
((µ− 2(k− 1)) f · vk−1 − 2 f · vk−1) = (µ− 2k + 2− 2)

1
k

f · vk−1

= (µ− 2k)vk.
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(c) Again, we use induction on k. For k = 0, e · vk ∈ Vµ+2 = 0. For the inductive step,
we may write

e · vk =
1
k

e · ( f · vk−1) =
1
k
( f · (e · vk−1) + [e, f ] · vk−1)

=
1
k
((µ− (k− 1) + 1) f · vk−2 + h · vk−1)

=
1
k
((µ− k + 2)(k− 1)vk−1 + (µ− 2(k− 1))vk−1)

=
1
k
(µk− k2 + 2k− µ + k− 2 + µ− 2k + 2)vk−1

= (µ− k + 1)vk−1.

Theorem 2.26. Let V be an irreducible sl(2, C)-module. Let m := dim V − 1. Then

V =
⊕

λ∈σ(h)

Vλ, where σ(h) = {m, m− 2, . . . ,−(m− 2),−m} ,

and dim Vλ = 1 for each λ ∈ σ(h).

Proof. We keep the notation from the previous lemma. Let (vk)k∈N0
be the vectors

defined in that lemma, in particular, v0 ∈ Vµ is a maximal vector. Necessarily, all
non-zero vk are linearly independent, since being eigenvectors of h with distinct eigen-
values. Hence, as 0 < dim V < +∞, there exists a positive integer, let us denote it
by m, such that vm 6= 0, while vm+1 = 0. Then, clearly, vm+j = 0 for any j ∈ N

and all v0, . . . , vm are non-zero. Moreover, formulas (a)-(c) of the previous lemma
imply that Span {v0, . . . , vm} is closed under the action of all f , h and e and thus it
is a non-trivial sl(2, C)-submodule of V. But as V is irreducible, it holds true that
V = Span {v0, . . . , vm}.

Further, part (c) of the previous lemma for k = m + 1 implies

0 = e · 0 = e · vm+1 = (µ−m)vm

and therefore, because vm 6= 0, µ = m. By part (b) of the lemma, for all k ∈ m̂ we have
vk ∈ Vµ−2k = Vm−2k, which, together with Remark 2.11, gives the required decomposi-
tion.

Finally, as we have decomposed V as the direct sum of m + 1 non-trivial subspaces
and dim V = m + 1, all summands in the direct sum must be one-dimensional.

Corollary 2.27.

(a) Each irreducible sl(2, C)-module V has, up to non-zero scalar multiples, a unique maximal
vector. Its weight (maximal weight of V) is equal to dim V − 1.

(b) Suppose m ∈N0. Up to isomorphism, there exists at most one irreducible sl(2, C)-module
of dimension m + 1.

Proof. For (a), there is nothing to prove. For (b), suppose that

V =
⊕

λ∈σ(h)

Vλ and U =
⊕

λ∈σ(h)

Uλ, where σ(h) = {m, m− 2, . . . ,−(m− 2),−m} ,

are two (m + 1)-dimensional irreducible sl(2, C)-modules. According to part (a), we
may choose maximal vectors v0 ∈ Vm and u0 ∈ Um and then construct the bases (vk)

m
k=0
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and (uk)
m
k=0 for V and U, respectively, defined in Lemma 2.25 and specified in Theorem

2.26. It is obvious from the proof of the previous theorem that the map φ : V → U
defined for all v = ∑m

j=0 αjvj ∈ V by φ(v) := ∑m
j=0 αjuj is an sl(2, C)-module isomor-

phism.

Proposition 2.28. Let V be an sl(2, C)-module and let ν ∈ C. If

ν ∈ σ(h) =
{

λ ∈ C
∣∣ there exists v ∈ V, v 6= 0 and h · v = λv

}
,

then ν ∈ Z and −ν ∈ σ(h).

Proof. The case when V = 0 is trivial. Otherwise, according to Weyl’s Theorem, there
exist irreducible sl(2, C)-submodules V1, . . . , Vn of V such that V = V1 ⊕ · · · ⊕Vn. By
Theorem 2.26, each submodule Vi can be further decomposed as Vi =

⊕
λ∈σi(h) Vi

λ,
where σi(h) =

{
dim Vi − 1, dim Vi − 3, . . . ,−dim Vi + 1

}
. Altogether, whole V can be

written as

V =
⊕

λ∈σ(h)

Vλ, where σ(h) =
n⋃

i=1

σi(h).

For clarity, we may besides write

σ(h) = {M− 1, M− 3, . . . ,−M + 1} ∪ {N − 1, N − 3, . . . ,−N + 1} ,

where M = max
{

dim Vi
∣∣ dim Vi is odd

}
and N = max

{
dim Vi

∣∣ dim Vi is even
}

.
The proposition is now obvious.

Remark 2.13. Keeping the notation from the proof of the previous proposition, it is clear
from the considerations performed in that proof that n = dim V0 + dim V1.

2.3.2 The Modules W(m)

Suppose a positive integer, say n. We have proved in the previous subsection that,
up to isomorphism, there was at most one irreducible sl(2, C)-module of dimension
n. However, the question is whether there exists an n-dimensional irreducible sl(2, C)-
module for each n ∈N. In the final part of the second chapter we answer this question
by defining such the module explicitly (cf. [7], Chap. 8).

Example 2.14. Consider the vector space C[s, t] of all complex polynomials in two vari-
ables s and t. For each m ∈ N0 let us denote W(m) := Span

{
sm, sm−1t, . . . , stm−1, tm},

the subspace of C[s, t] containing all homogeneous polynomials in s and t of degree m.
Obviously, dim W(m) = m + 1.

Given m ∈N0, we define a linear map φ : sl(2, C)→ gl(W(m)):

φ(e) := s
∂

∂t
, φ( f ) := t

∂

∂s
, φ(h) := s

∂

∂s
− t

∂

∂t
,

where ∂
∂s and ∂

∂t mean the partial derivative with respect to s and t, respectively. It is
obvious that all φ(e), φ( f ) and φ(h) are linear and preserve the degree of polynomial,
hence φ maps sl(2, C) into gl(W(m)). We claim that φ is a representation of sl(2, C). To
verify this assertion, it only remains to check that φ preserves the Lie bracket i.e. that

[φ(h), φ( f )] = −2φ( f ), [φ(h), φ(e)] = 2φ(e) and [φ(e), φ( f )] = φ(h).

We only sketch the procedure since the rest is completely analogous. Thus, suppose
integers a ≥ 3 and b ≥ 2.

32



[φ(h), φ( f )](satb) = (s
∂

∂s
− t

∂

∂t
)(t

∂

∂s
(satb))− t

∂

∂s
((s

∂

∂s
− t

∂

∂t
)(satb))

= s
∂

∂s
(asa−1tb+1)− t

∂

∂t
(asa−1tb+1)− t

∂

∂s
(asatb) + t

∂

∂s
(bsatb)

= a(a− 1)sa−1tb+1 − a(b + 1)sa−1tb+1 − a2sa−1tb+1 + absa−1tb+1

= (a2 − a− ab− a− a2 + ab)sa−1tb+1 = −2asa−1tb+1 = −2t
∂

∂s
(satb)

= −2φ( f )(satb)

In this way, one could verify all the other cases (when a ∈ {0, 1, 2} or b ∈ {0, 1}) for the
first commutator. For two other commutators, the procedure also consists of several
cases, which have to be verified separately.

All in all, for each m ∈N0, W(m) is an (m + 1)-dimensional sl(2, C)-module.

Proposition 2.29. Let m ∈N0. The sl(2, C)-module W(m) is irreducible.

Proof. At first, we look at the action of e, f and h on basis monomials from W(m). Let a
and b be positive integers such that a + b = m. Then

(a) e · (satb) = s ∂
∂t (s

atb) = bsa+1tb−1, e · (sm) = 0, e · (tm) = mstm−1;

(b) f · (satb) = t ∂
∂s (s

atb) = asa−1tb+1, f · (sm) = msm−1t, f · (tm) = 0;

(c) h · (satb) = (s ∂
∂s − t ∂

∂t )(s
atb) = (a− b)satb, h · (sm) = msm, h · (tm) = mtm.

It is clear from (c) that the (standard) basis of W(m) established in Example 2.14 is the
basis of eigenvectors for h, hence d is diagonalisable on W(m).

Now, suppose U is a non-zero sl(2, C)-submodule of W(m). Being a submodule, U
has to be closed under the action of h. It results from Remark 2.8 that h is diagonalisable
on U as well: the minimum polynomial p(t) of h is the product of distinct linear factors
and herewith p(h) equals identically zero on U, hence the minimum polynomial pU(t)
of h|U : U → U divides p(t) and thus it is the product of distinct linear factors as well
which means that h|U is diagonalisable indeed. This fact implies that at least one basis
vector of W(m), say satb, lies in U. Now assume that there is a different basis vector of
W(m), say sctd, which does not lie in U. But this assumption leads to a contradiction,
because U is, as an submodule, closed under the action of e and f and hence if a < c,
then ec−a · (satb) ∈ U is a non-zero scalar multiple of sctd. Similarly, if a > c, then
f d−b · (satb) ∈ U is a non-zero scalar multiple of sctd. Therefore all basis vectors of
W(m) lie in U and thus U = W(m).
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Chapter 3

Classification of Semisimple Lie
Algebras

The purpose of this chapter is to classify all isomorphism classes of complex semisim-
ple Lie algebras via the so-called roots and root systems. In fact, it is enough to classify
only simple Lie algebras since they are the unique “building blocks” for the semisimple
ones (cf. Theorem 1.47). We shall see that the root systems decompose into simpler sub-
systems exactly in the same way as a semisimple Lie algebras decompose into simple
ideals. The very essential and fundamental property of this analog is that each simple
subalgebra corresponds precisely to the one of these subsystems and vice versa.

3.1 Root Space Decomposition

3.1.1 Cartan Subalgebras

At the very beginning, we need a little linear algebra again (cf. [7], Subsec. 16.3.2).

Lemma 3.1. Let x1, . . . , xk be diagonalisable linear transformations of a vector space V. Then
there is a basis of V consisting of simultaneous eigenvectors for all x1, . . . , xk (we say that
x1, . . . , xk are simultaneously diagonalisable) if and only xi ◦ xj = xj ◦ xi for all i, j ∈ k̂.

Proof. The “only if” direction is easy. Matrices of all x1, . . . , xk with respect to the basis
of their simultaneous eigenvectors are diagonal. Clearly, diagonal matrices commute
and hence x1, . . . , xk commute with each other.

For the “if” direction, we proceed by induction on k ∈ N. The case when k = 1 is
trivial. Hence assume that the implication holds for k− 1 and x1, . . . , xk commute with
each other. First, it follows from Primary Decomposition Theorem that V decomposes
into the direct sum of eigenspaces for xk: V = Vλ1 ⊕ · · · ⊕ Vλr , where (λi)

r
i=1 are the

distinct eigenvalues of xk. Choose any i ∈ r̂. For all v ∈ Vλi and j ∈ k̂− 1 we may write

xk(xj(v)) = xj(xk(v)) = xj(λiv) = λi(xj(v))

and hence xj|Vλi
: Vλi → Vλi (for all j ∈ k̂− 1). Then, since x1|Vλi

, . . . , xk−1|Vλi
also

commute and, as shown in the proof of Proposition 2.29, they are also diagonalisable,
there exists a basis for Vλi consisting of common eigenvectors for x1, . . . , xk−1. These
basis vectors are obviously eigenvectors for xk as well. In this way, we obtain bases of
simultaneous eigenvectors of x1, . . . , xk for all (Vλi)

r
i=1 and, finally, the union of these

bases is the required basis for V.
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Corollary 3.2. Let A be an arbitrary set of linear transformations of a vector space V such
that for all x, y ∈ A it holds true that x ◦ y = y ◦ x. Then there is a basis for V consisting of
simultaneous eigenvectors for all maps from A.

Proof. As V is finite dimensional, the same holds for Span A. Hence we may choose
x1, . . . , xm from A such that Span A = Span {x1, . . . , xm}. According to Lemma 3.1,
there exists a basis for V consisting of simultaneous eigenvectors for x1, . . . , xm. In
other words, all x1, . . . , xm are represented by diagonal matrices with respect to this
basis and this must be true also for any x ∈ A ⊂ Span A = Span {x1, . . . , xm}.

The first step in identification of the “roots” of a semisimple Lie algebra L is to
establish a distinguished abelian subalgebra of L (cf. [7], Sec. 10.1).

Definition 3.3. Let L be a semisimple Lie algebra. A Lie subalgebra H of L is called a
Cartan subalgebra or CSA if it is abelian, it contains entirely semisimple elements and it
is maximal with this properties.

Remark 3.1. In fact, it is not necessary to require Cartan subalgebra to be abelian. It can
be shown (cf. [9], p. 35) that every subalgebra of a semisimple Lie algebra consisting of
semisimple elements (such subalgebra is said to be toral) is abelian.

Proposition 3.4. Let L be a non-trivial semisimple a Lie algebra. A CSA of L is also non-
trivial.

Proof. If L consisted entirely of nilpotent elements, it would be, according to Corollary
1.30, nilpotent and hence solvable. But a non-trivial Lie algebra cannot be simultane-
ously semisimple and solvable.

Definition 3.5. Let H be a CSA of a semisimple Lie algebra L. For all α ∈ H∗ let us
denote

Lα :=
{

x ∈ L
∣∣ for all h ∈ H, [h, x] = α(h)x

}
. (3.1)

Whenever α is not the zero functional and Lα is non-trivial, we say that α is a root of
L and Lα is the associated root space. We denote the set of all roots by Φ. Further we
denote Φ0 := Φ ∪ {0}.

Lemma 3.6. Suppose the L is a semisimple Lie algebra, H is its CSA and Φ is the set of all
roots of L with respect to H. Then Φ is finite and

L = L0 ⊕
⊕
α∈Φ

Lα. (3.2)

Proof. First, for any x, y ∈ H and z ∈ L we have

(ad x ◦ ad y)(z) = [x, [y, z]] = −[y, [z, x]]− [z, [x, y]] = [y, [x, z]] = (ad y ◦ ad x)(z),

hence, by Corollary 3.2, there is a basis for L, say (b1, . . . , bn), consisting of simultaneous
eigenvectors for all elements of ad(H). Now we define n functionals α1, . . . , αn on H:
let

ad h(bi) = αi(h)bi

be satisfied for all i ∈ n̂ and for all h ∈ H. Clearly, all αi are well defined functionals on
H. Moreover, it follows from linearity of ad that αi ∈ H∗ for all i ∈ n̂. Since 0 6= bi ∈ Lαi

for each i ∈ n̂, it is clear that all non-zero αi are roots of L (not necessarily distinct). We
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claim that even Φ ⊂ {α1, . . . , αn} i.e. each root of L is one of the αi. Indeed. Take α ∈ Φ,
h ∈ H and x = ∑n

j=1 β jbj ∈ Lα such that x 6= 0, then

[h, x] = ad h(x) = ad h

(
n

∑
j=1

β jbj

)
=

n

∑
j=1

β j ad h(bj) =
n

∑
j=1

β jαj(h)bj

and

[h, x] = α(h)x = α(h)

(
n

∑
j=1

β jbj

)
=

n

∑
j=1

β jα(h)bj.

Hence, as (b1, . . . , bn) is a basis, for all j ∈ n̂ we have β j(αj(h)− α(h)) = 0. And thus,
because x 6= 0, there exists j0 ∈ n̂ such that, for any h ∈ H, αj0(h) = α(h). Now it is
obvious that Φ is finite.

For the second part, given any non-zero x = ∑n
j=1 β jbj ∈ L, for all j ∈ n̂ we define

xj := β jbj. Clearly x = ∑n
j=1 xj and additionally

[h, xj] = ad h(xj) = ad h(β jbj) = β jαj(h)bj,

hence xj ∈ Lαj . Altogether, we may write

L =
n

∑
j=1

Lαj = L0 + ∑
α∈Φ

Lα. (3.3)

Finally, take any α, µ ∈ Φ0 such that α 6= µ and any x ∈ Lα ∩ Lµ. Then for h ∈ H it
has to be fulfilled that α(h)x = [h, x] = µ(h)x or equivalently (α(h)− µ(h))x = 0. But,
since α 6= µ, there exists h0 ∈ H such that α(h0) 6= µ(h0), thus x = 0 and the sum (3.3)
is direct.

Remark 3.2. Let L be a semisimple Lie algebra and let H be its CSA. It can be easily seen
that L0 = CL(H).

Proposition 3.7. Let L be a semisimple Lie algebra and let H be its CSA. Let α, β ∈ H∗.

(a) [Lα, Lβ] ⊂ Lα+β.

(b) If x ∈ Lα and α 6= 0, then ad x is nilpotent.

(c) If α + β 6= 0, then for all x ∈ Lα and y ∈ Lβ it holds true that κ(x, y)=0.

(d) The restriction of κ to CL(H) is non-degenerate.

Proof.

(a) For any x ∈ Lα, y ∈ Lβ and h ∈ H we have

[h, [x, y]] = −[x, [y, h]]− [y, [h, x]] = [x, [h, y]] + [[h, x], y] = β(h)[x, y] + α(h)[x, y]
= (α + β)(h)[x, y].

(b) It follows directly from (a) and from the fact that there are only finitely many µ ∈
H∗ such that Lµ is non-trivial.

(c) Suppose x ∈ Lα, y ∈ Lβ and h ∈ H such that (α + β)(h) 6= 0. According to
Proposition 1.37, we may write

(α(h) + β(h))κ(x, y) = κ(α(h)x, y) + κ(x, β(h)y) = κ([h, x], y) + κ(x, [h, y])
= −κ([x, h], y) + κ([x, h], y) = 0

and hence, as α(h) + β(h) 6= 0, κ(x, y) = 0.
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(d) Suppose y ∈ CL(H) = L0 ⊂ L and that κ(y, x0) = 0 for any x0 ∈ L0 = CL(H).
Using (c), this is equivalent to κ(y, x) = 0 for any x = x0 + ∑µ∈Φ xµ ∈ L, where
xµ ∈ Lµ, µ ∈ Φ0. But, since L is semisimple, κ is non-degenerate on L (cf. Theorem
1.43) and hence y = 0.

We state the following important lemma without proof. Remark only that it divides
into several steps in which one explores the centralizer of H successively to identify it
with H in the end. One can found the proof in [9], Sec.8.2.

Lemma 3.8. Let H be a CSA of a semisimple Lie algebra L. Then CL(H) = H.

Corollary 3.9. The restriction of κ to H is non-degenerate.

Proof. Trivial consequence of Proposition 3.7 (d) and the previous lemma.

Now we may substitute into (3.2) and introduce the pivotal definition (cf. [7], Sec.
10.3).

Definition 3.10. Suppose that L is a semisimple Lie algebra, H is a CSA of L and Φ is
the set of all roots of L with respect to H. Then the relation

L = H ⊕
⊕
α∈Φ

Lα (3.4)

is called the root space decomposition of L.

The fact that has to be mentioned here is that the Cartan subalgebra is not deter-
mined uniquely by its definition. Consequently, the set of roots and the root space
decomposition are not unique. However, we shall see later (in the last section of this
chapter) that there is no ambiguity in the classification for this reason and that the
classificatory tool which we shall use does not depend on the particular choice of the
Cartan subalgebra.

3.1.2 Properties of Roots and Root Spaces

Now, we are going to uncover further features and characteristics of roots and the re-
spective root spaces (cf. [6], Sec. 4.9, and [9], Sec. 8.2,3). For brevity, we will keep the
following convention in the rest of this section: we will suppose that L is a semisimple
Lie algebra (hence the Killing form on L is non-degenerate), that H is a Cartan subalge-
bra of L and that Φ is the set of roots of L with respect to H. In addition, talking about
H or Φ, we will always assume that the respective Lie algebra is given automatically.

Proposition 3.11. Span Φ = H∗.

Proof. Clearly, Span Φ ⊂ H∗. Contrariwise, suppose that dim(Span Φ) < dim H∗. We
claim that then there exists h ∈ H such that h 6= 0 and α(h) = 0 for all α ∈ Φ. Indeed.
Let (h1, . . . , hdim H) be a basis for H and let

(
α1, . . . , αdim(Span Φ)

)
be a basis for Span Φ.

We search a non-zero vector h = ∑dim H
i=1 λihi such that 0 = αj(h) = ∑dim H

i=1 αj(hi)λi
for all j ∈ {1, 2, . . . , dim(Span Φ)}. Hence, we have a system of dim(Span Φ) homo-
geneous linear equations for dim H = dim H∗ > dim(Span Φ) unknowns. Certainly,
such a system has always a non-trivial solution and thus the desired vector h exists.

But for arbitrary α ∈ Φ and x ∈ Lα we have [h, x] = α(h)x = 0 and additionally,
since H is abelian, for all g ∈ H it is true that [h, g] = 0. All in all, considering the
root space decomposition of L, [h, x] = 0 for all x ∈ L and hence h ∈ Z(L) = 0, a
contradiction.
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Remark 3.3. Similarly as in the proof of Lemma 1.46, let us consider a map φ : H → H∗

defined for all x, y ∈ H by φ(x)(y) := κ(x, y). Clearly φ(H) ⊂ H∗ and further, by
Corollary 3.9, Ker φ = 0. Now, the rank-nullity formula (cf. [11], p. 61) implies

dim H∗ = dim H = dim(Ran φ) + dim(Ker φ) = dim(Ran φ)

and hence φ(H) = H∗. All in all, φ is a bijection between H and H∗. This allows us
to identify H with H∗: for each ϕ ∈ H∗ there exists a unique vector tϕ ∈ H such that
ϕ = φ(tϕ). For this vector and for all h ∈ H the following holds:

ϕ(h) = φ(tϕ)(h) = κ(tϕ, h). (3.5)

Note that the assignment ϕ 7→ tϕ is linear since for all ϕ1, ϕ2 ∈ H∗, c ∈ C and h ∈ H
we have

κ(tϕ1+cϕ2 , h) = (ϕ1 + cϕ2)(h) = ϕ1(h)+ cϕ2(h) = κ(tϕ1 , h)+ cκ(tϕ2 , h) = κ(tϕ1 + ctϕ2 , h)

and hence the non-degeneracy of κ|H×H implies tϕ1+cϕ2 = tϕ1 + ctϕ2 . In particular, the
zero functional 0 ∈ H∗ corresponds to the zero vector 0 ∈ H obviously.

We will keep also this labelling in the rest of this section: tϕ will always be the vector
from H related (in the sense described above) to ϕ ∈ H∗.

Proposition 3.12. Suppose that α ∈ Φ.

(a) −α ∈ Φ.

(b) Let x ∈ Lα and y ∈ L−α. Then [x, y] = κ(x, y)tα.

(c) [Lα, L−α] is one-dimensional and [Lα, L−α] = Span {tα}.

(d) α(tα) = κ(tα, tα) 6= 0.

Proof.

(a) Suppose that −α /∈ Φ. Then for all β ∈ Φ0 it holds true that α + β 6= 0 and hence,
according to part (c) of Proposition 3.7 and to the root space decomposition of L,
κ(x, y) = 0 for all x ∈ Lα and y ∈ L. In particular, since α is a root, this holds for a
non-zero vector from Lα ⊂ L, contradicting the non-degeneracy of κ.

(b) First, by Proposition 3.7 (a), [x, y] ∈ H and hence [x, y] − κ(x, y)tα ∈ H. For an
arbitrary h ∈ H we have

κ(h, [x, y]− κ(x, y)tα) = κ(h, [x, y])− κ(h, κ(x, y)tα) = κ([h, x], y)− κ(x, y)κ(h, tα)

= α(h)κ(x, y)− κ(x, y)α(h) = 0

and consequently, by Corollary 3.9, [x, y]− κ(x, y)tα = 0.

(c) By the previous item, since tα 6= 0, it suffices to show that there exist x ∈ Lα and y ∈
L−α such that κ(x, y) 6= 0. Take any non-zero x ∈ Lα and suppose that κ(x, y) = 0
for all y ∈ L−α. Then, according to Proposition 3.7 (c), κ(x, y) = 0 even for all y ∈ L,
but this is again a contradiction with non-degeneracy of κ.

(d) The first equality is just the definition of tα. Suppose that α(tα) = 0. Then for any
x ∈ Lα and y ∈ L−α we have [tα, x] = [tα, y] = 0. As in the previous item, we
can find x̃ ∈ Lα and ỹ ∈ L−α such that κ(x̃, ỹ) 6= 0. Then, if we put x̂ := x̃

κ(x̃,ỹ) , it
holds [x̂, ỹ] = tα and S := Span {x̂, ỹ, tα} is a solvable subalgebra of L, obviously.
Since L is semisimple, the adjoint representation of L is faithful, hence S ∼= ad(S) ⊂

38



gl(L). By Theorem 1.31 and by the proof of Theorem 1.40 (the commutator of upper
triangular matrices is a strictly upper triangular matrix), we know that all elements
of [ad(S), ad(S)] = ad([S, S]) are nilpotent. In particular this holds for ad tα, but
ad tα is semisimple as well because tα ∈ H. Altogether, ad tα = 0 and hence tα ∈
Z(L) = 0, a contradiction (0 /∈ Φ 3 α).

Proposition 3.13. Suppose α ∈ Φ and eα ∈ Lα, eα 6= 0. Then there exists fα ∈ L−α such that
Span {eα, fα, hα}, where hα := 2tα

κ(tα,tα)
, is a subalgebra of L isomorphic to sl(2, C).

Proof. Take any f̃α ∈ L−α such that κ(eα, f̃α) 6= 0 (this is possible, according to the proof

of part (c) of Proposition 3.12) and set fα := 2 f̃α

κ(eα, f̃α)κ(tα,tα)
. Then

[eα, fα] =
2

κ(eα, f̃α)κ(tα, tα)
[eα, f̃α] =

2
κ(eα, f̃α)κ(tα, tα)

κ(eα, f̃α)tα =
2tα

κ(tα, tα)
= hα,

[hα, eα] =
2

κ(tα, tα)
[tα, eα] =

2
κ(tα, tα)

α(tα)eα = 2eα,

[hα, fα] =
2

κ(tα, tα)
[tα, fα] =

2
κ(tα, tα)

(−α(tα)) fα = −2 fα.

Hence we can see, that eα, fα and hα (it follows from the root space decomposition of
L, that they are linearly independent and hence form a basis of Span {eα, fα, hα}) satisfy
the same commutation relations as the basis vectors of sl(2, C) e, f an h, respectively
(cf. Sec. 2.3) and thus the linear map ψ : Span {eα, fα, hα} → sl(2, C) defined by

ψ(eα) =

(
0 1
0 0

)
, ψ( fα) =

(
0 0
1 0

)
, ψ(hα) =

(
1 0
0 −1

)
is, as an obvious bijection, a Lie algebra isomorphism between Span {eα, fα, hα} and
sl(2, C).

Corollary 3.14. Suppose α ∈ Φ and hα from the previous proposition. Then α(hα) = 2.

Proof. α(hα) = α( 2tα

κ(tα,tα)
) = 2

κ(tα,tα)
α(tα) =

2
κ(tα,tα)

κ(tα, tα) = 2.

Remark 3.4. We will keep the notation from the previous proposition: for the rest of this
section for all α ∈ Φ we denote hα := 2tα

κ(tα,tα)
. Moreover, sl(α) := Span {eα, fα, hα}.

One might ask whether the subalgebra sl(α) is independent of the choice of eα and
fα and hence unique. As we show below, the answer is “yes”. However, the proof
is not very straightforward; we have to look at the modules of sl(α) at first (cf. [7],
Sec. 10.5). This is exactly the reason why we have studied the representation theory
of sl(2, C) earlier. Remark that the sets of Lie modules for two isomorphic Lie algebras
are in one-to-one correspondence with each other, obviously.

Remark 3.5. Given α ∈ Φ, L may be regarded as an sl(α)-module via the restriction of
the adjoint representation of L to sl(α): for all a ∈ sl(α) and x ∈ L we define

a · x := ad a(x) = [a, x]. (3.6)

Definition 3.15. Let α ∈ Φ and β ∈ Φ. The set⊕
k∈Z

β+kα∈Φ

Lβ+kα (3.7)

is called the α-root string through β.
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Proposition 3.16. Let α ∈ Φ and β ∈ Φ. The α-root string through β is an sl(α)-submodule
of L.

Proof. First, let us denote the α-root string through β by S. Clearly, S is a subspace of L.
Now, given any k ∈ Z such that β + kα ∈ Φ and x ∈ Lβ+kα, it follows from part (a) of
Proposition 3.7 that eα · x = [eα, x] ∈ Lβ+(k+1)α. If β+(k+ 1)α ∈ Φ, then clearly a · x ∈ S.
Otherwise, a · x = 0 ∈ S. Similarly for fα. Finally, hα · x = (β(h) + kα(h))x ∈ S.

Lemma 3.17. Let α ∈ Φ.

(a) dim Lα = dim L−α = 1.

(b) If c is a complex number such that cα ∈ Φ, then c = ±1.

Proof. First, we show that H + sl(α) = Ker α ⊕ sl(α). Clearly, since hα ∈ H ∩ sl(α),
dim(H + sl(α)) ≤ dim H + 2. Further, according to the root space decomposition of L
and to the fact that α(hα) = 2 6= 0, Ker α ∩ Span {eα, fα, hα} = 0, therefore dim(Ker α⊕
sl(α)) = (dim H− 1) + 3 = dim H + 2. Concurrently, because Ker α ⊂ H, it is clear that
Ker α⊕ sl(α) ⊂ H + sl(α). Comparing the dimensions, we obtain the desired equality.

In addition, both Ker α and sl(α) are sl(α)-submodules of L. Indeed, sl(α) is a sub-
module because of being a subalgebra and Ker α is a submodule because for an arbi-
trary h ∈ Ker α we have

eα · h = [eα, h] = −[h, eα] = −α(h)eα = 0,
fα · h = [ fα, h] = −[h, fα] = α(h) fα = 0,
hα · h = [hα, h] = 0.

Now, let us denote

S :=
⊕
c∈C

cα∈Φ0

Lcα = H ⊕ Lα ⊕ L−α ⊕
⊕

c∈C/{±1}
cα∈Φ

Lcα = Ker α⊕ sl(α)⊕
⊕

c∈C/{±1}
cα∈Φ

Lcα.

Exactly as in the proof of Proposition 3.16, it can be shown that S is an sl(α)-submodule
of L. Likewise, let us denote

W :=
⊕

c∈C/{±1}
cα∈Φ

Lcα

which has to be an sl(α)-submodule of L as well resulting from Weyl’s Theorem and
Proposition 2.11.

Suppose that at least one of the assertions of the lemma does not hold, then W is
non-trivial and hence it has an irreducible submodule V of dimension m. We use the
classification of irreducible sl(2, C) discussed in Section 2.3 now.

In case that m is odd, there exists v ∈ V ⊂ W, an eigenvector for hα with the zero
eigenvalue. In other words, there is c ∈ C/ {−1, 0, 1} such that

0 = hα · v = [hα, v] = cα(hα)v = 2cv,

a contradiction. Moreover, suppose that 2α ∈ Φ. Then there exists a non-zero v ∈ L2α

such that hα · v = [hα, v] = 2α(hα)v = 4v and hence W has an irreducible submodule of
odd dimension. But this is impossible, therefore if α ∈ Φ, then 2α /∈ Φ.

Now suppose that m is even. There exists v ∈ V ⊂ W, an eigenvector for hα with 1
as an eigenvalue. In other words there is c ∈ C/ {−1, 0, 1} such that

v = hα · v = [hα, v] = cα(hα)v = 2cv,

thus c = 1
2 and therefore both α

2 and α are roots, a contradiction again.
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Now it is seen that the only freedom of the choice of eα lies in the non-zero scalar
multiplication and that for each eα ∈ Lα there exists a unique fα ∈ L−α such that
[eα, fα] = hα whereas the direction of fα is independent of the particular choice of eα.
Lemma 3.17 establishes this choice up to the scalar multiple and part (b) of Proposition
3.12 then determines the scalar. Hence each subalgebra sl(α) is determined uniquely.

Proposition 3.18. Let α, β ∈ Φ.

(a) β(hα) ∈ Z.

(b) If α 6= ±β, there are p, q ∈N0 such that for all k ∈ Z it holds true that β + kα ∈ Φ if and
only if −p ≤ k ≤ q. Moreover, p− q = β(hα).

(c) β− β(hα)α ∈ Φ.

(d) If α + β ∈ Φ, then [Lα, Lβ] = Lα+β.

Proof.

(a) For any non-zero v ∈ Lβ we have β(hα)v = [hα, v] = hα · v, hence β(hα) is an
eigenvalue for hα acting on Lβ ⊂ L. The assertion now follows from Remark 3.5
and Proposition 2.28.

(b) Let S be the α-root string through β. We know that S is an sl(α)-submodule of
L (cf. Proposition 3.16). According to the proof of Proposition 2.28, there exist
irreducible submodules S1, . . . , Sn of S such that S = S1 ⊕ · · · ⊕ Sn. But, as all
the eigenvalues for hα acting on S are of the form (β + lα)(hα) = β(hα) + 2l, l ∈
Z, so they are either all odd or all even and additionally, by Lemma 3.17 (a), all
corresponding eigenspaces are one-dimensional, Remark 2.13 gives us that n = 1
in our case, in other words that S is itself irreducible. According to Theorem 2.26,
this fact means that the set of all roots occurring in the string S has to be precisely
of the form {m, m− 2, . . . ,−m}, where m = dim S − 1. Thus, if we denote p :=
max

{
k ∈ Z

∣∣ β− kα ∈ Φ
}

and q := max
{

k ∈ Z
∣∣ β + kα ∈ Φ

}
, we obtain the first

part of the proposition.

For the second one, it is obvious that in our case m = β(hα)+ 2q and−m = β(hα)−
2p which, added together and divided by 2, gives us the required relation.

(c) Let p and q be the integers from the previous item. Then

β− β(hα)α = β− (p− q)α ∈ Φ

because −p ≤ −p + q ≤ q.

(d) The inclusion [Lα, Lβ] ⊂ Lα+β has been already proved (cf. Proposition 3.7), thus
it suffices to show that each vector from Lα+β can be expressed as the commutator
of vectors from Lα and Lβ, respectively. Consider the same irreducible submodule
S as in part (b) and keep the denotation of p and q as well. Take any non-zero
eβ ∈ Lβ, eα ∈ Lα and eα+β ∈ Lα+β. By Lemma 2.25 and because all root spaces are
one-dimensional, we have

[eα, eβ] = eα · eβ = (µ− l + 1)ceα+β,

where µ = β(hα) + 2q, l ∈ µ̂ and c ∈ C/ {0}. Obviously, d := (µ− l + 1)c 6= 0 and
hence we may write [eα, 1

d eβ] = eα+β in order to complete the proof.

Remark 3.6. Sometimes we shall use the term “α-root string through β” also for the set
of roots {β− pα, β− (p− 1)α, . . . , β− α, β, β + α, . . . , β + (q− 1)α, β + qα} ⊂ Φ, where
p, q ∈N0 are those from part (b) of the previous proposition. It should be always clear
from the context which “root string” we just mean.
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3.1.3 Inner Product of Roots

Non-degeneracy of the Killing form on H (cf. Corollary 3.9) allows us to define a real-
valued inner product on the real linear span of the set of roots (cf. [7], Sec. 10.6).

Proposition 3.19. If α, β ∈ Φ, then

(a) κ(tα, tα)κ(hα, hα) = 4,

(b) κ(hα, hβ) ∈ Z,

(c) κ(tα, tβ) ∈ Q.

Proof.

(a) κ(tα, tα)κ(hα, hα) = κ(tα, tα)κ(
2tα

κ(tα,tα)
, 2tα

κ(tα,tα)
) = κ(tα, tα)

2
κ(tα,tα)

2
κ(tα,tα)

κ(tα, tα) = 4.

(b) κ(hα, hβ) = Tr(ad hα ◦ ad hβ) = ∑γ∈Φ Tr((ad hα ◦ ad hβ)|Lγ) = ∑γ∈Φ γ(hα)γ(hβ),
which is integral, according to Proposition 3.18 (a).

(c) κ(tα, tβ) = κ( κ(tα,tα)
2 hα, κ(tβ,tβ)

2 hβ) =
κ(tα,tα)

2
κ(tβ,tβ)

2 κ(hα, hβ) =
4κ(hα,hβ)

κ(hα,hα)κ(hβ,hβ)
∈ Q.

Definition 3.20. We define a form ( , ) : H∗ × H∗ → C for all θ, ϕ ∈ H∗ as follows:

(θ, ϕ) := κ(tθ , tϕ). (3.8)

Remark 3.7. ( , ) is obviously bilinear, since κ is bilinear and the map H∗ 3 ϕ 7→ tϕ ∈ H
is linear (cf. Remark 3.3). In addition, it is symmetric and non-degenerate as well since
κ|H×H is. Further, according to Proposition 3.19, (α, β) ∈ Q if α, β ∈ Φ.

Proposition 3.21. Let α, β ∈ Φ. Then β(hα) =
2(β,α)
(α,α) .

Proof. β(hα) = κ(tβ, hα) = κ(tβ, 2tα

κ(tα,tα)
) =

2κ(tβ,tα)

κ(tα,tα)
= 2(β,α)

(α,α) .

Remark 3.8. It results from Proposition 3.11 that there exists a basis for H∗ consisting of
roots.

Lemma 3.22. Let A = (α1, . . . , αl) be a basis of H∗ such that αi ∈ Φ for all i ∈ l̂. Consider
β = ∑l

i=1 ciαi ∈ Φ. Then for all i ∈ l̂ it holds true that ci ∈ Q.

Proof. For all j ∈ l̂ we have (β, αj) = (∑l
i=1 ciαi, αj) = ∑l

i=1 ci(αi, αj). In others words,
we have a system of l non-homogeneous linear equations for l unknowns c1, . . . , cl . We
may write this system in a compact form A~c = ~b, where (A)ji = (A)ij = (αi, αj),
(~c)i = ci and (~b)j = (β, αj) for all i, j ∈ l̂. In fact, A is the matrix of a non-degenerate
bilinear form (with respect toA) and hence it is invertible (cf. [8], Chap. 10). Moreover,
since all entries of A are rational, the same holds true for A−1. The solution of our
system is ~c = A−1~b and, because all entries of~b are rational as well, for all i ∈ l̂ we
have ci = (~c)i ∈ Q, as desired.

Remark 3.9. Let (α1, . . . , αl) be a basis of H∗ such that αi ∈ Φ for all i ∈ l̂. Let us denote

E := SpanR {α1, . . . , αl} . (3.9)

Thanks to the previous lemma, all roots are contained in E, hence E does not depend
on the particular choice of the basis.

Proposition 3.23. The restriction of the form ( , ) to E is an inner product on E.
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Proof. Symmetry and linearity have been already proved (cf. Remark 3.7). Hence it
remains to verify that ( , ) maps into R and that it is positive-definite. Let (α1, . . . , αl)
be a basis for E consisting of roots. First, for any α = ∑l

i=1 aiαi and β = ∑l
j=1 bjαj from

E we have

(α, β) =

(
l

∑
i=1

aiαi,
l

∑
j=1

bjαj

)
=

l

∑
i,j=1

aibj(αi, αj) ∈ R.

Second, for any α ∈ E and the corresponding tα we have

(α, α) = κ(tα, tα) = Tr(ad tα ◦ ad tα) = ∑
β∈Φ

Tr((ad tα ◦ ad tα)|Lβ
)

= ∑
β∈Φ

β(tα)
2 = ∑

β∈Φ
κ(tβ, tα)

2 = ∑
β∈Φ

(β, α)2

≥
l

∑
j=1

(αj, α)2 ≥ 0.

In addition, if (α, α) = 0, then for all j ∈ l̂ we have 0 = (αj, α) = ∑l
i=1 ai(αj, αi), thus

we have again a system of l homogeneous linear equations. But we have already seen
the matrix of this system in the proof Lemma 3.22 and we know that it is non-singular.
Hence the only solution of our system is the trivial one, consequently (α, α) = 0 implies
that α = 0.

All in all, the pair (E; ( , )) is a finite-dimensional real inner-product vector space.

3.2 Root Systems

Throughout this section, E will always denote a finite-dimensional real vector space
with an inner product ( , ). We will also use the norm induced by this inner product
i.e. for any α ∈ E we put ‖α‖ :=

√
(α, α) and we say that α has length ‖α‖.

3.2.1 Definition of Root Systems

Now we are going to take the most important properties of the set of roots and axiom-
atize them. In this way we define the so-called “root systems” (cf. [7], Chap. 11). We
also introduce some related terms necessary for the classification of root systems.

Remark 3.10. We assign to each non-zero α ∈ E a linear map sα :E→ E which is defined
for all β ∈ E by

sα(β) := β− 2(β, α)

(α, α)
α. (3.10)

Obviously, sα corresponds precisely to the reflection in the hyperplane normal to α:
the “part” of β which is perpendicular to this hyperplane is (β, α

‖α‖ )
α
‖α‖ = (β,α)

(α,α)α. For

brevity, for all non-zero α ∈ E and β ∈ E we denote 〈β, α〉 := 2(β,α)
(α,α) . With this notation,

we can rewrite (3.10) as
sα(β) = β− 〈β, α〉α. (3.11)

Proposition 3.24. Suppose α ∈ E, α 6= 0. Then the reflection sα preserves the inner product.

Proof. For any β, γ ∈ E we have

(sα(β), sα(γ)) =

(
β− 2(β, α)

(α, α)
α, γ− 2(γ, α)

(α, α)
α

)
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= (β, γ)− 2(γ, α)(β, α)

(α, α)
− 2(β, α)(α, γ)

(α, α)
+

4(β, α)(γ, α)

(α, α)

= (β, γ).

Corollary 3.25. Let α, β, γ ∈ E such that γ 6= 0. Then 〈sα(β), sα(γ)〉 = 〈β, γ〉.

Proof. According to the previous proposition, we can write

〈sα(β), sα(γ)〉 =
2(sα(β), sα(γ))

(sα(γ), sα(γ))
=

2(β, γ)

(γ, γ)
= 〈β, γ〉.

Definition 3.26. A subset Φ of E is called a root system if the four following axioms are
satisfied:

(R1) Φ is finite, Span Φ = E and 0 /∈ Φ;

(R2) for all α ∈ Φ and c ∈ R it holds true that if cα ∈ Φ, then c = ±1;

(R3) if α, β ∈ Φ, then sα(β) ∈ Φ;

(R4) if α, β ∈ Φ, then 〈β, α〉 ∈ Z.

The elements of Φ are called roots and the dimension of E is called the rank of Φ.

We extend the notation used in this section: from now on, Φ will always denote a
root system in E.

Remark 3.11. Take α ∈ Φ. Since sα(α) = α− 2(α,α)
(α,α) α = −α, (R3) implies that −α ∈ Φ.

Example 3.12. Naturally, one example of a root system is the set of roots of a semisimple
Lie algebra introduced above. The respective real inner-product space was defined
in Remark 3.9. However, we must verify that all four axioms in Definition 3.26 are
satisfied. Indeed, (R1) holds by Lemma 3.6, by the definition of E and by the definition
of Φ (we mean the definitions in the previous section), respectively, (R2) corresponds
precisely to part (b) of Lemma 3.17, (R3) is fulfilled because of Proposition 3.21 and
Proposition 3.18 (c) and (R4) follows from Proposition 3.21 and part (a) of Proposition
3.18.

We shall use the term “root systems” in this context later. Talking about “root sys-
tem of a semisimple Lie algebra”, we will always mean the set of roots of a given Lie
algebra.

Proposition 3.27. Let α, β ∈ Φ such that α 6= ±β. Then 〈α, β〉〈β, α〉 ∈ {0, 1, 2, 3}.

Proof. Let us denote

A(α, β) := 〈α, β〉〈β, α〉 = 2(α, β)

(β, β)

2(β, α)

(α, α)
= 4

(
α

‖α‖ ,
β

‖β‖

)(
β

‖β‖ ,
α

‖α‖

)
= 4 cos2 θ(α, β),

where θ(α, β) is the angle between α and β. It is clear that 0 ≤ A(α, β) ≤ 4. Likewise,
according to (R4), we have A(α, β) ∈ Z. Altogether, A(α, β) ∈ {0, 1, 2, 3, 4}, but if
A(α, β) = 4, then cos θ(α, β) = ±1 and hence α = ±β, which is impossible.
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Remark 3.13. Let α, β ∈ Φ such that α 6= ±β. Keeping the notation from the previous
proposition, we know that A(α, β) ∈ {0, 1, 2, 3}, moreover, by (R4), 〈α, β〉, 〈β, α〉 ∈ Z

and hence there are just a few possible values of 〈α, β〉 and 〈β, α〉. Further, as A(α, β) =
4 cos2 θ(α, β), A(α, β) determines cos θ(α, β) up to the sign but this sign agrees with the
sign of 〈α, β〉. Altogether, we are able to explore all possibilities of the relative position
of two linear independent roots. Moreover, if α and β are not perpendicular, we can
also determine the ratio of their norms:

〈β, α〉
〈α, β〉 =

2(β,α)
(α,α)

2(α,β)
(β,β)

=
(β, β)

(α, α)
=
‖β‖2

‖α‖2 . (3.12)

The summary of these ideas is captured in Table 3.1. Without loss of generality, we
assume that ‖β‖ ≥ ‖α‖ which is equivalent, as seen from (3.12), to |〈β, α〉| ≥ |〈α, β〉|.

A(α, β) 〈α, β〉 〈β, α〉 cos θ(α, β) θ(α, β) ‖β‖2 / ‖α‖2

0 0 0 0 π/2 undetermined
1 1 1 1/2 π/3 1
1 −1 −1 −1/2 2π/3 1
2 1 2

√
2/2 π/4 2

2 −1 −2 −
√

2/2 3π/4 2
3 1 3

√
3/2 π/6 3

3 −1 −3 −
√

3/2 5π/6 3

Table 3.1: All possible relative positions of linearly independent roots α, β ∈ Φ

Proposition 3.28. Let α, β ∈ Φ. Let θ(α, β) denote the angle between α and β.

(a) If 0 < θ(α, β) < π
2 , then α− β ∈ Φ.

(b) If π
2 < θ(α, β) < π, then α + β ∈ Φ.

Proof.

(a) If ‖α‖ ≥ ‖β‖, then, according to Table 3.1, 〈β, α〉 = 1 and hence, by (R3), β− α =
β− 〈β, α〉α = sα(β) ∈ Φ. Consequently, α− β = −(β− α) ∈ Φ. In case ‖β‖ ≥ ‖α‖
we obtain in the same way directly α− β ∈ Φ.

(b) Here we may assume, without loss of generality, that ‖β‖ ≥ ‖α‖. Then 〈α, β〉 = −1
and hence α + β = α− 〈α, β〉β = sβ(α) ∈ Φ.

Definition 3.29. A subset ∆ of Φ is called a base for Φ if the two following axioms are
satisfied:

(B1) ∆ is a basis for E;

(B2) for each β there exist integers (kα)α∈∆ such that β = ∑α∈∆ kαα and either kα ≥ 0
for all α ∈ ∆ or kα ≤ 0 for all α ∈ ∆.

The roots in ∆ are said to be simple.

Proposition 3.30. Let ∆ be a base for Φ. For any distinct α, β ∈ ∆ it holds true that the angle
between α and β is at least π/2.

Proof. If the angle is zero, then α and β are not linearly independent, contradicting (B1).
In case the angle is strictly acute, Proposition 3.28 implies that the root α− β has, with
respect to the basis ∆, simultaneously one positive and one negative coefficient and
hence we reach a contradiction (with (B2) now) again.
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Definition 3.31. Suppose that there exists a base for Φ and denote it by ∆. For each
β = ∑α∈∆ kαα we define the height of β as follows:

ht β := ∑
α∈∆

kα. (3.13)

The root β ∈ Φ is said to be positive if ht β > 0 or negative if ht β < 0. The set of all
positive roots in Φ is denoted by Φ+ and the set of all negative ones by Φ−.

Remark 3.14. Suppose that we have a base ∆ for Φ. (B1) guarantees that for each β ∈ Φ
the integers (kα)α∈∆ are unique, hence the height is well-defined. Moreover, from (B2)
it is clear that each root is either positive or negative. Indeed, the only remaining case
(kα = 0 for all α ∈ ∆) corresponds to the zero vector which is not a root. Equivalently,
Φ = Φ+ ∪Φ−. In addition, note that ∆ ⊂ Φ+.

The question that still remains is whether a base has to exist for each root system.
It can be shown (cf. [9], Theorem 10.1) that each root system has a base indeed. This
fact permits us to extend our notation and denote a base for Φ by ∆ for the rest of this
section.

In the following series of statements we introduce a way how to discover whole set
of roots from its base (cf. [7], Sec. 11.3). We shall see that each root can be obtained as a
product of finitely many reflections of a simple root. However, the procedure using in
computation is different. The algorithm is presented in the next chapter.

Definition 3.32. The subgroup of GL(E) generated by the reflections (sα)α∈Φ is called
the Weyl group of Φ and it is denoted byW(Φ).

Remark 3.15. For all α, β ∈ Φ we have

s2
α(β) = sα(β− 〈β, α〉α) = β− 〈β, α〉α + 〈β, α〉α = β,

consequently for all n ∈N and α1, . . . , αn, β ∈ Φ it holds true that

((sα1 ◦ · · · ◦ sαn) ◦ (sαn ◦ · · · ◦ sα1))(β) = (sα1 ◦ · · · ◦ sαn ◦ sαn ◦ · · · ◦ sα1)(β)

= (sα1 ◦ · · · ◦ sαn−1 ◦ sαn−1 ◦ · · · ◦ sα1)(β)

...
= (sα1 ◦ sα1)(β) = β

and hence (sα1 ◦ · · · ◦ sαn)
−1 = (sαn ◦ · · · ◦ sα1) ∈ W(Φ) andW(Φ) is a group indeed.

From now on, we will denote the Weyl groupW(Φ) of Φ simply byW .

Proposition 3.33. W is finite.

Proof. Take any α ∈ Φ. By (R3), sα(Φ) ⊂ Φ. Likewise, we have seen that sα was
invertible and hence injective. In other words, sα permutes Φ. But, as Φ spans E, each
sα ∈ W is uniquely determined by images (sα(β))β∈Φ. Consequently, the number of
different projections sα cannot be larger that the number of all permutations of Φ, which
is finite since the same holds true for Φ, by axiom (R1).

Proposition 3.34. Let α ∈ ∆. Then sα permutes the set Φ+/ {α}.
Proof. We have seen in the proof of Proposition 3.33 that sα permuted Φ, therefore it is
enough to show that sα maps Φ+/ {α} into itself. Suppose that β ∈ Φ+/ {α}, then there
are non-negative integers (kγ)γ∈∆ such that β = ∑γ∈∆ kγγ. Similarly, there are integers
(lγ)γ∈∆ (either all non-positive or all non-negative) such that sα(β) = ∑γ∈∆ lγγ. Since
β ∈ Φ+, some γ0 ∈ ∆ such that γ0 6= α and kγ0 > 0 have to exist to satisfy β 6= α.
But from sα(β) = β− 〈β, α〉α it is obvious that lγ0 = kγ0 > 0 and hence all (lγ)γ∈∆ are
non-negative and sα(β) ∈ Φ+.
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Lemma 3.35. LetW0 denote the subgroup ofW generated by (sα)α∈∆. Then for each β ∈ Φ
there are s ∈ W0 and α ∈ ∆ such that β = s(α).

Proof. First, suppose that β ∈ Φ+. There are non-negative integers (kγ)γ∈∆ such that
β = ∑γ∈∆ kγγ. For proof, we use induction on height of β. If ht β = 1, then β ∈ ∆,
hence it suffices to put α := β and s := 1. For the inductive step, suppose that ht β > 1.
We claim that there is γ0 ∈ ∆ such that (β, γ0) > 0. Indeed. If not, then, because β 6= 0,

0 < ‖β‖2 = (β, β) = (β, ∑
γ∈∆

kγγ) = ∑
γ∈∆

kγ(β, γ) ≤ 0,

a contradiction. According to Proposition 3.34, for this γ0 we have

0 < ht sγ0(β) = ht β− 2(β, γ0)

(γ0, γ0)
ht γ0 < ht β

and thus we may apply the inductive hypothesis to sγ0(β) to obtain existence of s̃ ∈ W0
and α̃ ∈ ∆ such that sγ0(β) = s̃(α̃). Now, because (sγ0)

−1 = sγ0 , it suffices to put α := α̃
and s := sγ0 ◦ s̃ in order to get the statement.

Second, if β ∈ Φ−, the previous part holds for −β ∈ Φ+; there exist s̃ ∈ W0 and
α̃ ∈ ∆ such that −β = s̃(α̃). Obviously, since sα̃(α̃) = −α̃, it suffices to put α := α̃ and
s := s̃ ◦ sα̃ to finish the proof completely.

Remark 3.16. The reflections (sα)α∈∆ are said to be simple.

Proposition 3.36. Keeping the notation from the previous proposition, we haveW0 =W .

Proof. It is enough to show that the generating elements (sα)α∈Φ of W all lie in W0.
Then each element ofW can be clearly “build up” of the generators

(
sβ

)
β∈∆ ofW0. Let

α ∈ Φ. According to Lemma 3.35, there exist γ ∈ ∆ and s ∈ W0 such that α = s(γ). We
claim that sα = s ◦ sγ ◦ s−1 and hence that sα ∈ W0. Indeed. For any δ ∈ ∆ we have

(s ◦ sγ)(δ) = s(δ− 〈δ, γ〉γ) = s(δ)− 〈δ, γ〉s(γ) = s(δ)− 〈s(δ), s(γ)〉s(γ)
= s(δ)− 〈s(δ), α〉α = sα(s(δ)) = (sα ◦ s)(δ)

and s ◦ sγ = sα ◦ s or equivalently s ◦ sγ ◦ s−1 = sα since ∆ spans E.

At the very end of this subsection we state an important theorem telling us that any
two bases for one root system in E have in fact the same geometric proportions; at most,
they can be mutually reflected in some hyperplane in E. See [7], Appendix D, for the
proof.

Theorem 3.37. If s ∈ W , then the set
{

s(α)
∣∣ α ∈ ∆

}
is a base for Φ. Contrariwise, if ∆′ is

another base for Φ, then there exists s′ ∈ W such that ∆′ =
{

s′(α)
∣∣ α ∈ ∆

}
.

3.2.2 Cartan Matrices and Dynkin Diagrams

In this subsection we assign two types of invariants to each root system, namely a
matrix and a graph (cf. [9], Sec. 11). This step proves to be very useful for classification
of root systems since those objects (more specifically the graphs) can be easily classified.
Recall that we still keep the meaning of E, Φ, ∆,W andW0.

Definition 3.38. Suppose that (α1, . . . , αl) is a base for Φ. The Cartan matrix of Φ is
defined to be the l × l matrix with i, j-th entry 〈αi, αj〉. The entries of the Cartan matrix
are called Cartan integers.
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Remark 3.17. By axiom (R4), Cartan integers are integers indeed and moreover, it is
obvious directly from the definition of 〈 , 〉 that all diagonal entries of the Cartan matrix
are equal to 2.

Remark 3.18. It results immediately from Theorem 3.37 and Corollary 3.25 that the Car-
tan matrix is defined unambiguously up to the order of chosen simple roots and it does
not depend on the particular choice of base. In other words, if A and B are two Cartan
matrices for one root system Φ, then there exists a permutation π of l̂ such that for all
i, j ∈ l̂ we have Ai,j = Bπ(i),π(j). In particular, the set of Cartan integers is unique for
each root system.

Now we introduce an even more illustrative invariant of a root system.

Definition 3.39. Let (α1, . . . , αl) be a base for Φ. The Dynkin diagram of Φ is a graph Γ
with the following properties:

(a) Γ has l vertices labeled by (α1, . . . , αl);

(b) for all i, k ∈ l̂ such that i 6= k the vertices αi and αk are connected by dik :=
〈αi, αk〉〈αk, αi〉 edges;

(c) if dik > 1, then an arrow pointing from the longer root of {αi, αk} to the shorter one
is putted between the respective roots.

Remark 3.19. Keep the notation from the previous definition. According to Table 3.1,
for all i, k ∈ l̂ the only possible values of dik are 0, 1, 2 or 3. Moreover, if we take into
consideration that the angle between two simple roots is always obtuse (cf. Proposition
3.30), in case that dik 6= 0 it holds true that at least one of the numbers 〈αi, αk〉 and
〈αk, αi〉 equals −1. Without loss of generality, we may assume that this is satisfied for
〈αi, αk〉. Then we can write

‖αi‖2 = (αi, αi) =
2(αi, αk)

〈αi, αk〉
= dik

2(αk, αi)

〈αk, αi〉
= dik(αk, αk) = dik ‖αk‖2 .

Remark 3.20. According to the same arguments used in Remark 3.18, one can see that
the Dynkin diagram of Φ is unique up to the labelling of vertices. Further, notice that
the knowledge of the Dynkin diagram is equivalent to the knowledge of the Cartan
matrix. The determination of the diagram from the matrix is obvious. For the other
direction, the remaining information (diagonal entries and the sign of non-diagonal
entries) is provided by Remark 3.17 and Proposition 3.30, respectively.

Definition 3.40. Let E and E′ be real inner-product spaces and let Φ and Φ′ be root
systems in E and E′, respectively. Φ and Φ′ are isomorphic if there exists a vector space
isomorphism ϕ :E→ E′ fulfilling the two following conditions:

(a) ϕ(Φ) = Φ′;

(b) for any α, β ∈ Φ it holds true that 〈ϕ(α), ϕ(β)〉 = 〈α, β〉.

Theorem 3.41. Let E and E′ be real inner-product spaces and let Φ and Φ′ be root systems in
E and E′, respectively. Φ and Φ′ are isomorphic if and only if their Dynkin diagrams are the
same.

Proof. The “only if” direction is obvious. For the “if” direction choose a base ∆ =

(α1, . . . , αl) for Φ and a base ∆′ = (α′1, . . . , α′l) for Φ′ such that for all i, j ∈ l̂ one has

48



〈αi, αj〉 = 〈α′i, α′j〉. Since ∆ and ∆′ are bases for E and E′, respectively, the map ϕ :E→ E′

defined for any α = ∑n
i=1 kiαi ∈ E by

ϕ(α) :=
n

∑
i=1

kiα
′
i

is a well-defined vector space isomorphism. Now, for any i, k ∈ l̂ we have

sϕ(αi)(ϕ(αk)) = sα′i
(α′k) = α′k − 〈α′k, α′i〉α′i = ϕ(αk)− 〈αk, αi〉ϕ(αi) = ϕ(αk − 〈αk, αi〉αi)

= ϕ(sαi(αk)).

In other words, for all i ∈ l̂ it is true that sϕ(αi) ◦ ϕ = ϕ ◦ sαi or equivalently sα′i
=

ϕ ◦ sαi ◦ ϕ−1. As (sαi)i∈l̂ and (sα′i
)i∈l̂ generate the corresponding Weyl groups W and

W ′ of Φ and Φ′, respectively, it is clear that the map W 3 s 7→ ϕ ◦ s ◦ ϕ−1 ∈ W ′ is
a group isomorphism sending sαi to sα′i

, i ∈ l̂, additionally. Further, take an arbitrary

β ∈ Φ. By Lemma 3.35, there exist s ∈ W0 and i0 ∈ l̂ such that β = s(αi0). But this fact
implies that

ϕ(β) = ϕ(s(αi0)) = (ϕ ◦ s ◦ ϕ−1)(ϕ(αi0)) = (ϕ ◦ s ◦ ϕ−1)(α′i0) ∈ Φ′.

In the same way one can show that for any β′ ∈ Φ′ it holds true ϕ−1(β′) ∈ Φ. Al-
together, ϕ(Φ) = Φ′. It remains to verify that the condition (b) in Definition 3.40 is
satisfied as well. For any β, γ ∈ Φ we have

(ϕ ◦ sγ ◦ ϕ−1)(ϕ(β)) = ϕ(sγ(β)) = ϕ(β− 〈β, γ〉γ) = ϕ(β)− 〈β, γ〉ϕ(γ)

and hence, if β is perpendicular to γ, then (ϕ ◦ sγ ◦ ϕ−1)(ϕ(β)) = ϕ(β) and moreover
in case β = γ we have

(ϕ ◦ sγ ◦ ϕ−1)(ϕ(γ)) = ϕ(γ)− 〈γ, γ〉ϕ(γ) = −ϕ(γ).

In other words, the map (ϕ ◦ sγ ◦ ϕ−1) : Φ′ → Φ′ corresponds precisely to the reflection
in the hyperplane normal to ϕ(γ). It follows

〈ϕ(β), ϕ(γ)〉ϕ(γ) = ϕ(β)− sϕ(γ)(ϕ(β)) = ϕ(β)− (ϕ ◦ sγ ◦ ϕ−1)(ϕ(β))

= ϕ(β)− ϕ(sγ(β)) = ϕ(β− sγ(β)) = ϕ(〈β, γ〉γ)
= 〈β, γ〉ϕ(γ)

and finally, since Φ′ 3 ϕ(γ) 6= 0, we obtain 〈ϕ(β), ϕ(γ)〉 = 〈β, γ〉.

Definition 3.42. A root system Φ is said to be irreducible if there do not exist any non-
empty subsets Φ1 and Φ2 of Φ such that Φ = Φ1 ∪Φ2 and for all α ∈ Φ1 and β ∈ Φ2 it
holds true that (α, β) = 0.

Lemma 3.43. Suppose that Φ is a root system in a real inner-product space E. Then there
exist pairwise disjoint subsets Φ1, . . . , Φn of Φ such that Φ = Φ1 ∪ · · · ∪ Φn and for all
i ∈ n̂ it holds true that Φi is an irreducible root system in Ei := Span Φi. In addition,
E = E1 ⊕ · · · ⊕ En.

Proof. We define an equivalence relation ∼ on Φ: for any α, β ∈ Φ we say that α ∼ β

if there exist γ1, . . . , γs ∈ Φ such that γ1 = α, γs = β and for all i ∈ ŝ− 1 it holds true
that (γi, γi+1) 6= 0. We claim that the classes of equivalence are the required subsets
Φ1, . . . , Φn. First, it is clear that Φ = Φ1 ∪ · · · ∪Φn and that Φi ∩Φj = ∅ for all i, j ∈ n̂.
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Second, we has to convince ourselves that the four axioms are satisfied for each Φk.
(R1) and (R4) hold trivially, (R2) holds because (α,−α) = −‖α‖2 6= 0. For (R3), take
any α, β ∈ Φk. There exist γ1, . . . , γs ∈ Φ such that γ1 = α, γs = β and for all i ∈ ŝ− 1
it holds true that (γi, γi+1) 6= 0. For each i ∈ ŝ− 1 we put γ̂i := sα(γi). Obviously,
γ̂i ∈ Φ for all i ∈ ŝ and (γ̂i, γ̂i+1) = (sα(γi), sα(γi+1)) = (γi, γi+1) 6= 0. Moreover
γ̂1 = sα(α) = −α and γ̂s = sα(β). Hence sα(β) ∼ −α ∈ Φk. Third, all Φk are obviously
irreducible.

Clearly, E = E1 + · · ·+ En. To prove the directness, suppose that 0 = ∑n
i=1 vi, where

vi ∈ Ei for each i ∈ n̂. For all j ∈ n̂ we have

0 = (
n

∑
i=1

vi, vj) =
n

∑
i=1

(vi, vj) = (vj, vj) =
∥∥vj
∥∥2

and hence vj = 0, as desired.

Remark 3.21. It is easily seen from the proof of the previous lemma that both decompo-
sitions considered in that lemma are unique.

Remark 3.22. Obviously, a root system is irreducible precisely when the associated
Dynkin diagram is connected (if we assume that two edges may join each other in a
vertex entirely). In addition, it is clear that the Dynkin diagram of a general root sys-
tem Φ consists of mutually unconnected subdiagrams corresponding to the particular
irreducible root “subsystems” from the previous lemma.

3.2.3 Classification of Root Systems

According to Theorem 3.41, each root system is determined (up to isomorphism) by its
Dynkin diagram. Thus, to classify the root systems it suffices to find all Dynkin dia-
grams that may occur and this is exactly the purpose of the final part of this section (cf.
[7], Chap. 13). By Remark 3.22, it is enough to classify only the connected Dynkin dia-
grams; as a general root system falls into several irreducible subsystems, its respective
Dynkin diagram divides into the same number of mutually disjoint connected Dynkin
diagrams.

Definition 3.44. A subset A = {ε1, . . . , εn} of E is said to be admissible if it is linearly
independent and the following conditions are fulfilled for all i, j ∈ n̂ such that i 6= j:

(a) ‖ε i‖ = 1;

(b) (ε i, ε j) ≤ 0;

(c) 4(ε i, ε j)
2 ∈ {0, 1, 2, 3}.

Definition 3.45. We assign the following graph ΓA to any admissible set A = {ε1, . . . , εn}
in E: ΓA has n vertices labeled by ε1, . . . , εn and for all i, j ∈ n̂ such that i 6= j the vertices
ε i and ε j are connected by dij := 4(ε i, ε j)

2 edges.

Remark 3.23. Obviously, any subset A′ ⊂ A is an admissible set in E again. The graph
ΓA′ is obtained from ΓA by omitting the vertices corresponding to vectors from A/A′

as well as the edges incident to these vertices.

For brevity we will always consider an admissible set A = {ε1, . . . , εn} and the
associate graph ΓA =: Γ for the rest of this section.

Lemma 3.46. The number N of pairs of vertices in Γ connected by at least one edge is strictly
less then n.
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Proof. Set ε := ∑n
i=1 ε i and dij := 4(ε i, ε j)

2. Linear independence of A insures that ε 6= 0.
Thus

0 < (ε, ε) =
n

∑
i,j=1

(ε i, ε j) = n + 2 ∑
i<j

(ε i, ε j) = n−∑
i<j

√
dij = n− ∑

i<j
dij≥1

√
dij ≤ n− N.

Corollary 3.47. Γ does not contain any cycles.

Proof. If it does, then the subset of A corresponding to a cycle is an admissible set. But
the number of vertices of the respective graph equals to the number of connected pairs
of vertices, a contradiction.

Lemma 3.48. At most three edges can be incident to each vertex of Γ.

Proof. Take an arbitrary ε ∈ A and let {η1, . . . , ηk} ⊂ A be the set of all vertices joined
to ε. In view of Corollary 3.47, (ηi, ηj) = δij for all i, j ∈ k̂. Since ε, η1, . . . , ηk are linearly
independent, we may find η0 ∈ A such that (η0, η1, . . . , ηk) is an orthonormal basis
for Span {ε, η1, . . . , ηk}. It is clear that (ε, η0) 6= necessarily. Then we can write ε =

∑k
i=0(ε, ηi)ηi and 1 = (ε, ε) = ∑k

i=0(ε, ηi)
2. But as (ε, η0)2 > 0, we obtain ∑k

i=1(ε, ηi)
2 < 1

or equivalently

4 >
k

∑
i=1

4(ε, ηi)
2 =

k

∑
i=1

di,

where di denotes the number of edges joining the vertices ε and ηi.

Corollary 3.49. If Γ is connected and it has a triple edge, then Γ is of the shape .

Proof. It follows immediately from the previous lemma.

Lemma 3.50. Suppose that ΓA has a subgraph

η1 η2 ηk
.

Then the set A′ := (A/ {η1, . . . , ηk}) ∪ {η}, where η := ∑k
i=1 ηi, is admissible.

Proof. First, linear independence of A′ is obvious. Second, according to the character
of the graph, we can write

‖η‖2 = (η, η) =
k

∑
i,j=1

(ηi, ηj) =
k

∑
i=1

(ηi, ηi) +
k

∑
i,j=1
|i−j|=1

(ηi, ηj) = k + 2(k− 1)(−1
2
) = 1.

Third, for all ε ∈ A′/ {η} = A/ {η1, . . . , ηk} we have (ε, η) = ∑k
i=1(ε, ηi) ≤ 0, since

the same inequality holds for each single summand. Finally, for each ε ∈ A′/ {η}
there is at most one j ∈ k̂ such that (ε, ηj) 6= 0, otherwise ΓA would contain a cycle.
Moreover, if such j exists, then 4(ε, ηj) ∈ {1, 2, 3}. Altogether, for all ε ∈ A′/ {η} we
have (ε, η) = ∑k

i=1(ε, ηi) ∈ {0, 1, 2, 3}.

Remark 3.24. It is easily seen from the previous proof that we obtain the graph ΓA′ by
replacing the subgraph of ΓA corresponding to {η1, . . . , ηk} by one single vertex η and
by joining all the vertices in ΓA other than {η1, . . . , ηk} connected in the original graph
ΓA to one of {η1, . . . , ηk} to this new vertex. For this reason, this lemma is sometimes
called “Shrinking Lemma” (cf. [7]).
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Corollary 3.51. Γ does not contain any subgraph of the three following shapes:

,

,

.

Proof. Suppose that Γ contains a subgraph of the first discussed shape. Then, by Lemma
3.50, we may consider some new graph (corresponding to an admissible set) contain-
ing a subgraph , contradicting Lemma 3.48. For the two other shapes,
the procedure is identical.

Lemma 3.52. Suppose that ΓA has a subgraph

η1 η2 ηk

and set η := ∑k
i=1 iηi. Then (η, η) = k(k+1)

2 .

Proof. Considering how the given subgraph looks like, we may compute

(η, η) =
k

∑
i,j=1

ij(ηi, ηj) =
k

∑
i=1

i2(ηi, ηi) +
k

∑
i,j=1
|i−j|=1

ij(ηi, ηj)

=
k

∑
i=1

i2 +
k−1

∑
i=1

i(i + 1)(ηi, ηi+1) +
k

∑
i=2

i(i− 1)(ηi, ηi−1)

=
k

∑
i=1

i2 + 2

(
−1

2

k−1

∑
i=1

i(i + 1)

)
= k2 −

k−1

∑
i=1

i = k2 − (k− 1)k
2

=
k(k + 1)

2
.

Lemma 3.53. If Γ contains a double edge, then it has one of the two following shapes:

,

.

Proof. By Corollary 3.51, Γ may not have more than one double edges as well as both a
double edge and a “branch” point, thus it has to be of the form

η1 η2 ηk−1 ηk ϑm ϑm−1 ϑ2 ϑ1
,

where k, m ∈ N. According to the previous lemma, for η := ∑k
i=1 iηi and ϑ := ∑m

i=1 iϑi

we have ‖η‖2 = k(k+1)
2 and ‖ϑ‖2 = m(m+1)

2 , respectively. Moreover, according to the
shape of our graph

(η, ϑ)2 =

(
k

∑
i=1

m

∑
j=1

ij(ηi, ϑj)

)2

= (km(ηk, ϑm))
2 =

k2m2

2
.
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Since η and ϑ are clearly linearly independent, the Schwarz-Cauchy inequality (cf. [2],
p. 13) implies that

k2m2

2
= (η, ϑ)2 < ‖η‖2 ‖ϑ‖2 =

k(k + 1)m(m + 1)
4

,

hence 2km < km + k + m + 1 or equivalently

(k− 1)(m− 1) < 2.

Now it is easily seen that either at least one of the positive integers k, m equals to 1 or
k = m = 2.

Lemma 3.54. If Γ has a vertex joined to three different other vertices, then it is of the form

η1 η2 ηk ε

ζl

ϑm

ζ2

ϑ2

ζ1

ϑ1
,

whereas for the triplet of positive integers (k, l, m) it holds true

(k, l, m) ∈ {(1, 2, 2), (1, 2, 3), (1, 2, 4)} ∪
{
(1, 1, p)

∣∣ p ∈N
}

.

Proof. First, by Corollary 3.51, Γ may not have more than one “branch” point as well as
both a double edge and a “branch”, hence it must be of the form as claimed. Second, we
uncover all possible combinations of k, l, m. Let us assume, without loss of generality,
that k ≤ l ≤ m. Again we set η := ∑k

i=1 iηi, ζ := ∑l
i=1 iζi and ϑ := ∑m

i=1 iϑi. There exists
ε̃ ∈ E such that the set

{
ε̃, η̃, ζ̃, ϑ̃

}
, where η̃ = η/ ‖η‖, ζ̃ = ζ/ ‖ζ‖ and ϑ̃ = ϑ/ ‖ϑ‖, is an

orthonormal basis for Span {ε, η, ζ, ϑ}. In addition, (ε, ε̃) 6= 0. Then we may decompose
ε as follows:

ε = (ε, η̃)η̃ + (ε, ζ̃)ζ̃ + (ε, ϑ̃)ϑ̃ + (ε, ε̃)ε̃.

Consequently, according to Lemma 3.52 and to the considering graph,

1 = ‖ε‖2 = (ε, η̃)2 + (ε, ζ̃)2 + (ε, ϑ̃)2 + (ε, ε̃)2 > (ε, η̃)2 + (ε, ζ̃)2 + (ε, ϑ̃)2

=
(ε, η)2

‖η‖2 +
(ε, ζ)2

‖ζ‖2 +
(ε, ϑ)2

‖ϑ‖2 =
(ε, kηk)

2

‖η‖2 +
(ε, lζl)

2

‖ζ‖2 +
(ε, mϑm)2

‖ϑ‖2

=
k

2(k + 1)
+

l
2(l + 1)

+
m

2(m + 1)
.

From this we have

2 >
k

k + 1
+

l
l + 1

+
m

m + 1
= 3− 1

k + 1
− 1

l + 1
− 1

m + 1

or equivalently
1

k + 1
+

1
l + 1

+
1

m + 1
> 1.

By our assumption, 1
k+1 ≥

1
l+1 ≥

1
m+1 which implies 1 < 3

k+1 . Therefore k = 1. Using
this fact, we have 1

2 < 2
l+1 and hence l < 3. If l = 2, then 1

6 < 1
m+1 resulting in m < 5. In

case l = 1, we have 0 < 1
m+1 and thus m may be arbitrary. This completes the proof.
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Theorem 3.55. Let Φ be an irreducible root system in E. The unlabeled Dynkin diagram ΓΦ
associated to Φ is, depending on the rank l of Φ, one of those in the following list:

Al :
α1 α2 αl−1 αl

, for l ≥ 1;

Bl :
α1 α2 αl−2 αl−1 αl

, for l ≥ 2;

Cl :
α1 α2 αl−2 αl−1 αl

, for l ≥ 3;

Dl :
α1 α2 αl−3 αl−2

αl−1

αl
, for l ≥ 4;

E6 :
α1 α3 α4

α2

α5 α6
, for l = 6;

E7 :
α1 α3 α4

α2

α5 α6 α7
, for l = 7;

E8 :
α1 α3 α4

α2

α5 α6 α7 α8
, for l = 8;

F4 :
α1 α2 α3 α4

, for l = 4;

G2 :
α1 α2

, for l = 2.

Remark 3.25. We have used the word “unlabeled” in the statement of the theorem al-
though we have labeled the diagrams above. Clarify that the theorem holds for the
Dynkin diagrams without labels. We added the labelling just to establish the standard
notation (cf. [3]) that we shall use later.

Proof. Take any base ∆ = {β1, β2, . . . , βl} of Φ. We have known that the unlabeled
Dynkin diagram for Φ is independent of the particular choice of this base (cf. Theorem
3.41). Further, the set ∆̃ :=

{
β̃1, . . . , β̃l

}
, where β̃i := βi

‖βi‖ for all i ∈ l̂, is admissible.
In addition, its respective graph is precisely the Dynkin diagram of Φ with omitted
arrows (such graph is said to be Coxeter (cf. [6], Sec. 5.9)) because for all i, j ∈ l̂ we have

〈βi, β j〉〈β j, βi〉 =
2(βi, β j)

(β j, β j)

2(β j, βi)

(βi, βi)
= 4(β̃i, β̃ j)

2.

Hence we may use the preceding auxiliary propositions and lemmas and apply all the
restrictions to the Dynkin diagram associated to Φ.

According to Corollary 3.47, ΓΦ has no cycles and also, by Lemma 3.48, four or more
edges cannot incident to each vertex.

First, consider ΓΦ without any “branch” point. If ΓΦ contains a triple edge, it must
be of type G2 (cf. Corollary 3.49). If any double edge occurs, then, by Lemma 3.53,
either ΓΦ is the F4 or it is a member of the series Bl or Cl ; if l = 2 then we say that ΓΦ
is of the type B2 and in case l > 2, if there are more longer roots in ∆ than the shorter
ones (obviously, precisely two different lengths of roots occur (cf. Remark 3.19)), then
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we say ΓΦ to be of type Bl , Cl otherwise. The only remaining allowed graph without a
“branch” point is the single-edges line, type Al .

Second, suppose that ΓΦ has a “branch” point. By Corollary 3.51, this point is pre-
cisely one in number. Moreover, by the same corollary, no double edge can occur si-
multaneously. Thus, the only possible shapes are those investigated in Lemma 3.54 and
the statement of that lemma completes the list of possible diagrams obviously.

Remark 3.26. To finish the classification of Dynkin diagrams completely we should
show that for each diagram from the list in Theorem 3.55 there exists an irreducible
root system indeed but we omit this part here. The respective root systems for each
Dynkin diagram are constructed for example in [6], Sec. 5.10.

With the last theorem we have finished the categorization of root systems into iso-
morphism classes whereas each class is uniquely determined by the Dynkin diagram.
This allows us to adopt the notation of Dynkin diagrams also for the root systems. In
irreducible case, we talk about a root system of type Tl , where l ∈ N is the rank of the
root system and T ∈ {A, B, C, D, E, F, G} is the type of its (connected) Dynkin diagram.
If the root system consists of several irreducible subsystems, we say that it is of type
Tl1 × Tl2 × · · · × Tlm , where Tl1 , Tl2 , . . . , Tlm are types of the irreducible subsystems.

3.3 Correspondence between Semisimple Lie Algebras
and Root Systems

In this very last part of the third chapter we investigate the correspondence between
semisimple Lie algebras and root systems. Then we use the previous results concerning
classification of root systems to give complete classification of semisimple Lie algebras.

3.3.1 Uniqueness of the Root System of a Semisimple Lie Algebra

First, we clarify the relationship between the decomposition of a semisimple Lie alge-
bra into simple ideals and the decomposition of a root system into irreducible subsys-
tems (cf. [9], Sec. 14.1). As anticipated, this conjugacy is very natural and convenient.

Recall that Example 3.12 permits us to use the term “root system of a semisimple
Lie algebra” since the set of roots of such a Lie algebra satisfies the four axioms of root
system in Definition 3.26.

Lemma 3.56. Suppose that L is a simple Lie algebra, H is a Cartan subalgebra of L and Φ is
the root system of L with respect to H. Then Φ is irreducible.

Proof. Suppose that it is not. Then, by Lemma 3.43, Φ can be written as a disjoint union
of two mutually perpendicular root systems Φ1 and Φ2. Let K be the subalgebra of L
generated by a set

{
eα ∈ Lα

∣∣ α ∈ Φ1
}

, where, for all α ∈ Φ1, eα 6= 0. We claim that K is
a non-zero proper ideal of L.

First, K is obviously non-trivial.
Second, suppose that K = L. Take any β ∈ Φ2, non-zero x ∈ Lβ and y ∈ L. Then

there exists α ∈ Φ1 such that Lα 3 y. Further, we claim that α+ β /∈ Φ. Indeed, we have
(α, α + β) = (α, α) 6= 0 and hence α + β /∈ Φ2. Similarly, since (β, α + β) = (β, β) 6= 0,
α + β /∈ Φ1. Consequently, the commutator [x, y] ∈ Lα+β has to be zero and, as y can be
taken arbitrarily, it follows that x ∈ Z(L) = 0 (cf. Proposition 1.27 (b)), a contradiction.

Finally, we show that K is an ideal. Take an arbitrary generator eα of K. First, for
any x ∈ H = L0 we have [x, eα] = α(x)eα ∈ Lα ⊂ K. Second, take any β ∈ Φ1 and
y ∈ Lβ. If α + β ∈ Φ1, then [eα, y] ∈ Lα+β ⊂ K. Otherwise, if α + β /∈ Φ1, we have
(α + β, α) = (α + β, β) = 0 and accordingly α + β = 0 /∈ Φ. Then [eα, y] = 0 ∈ K. Third,
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we have already seen that for any γ ∈ Φ2 it holds true α+ γ /∈ Φ and therefore for each
z ∈ Lγ, γ ∈ Φ2, it is satisfied [eα, z] = 0 ∈ K.

All in all, K is a non-trivial proper ideal of a simple Lie algebra L and hence we
reached a contradiction.

Corollary 3.57. Suppose that L is a semisimple Lie algebra, H is a Cartan subalgebra of L and
Φ is the root system of L with respect to H. Let L = L1 ⊕ · · · ⊕ Ln be the decomposition of L
into its simple ideals. Then for all i ∈ n̂ it holds true that Hi := H∩ Li is a Cartan subalgebra of
Li. Moreover, if for all i ∈ n̂ we define Φ̃i :=

{
α ∈ H∗

∣∣ α|Hi ∈ Φi and for all j 6= i, α|Hj ≡ 0
}

,

where Φi is the root system of Li, then Φ = Φ̃1 ∪ · · · ∪ Φ̃n is the decomposition of Φ into irre-
ducible subsystems.

Proof. Take an arbitrary i ∈ n̂. First, Hi is obviously abelian since H is. Second, by
Proposition 2.19, any hi ∈ Hi ⊂ H is semisimple, regarded as an element of Li. Third,
we claim that Hi is maximal with this properties. Indeed, if there exists a semisimple
element x ∈ Li/Hi such that [x, h] = 0 for all h ∈ Hi, then x is semisimple also as an
element of L, again by Proposition 2.19. Moreover, according to Remark 1.6, [x, h] = 0
even for all h ∈ H, but x /∈ H, which contradicts the maximality of H.

For the root systems, given any i ∈ n̂ and α ∈ Φ̃i, according to the definition of Φ̃i,
α is a linear functional on H. Moreover, α is a root of L with a (non-trivial) root space
associated to α|Hi ∈ Φi originally. It is also obvious that Φ̃i is irreducible when Φi, as a
root system of a simple Lie algebra, is. Contrariwise, for each α ∈ Φ there are j ∈ n̂ and
hj ∈ Hj such that α(hj) 6= 0. If not, then, because H = H1 ⊕ · · · ⊕ Hn, α ≡ 0 but this is
impossible since α is a root. Also there is y ∈ L such that y 6= 0 and [hj, y] = α(hj)y or,
in other words, y ∈ Lj. Further, for all k ∈ n̂ such that k 6= j and for all hk ∈ Hk ⊂ Lk
we have α(hk)y = [hk, y] = 0 and consequently α(hk) = 0. This implies that α ∈ Φ̃j and
the proof is now complete.

The problem that still remains is whether the root system depends on the particular
choice of Cartan subalgebra. The following theorem, whose proof can be found in
Chapter 9 of [10], provides a solution.

Theorem 3.58. Let H and H′ be Cartan subalgebras of a semisimple Lie algebra L. Then there
exists a Lie algebra isomorphism φ : L→ L such that φ(H) = H′.

Remark 3.27. The isomorphism from a Lie algebra onto itself is called automorphism.

Corollary 3.59.

(a) The root system of a semisimple Lie algebra is unique, up to isomorphism.

(b) Two isomorphic semisimple Lie algebras have isomorphic root systems.

Proof.

(a) Let L be a Lie algebra and let H and H′ be CSA’s of L with associated root systems
Φ and Φ′, respectively. By the previous theorem, there exists an automorphism of
L, say φ, such that H′ = φ(H). For all h ∈ H and α ∈ H∗ we define φ∗ : H∗ → H′∗

by
(φ∗(α))(φ(h)) := α(h).

Clearly, φ∗ is a bijection. Further, for all α ∈ Φ, x ∈ Lα and h ∈ H let us denote
h′ := φ(h), α′ := φ∗(α) and x′ := φ(x). Then we can write
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[h′, x′] = [φ(h), φ(x)] = φ([h, x]) = φ(α(h)x) = α(h)φ(x) = (φ∗(α))(φ(h))φ(x)
= α′(h′)x′

which implies that φ(Φ) = Φ′ and consequently that the restriction of φ∗ to E :=
SpanR Φ is a vector space isomorphism sending E to E′ := SpanR Φ′.

Now, we use the fact that, for all x, y ∈ L, the maps ad x ◦ ad y and ad φ(x) ◦ ad φ(y)
have the same eigenvalues. This is obvious when we apply them to any z ∈ L and
φ(z) ∈ φ(L), respectively, and when we realize that φ is an isomorphism. Let us
consider the vectors tα ∈ H and tα′ ∈ H′ established in Remark 3.3. For all α ∈ Φ
and h ∈ H we have

κ(φ(tα), φ(h)) = Tr(ad φ(tα) ◦ ad φ(h)) = Tr(ad tα ◦ ad h) = κ(tα, h) = α(h)
= (φ∗(α))(φ(h)) = κ(tφ∗(α), φ(h))

and from non-degeneracy of κ (cf. Theorem 1.43) we conclude that tφ∗(α) = φ(tα).
Then for arbitrary α, β ∈ Φ it follows

(φ∗(α), φ∗(β)) = κ(tφ∗(α), tφ∗(β)) = κ(φ(tα), φ(tβ)) = κ(tα, tβ) = (α, β),

in particular 〈φ∗(α), φ∗(β)〉 = 〈α, β〉.
All in all, Φ and Φ′ are isomorphic root systems.

(b) Let φ : L → L′ be an isomorphism of Lie algebras L and L′. Let H be a CSA of L.
We claim that H′ := φ(H) is a CSA of L′. Indeed. First, H′ is obviously abelian.
Second, for any φ(h) ∈ H′ it holds true that ad φ(h) is diagonalisable if and only
if ad h is and thus φ(h) is semisimple as well as h is. Finally, H′ has to be maximal
with this properties. If it was contained in any larger G′ ⊃ H′, G′ 6= H′, then
G := φ−1(G′) ⊃ H, G 6= H would be also abelian and it would contain entirely
semisimple elements, contradicting the maximality of H.

Now we may repeat the proof of part (a) exactly (notice that we did not use the
fact that φ(L) = L there at all) in order to show that the root systems associated to
H and H′, respectively, are isomorphic to each other. Finally, according to (a), any
other two root systems are isomorphic as well.

To avoid an ambiguity, remark that the apostrophes above L and H do not mean
the “derived algebra” here.

3.3.2 Existence and Uniqueness Theorems

We have already assigned to each isomorphism class of semisimple Lie algebras exactly
one type (or class of isomorphism, equivalently) of root systems. The only question re-
mained is whether this assignment may be reversed i.e. whether for each type of root
systems there exists, up to isomorphism, at most one semisimple Lie algebra. The an-
swer is “yes” and in addition more is true. In fact there is one-to-one correspondence
between isomorphism classes of semisimple Lie algebras and isomorphism classes of
all root systems that may occur. At first, we state two lemmas introducing the “com-
pact” set of generators for a semisimple Lie algebra (cf. [7], Sec. 14.1).

Lemma 3.60. Let L be a semisimple Lie algebra, let H be a CSA of L and let ∆ = {α1, . . . , αl}
be a base for the root system Φ associated to H. Then L is generated by e1, . . . , el , f1, . . . , fl ,
where, for all i ∈ l̂, (ei ≡ eαi , fi ≡ fαi , hi ≡ hαi) is a basis for sl(αi) introduced in Proposition
3.13.
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Proof. Considering the root space decomposition of L, it is enough to show that the
CSA and all root spaces are generated in this way.

For the CSA, we know that [ei, fi] = hi for all i ∈ l̂ hence it suffices to show
that hi, . . . , hl form a basis of H. This is in fact so. It follows from Remark 3.3 that
(tαi , . . . , tαl ), where tαi , i ∈ l̂, are those from the remark, is a basis for H. By the defini-
tion, each hi is a non-zero multiple of tαi and hence (hi, . . . , hl) is a basis too.

Now, take any β ∈ Φ and let K denote the subalgebra of L generated by e1, . . . , el
and f1, . . . , fl . We want to show that Lβ ⊂ K. By Lemma 3.35, there exist s ∈ W0 and
j ∈ l̂ such that β = s(αj). As this s is composed of finitely many simple reflections and
Lαi ⊂ K for any i ∈ l̂ obviously, it suffices to show that if β = sαi(γ) for some i ∈ l̂ and
γ ∈ Φ, then Lγ ⊂ K implies Lβ ⊂ K.

Thus, let M denote the αi-root string through γ. We have known (cf. proof of part
(b) of Proposition 3.18) that M is an irreducible sl(αi)-module. Moreover, the structure
of this module is known as well (from the classification in the second chapter): for any
non-zero eγ ∈ Lγ and k ∈ N we have 0 6= ek

i · eγ = (ad ei)
k(eγ) ∈ Lγ+kαi , whenever

γ + kαi ∈ Φ, and via the action of fi we may obtain 0 6= f l
i · eγ = (ad fi)

k(eγ) ∈ Lγ−lαi ,
l ∈ N and γ− lαi ∈ Φ. Finally, it suffices to realize that β = sαi(γ) = γ− 〈γ, αi〉αi to
prove Lβ ⊂ K.

Lemma 3.61. Suppose that L is a semisimple Lie algebra, H is a CSA of L and ∆ = {α1, . . . , αl}
is a base for the root system associated to H. For each i ∈ l̂ let (ei, fi, hi) be the basis for sl(αi)

as before. For all i, j ∈ l̂ the following relations are fulfilled:

(S1) [hi, hj] = 0;

(S2) [hi, ej] = 〈αj, αi〉ej and [hi, f j] = −〈αj, αi〉 f j;

(S3) [ei, f j] = δijhi;

(S4) if i 6= j, then (ad ei)
1−〈αj,αi〉(ej) = 0;

(S5) if i 6= j, then (ad fi)
1−〈αj,αi〉( f j) = 0.

Proof. First, (S1) holds since H is abelian. Second, by Proposition 3.21, we have

[hi, ej] = αj(hi)ej =
2(αj, αi)

(αi, αi)
ej = 〈αj, αi〉ej,

thus the first part of (S2) holds. For the second part, it suffices to realize that each
fi ∈ L−αi , i ∈ l̂. For (S3), if i = j, then the statement holds directly from Proposition
3.13, where the basis was established. In case i and j are distinct, we have [ei, f j] ∈
Lαi−αj but, from the definition of a base for a root system, αi − αj cannot be a root
and hence Lαi−αj = 0. Finally, by the previous part, the αi-root string through αj is
of the form

{
αj, αj + αi, . . . , αj + qαi

}
, where q = −αj(hi) = −〈αj, αi〉 (cf. part (b) of

Proposition 3.18). Now the statement is clear because (ad ei)
1−〈αj,αi〉(ej) ∈ Lαj+(q+1)αi

and αj + (q + 1)αi /∈ Φ. (S5) is analogous to (S4).

At this place we state an important theorem telling us that the five relations in the
previous lemma are sufficient to define a semisimple Lie algebra backwards. We omit
the proof, one can found it in Section 18 of [9], however we prove two immediate
consequences that complete the whole classification of semisimple Lie algebras.
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Theorem 3.62 (Serre). Suppose that Φ is a root system and ∆ = {α1, . . . , αl} is its base. Let
L be the complex Lie algebra generated by a set of abstract vectors

{
ei, fi, hi

∣∣ i ∈ l̂
}

satisfying
the relations (S1), (S2), (S3), (S4), (S5). Then L is a (finite-dimensional) semisimple Lie
algebra with Cartan subalgebra H := Span

{
hi
∣∣ i ∈ l̂

}
and with root system Φ.

Remark 3.28. Let L and L′ be two semisimple Lie algebras with respective CSA’s H and
H′ and root systems Φ and Φ′. Suppose that Φ and Φ′ are isomorphic i.e. that there
exists a vector space isomorphism ϕ : SpanR Φ → SpanR Φ′ such that ϕ(Φ) = Φ′. We
claim that ϕ induces a Lie algebras isomorphism φ : H → H′. To show this, we use the
coupling H ↔ H∗ and H′ ↔ H′∗ via the Killing form introduced in Remark 3.3.

First, let ∆ := {α1, . . . , αl} be as base of Φ. Then ∆′ :=
{

ϕ(αi)
∣∣ i ∈ l̂

}
is a base of Φ′

since ϕ is a bijection and since for any α′ ∈ Φ′ there exists α = ∑l
i=1 ciαi ∈ Φ, where the

coefficients (ci)i∈l̂ are either all non-negative or all non-positive, such that α′ = ϕ(α).
Then

α′ = ϕ(α) = ϕ

(
l

∑
i=1

ciαi

)
=

l

∑
i=1

ci ϕ(αi).

and thus we are able to express any root from Φ′ as a linear combination of simple roots
from ∆′ with either completely non-negative or completely non-positive coefficients.

Now, for all i ∈ l̂ let ti ≡ tαi ∈ H and t′i ≡ tϕ(αi) ∈ H′, respectively, be the vectors
from Remark 3.3. It results from the remark that (t1, . . . , tl) is a basis for H and similarly
(t′1, . . . , t′l) is a basis for H′. We define a map φ : H → H′ as follows: for all i ∈ l̂ we put

φ(ti) :=
(αi, αi)

(ϕ(αi), ϕ(αi))
t′i (3.14)

and for any other h ∈ H we define φ(h) as linear extension of (3.14). Clearly, φ is a
linear bijection. Moreover, since both H and H′ are abelian, φ also preserves the Lie
bracket and thus it is the required isomorphism.

Remark 3.29. Let Φ and Φ′ be two isomorphic root systems and let ϕ : E → E′, where
E := SpanR Φ and E′ := SpanR Φ′, be a vector space isomorphism such that ϕ(Φ) = Φ′.
Consider the decomposition Φ = Φ1 ∪ · · · ∪Φn into irreducible root systems and take
any j ∈ n̂. Further, take any α, β ∈ Φj such that (α, β) 6= 0. There exists non-zero k j ∈ R

such that (ϕ(α), ϕ(β)) = k j(α, β). Now, take any other γ, δ ∈ Φj such that (γ, δ) 6= 0.
According to the proof of Lemma 3.43, there exist γ1, . . . , γs ∈ Φ such that γ1 = β,
γs = γ and for all i ∈ ŝ− 1 it holds true that (γi, γi+1) 6= 0. Moreover, if we denote
γ0 := α and γs+1 := δ, then (γi, γi+1) 6= 0 even for all i ∈ ŝ.

Using incomplete induction on i, we show that (ϕ(γi), ϕ(γi+1)) = k j(γi, γi+1) for
all i ∈ ŝ. The case i = 0 is just our definition of k j. For the inductive step assume that
(ϕ(γi−1), ϕ(γi)) = k j(γi−1, γi). Consequently, since 〈ϕ(γi−1), ϕ(γi)〉 = 〈γi−1, γi〉, also
(ϕ(γi), ϕ(γi)) = k j(γi, γi) and further, as 〈ϕ(γi+1), ϕ(γi)〉 = 〈γi+1, γi〉, we have

(ϕ(γi), ϕ(γi+1)) = (ϕ(γi+1), ϕ(γi)) = k j(γi+1, γi) = k j(γi, γi+1),

as desired.
In particular, this proves that (ϕ(γ), ϕ(δ)) = k j(γ, δ) for all γ, δ ∈ Φj (the case when

(γ, δ) = 0 is contained trivially).
Now, we define a new inner product ( , )new on E as follows: for α ∈ Ei := SpanR Φi

and β ∈ Ej := SpanR Φj, i, j ∈ n̂, we put

(α, β)new := δijk j(α, β), (3.15)
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where k j is as above. One can easily see that (3.15) establishes an inner-product in-
deed. Moreover, all four axioms of root system are still satisfied after this change obvi-
ously, thus Φ is a root system also in real inner-product space (E; ( , )new) and, finally,
the new inner product is preserved by ϕ (in the sense that for all α, β ∈ Φ we have
(ϕ(α), ϕ(β)) = (α, β)new).

All in all, considering an isomorphism between two root systems, we may assume,
without loss of generality, that it preserves the inner product.

Corollary 3.63 (Existence and Uniqueness Theorems).

(a) Let Φ be a root system. Then there exists a semisimple Lie algebra having Φ as its root
system.

(b) Let L and L′ be semisimple Lie algebras with respective CSA’s H and H′ and root systems Φ
and Φ′. Suppose that Φ and Φ′ are isomorphic and let ϕ denote the respective isomorphism
(ϕ(Φ) = Φ′). Further, let {α1, . . . , αl} be a base of Φ and let φ : H → H′ be the induced
isomorphism introduced in Remark 3.28. For each i ∈ l̂ select arbitrary non-zero ei ∈ Lαi

and e′i ∈ L′ϕ(αi)
. Then there exists a unique Lie algebras isomorphism ψ : L → L′ such that

ψ|H = φ and for all i ∈ l̂ it holds true that ψ(ei) = e′i.

Proof.

(a) It suffices to take any set of 3l linearly independent vectors and define the Lie
bracket so that all relations (S1) - (S5) are satisfied.

(b) Let (t1, . . . , tl) and (t′1, . . . , t′l) be the bases for H and H′, respectively, from Remark

3.28. Obviously, (h1, . . . , hl) and (h′1, . . . , h′l), where hi =
2ti

(αi ,αi)
and h′i =

2t′i
(ϕ(αi),ϕ(αi))

,

i ∈ l̂, are bases as well. For all i ∈ l̂, let fi ∈ L−αi be such that [ei, fi] = hi and let
f ′i ∈ L′−ϕ(αi)

be such that [e′i, f ′i ] = h′i. We define

ψ(hi) := h′i, ψ(ei) := e′i, ψ( fi) := f ′i ,

i ∈ l̂. We must verify that ψ extends φ. Indeed. According to Remark 3.29, we may
assume that ϕ preserves the inner product. Then for all i ∈ l̂ we have

φ(hi) = φ(
2ti

(αi, αi)
) =

2φ(ti)

(αi, αi)
=

2t′i
(ϕ(αi), ϕ(αi))

= h′i.

Finally, since
{

e′i, f ′i , h′i
∣∣ i ∈ l̂

}
generate the semisimple Lie algebra L′ where the

same commutation relations hold as in the semisimple Lie algebra L generated
by
{

ei, fi, hi
∣∣ i ∈ l̂

}
, it is clear that ψ : L → L′ is a Lie algebras homomorphism.

Moreover, the same holds true for the map ψ′ : L′ → L defined for all i ∈ l̂ by

ψ′(h′i) := hi, ψ′(e′i) := ei, ψ′( f ′i ) := fi.

Obviously, ψ and ψ′ are mutually inverse and hence ψ is the desired isomorphism
of Lie algebras. Notice that we had no freedom how to define this isomorphism
except the selection in the statement of the theorem.

Existence and uniqueness theorems complete the process of classification of semi-
simple Lie algebras. Let us summarize the classification at this place.

We have discovered that there exists precisely one class of isomorphism of semisim-
ple Lie algebras for each type of the root system. This fact allows us to accept the nota-
tion of root systems also for semisimple Lie algebras. Thus, talking about a semisimple
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Lie algebra Tl1 × Tl2 × · · · × Tlm , we will always mean a semisimple Lie algebra, say L,
having the root system of type Tl1 × Tl2 × · · · × Tlm . Any other semisimple Lie algebra
with the root system of the same type has to be isomorphic to L. Moreover, L is com-
posed of m simple ideals (in sense of Theorem 1.47) and the root systems of these ideals
are exactly of those types Tl1 , Tl2 , . . . , Tlm , respectively.

Notice that the list of all possible Dynkin diagrams in Theorem 3.55 corresponds
precisely to the list of isomorphic classes of all simple Lie algebras that may occur.
Using the standard terminology, the simple Lie algebras Al , Bl , Cl and Dl are called
classical and the others, E6, E7, E8, F4 and G2, are said to be exceptional. Remark that
the classical Lie algebras occur naturally as certain subalgebras of Lie algebras gl(n, C)
for suitable n ∈ N. One of these subalgebras is the Lie algebra sl(n, C) introduced in
Subsection 1.1.4. It can be shown that the root system of sl(l + 1, C) has type Al , in
particular sl(l + 1, C) is simple (cf. [7]).

Finally, the correspondence described above permits us to define the rank of a semi-
simple Lie algebra L to be the rank of the root system of L.
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Chapter 4

Construction of Simple Lie Algebras

In this last chapter we show how to construct a simple Lie algebra of an arbitrary type.
The generalization to the semisimple case is straightforward since each semisimple Lie
algebra falls uniquely into the direct sum of simple ideals.

The problem of construction of the Lie algebra consists in giving a basis and in es-
tablishing commutation relations among the basis elements. We need to do this in such
a way, that the constructed simple Lie algebra has the desired root system (correspond-
ing to the type of the Lie algebra). Naturally, one aims to choose an advisable basis
in order to simplify the commutation relations as much as possible. In the first sec-
tion of this chapter we introduce such a basis and in the second section we present the
algorithms for computing the structure constants with respect to this convenient basis.

4.1 Chevalley Basis

Remark 4.1. Let L be a (finite-dimensional complex) semisimple Lie algebra. Consider
the root space decomposition of L (3.4):

L = H ⊕
⊕
α∈Φ

Lα,

where H is a Cartan subalgebra of L and Φ is the root system associated to H. In
Proposition 3.13 we assigned a three-dimensional subalgebra sl(α) to each α ∈ Φ. This
subalgebra was spanned by the vectors eα, fα and hα, whereas eα was chosen arbitrarily
to fulfill only eα 6= 0, hα ∈ H was given by hα = 2tα

‖α‖2 , where 0 6= tα ∈ H was defined

in Remark 3.3, and fα ∈ L−α was determined (uniquely) by [eα, fα] = hα. Notice that
fα 6= 0 clearly.

Now we choose ∆, a base for Φ, and denote the set of all positive roots with respect
to this base by Φ+. We saw (for example in the proof of Lemma 3.60) that

{
hα

∣∣ α ∈ ∆
}

forms a basis of H. Remark that the vectors hα are also defined for α = ∑β∈∆ cββ ∈ Φ/∆
and by Remark 3.3 it holds true that

hα =
2

‖α‖2 tα =
2

‖α‖2 ∑
β∈∆

cβtβ = ∑
β∈∆

(
‖β‖2

‖α‖2 cβ

)
hβ. (4.1)

In fact, the relation (4.1) holds for all α ∈ Φ but it is trivial for α ∈ ∆.
Further, let us choose the non-zero vectors eα ∈ Lα but only for α ∈ Φ+. For the

negative roots α ∈ Φ− we put eα := f−α, where f−α is as above. From part (a) of Lemma
3.17 it is clear that for all α ∈ Φ it holds true that Lα = Span {eα}.

Altogether, the set B0 :=
{

hα

∣∣ α ∈ ∆
}
∪
{

eα

∣∣ α ∈ Φ
}

forms a basis for L.
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In the following text, we will keep the notation from the previous remark. In partic-
ular, we will assume that the convenient basis B0 of L introduced there is given. Now,
we summarize known commutation relations among the basis vectors.

Proposition 4.1. With the notation above, the following relations hold:

(a) if α, β ∈ ∆, then [hα, hβ] = 0;

(b) if α ∈ ∆ and β ∈ Φ, then [hα, eβ] = 〈β, α〉eβ;

(c) if α ∈ Φ, then [eα, e−α] = hα;

(d) if α, β ∈ Φ such that α 6= −β and α + β /∈ Φ, then [eα, eβ] = 0.

Proof. First, (a) is obvious since H is abelian. For (b), since eγ ∈ Lγ and hα ∈ H, we may
write

[hα, eβ] = β(hα)eβ =
2(β, α)

(α, α)
eβ = 〈β, α〉eβ.

Third, (c) holds from the choice of eα directly and finally, (d) is implied by Proposition
3.7 (a) together with the fact that α + β /∈ Φ.

Remark 4.2. The list of the structure constants of L in the previous proposition is incom-
plete. It remains to determine the constants Nα,β defined by

[eα, eβ] = Nα,βeα+β, (4.2)

α, β, α + β ∈ Φ. For the correctness of the definition remark that, according to Proposi-
tion 3.7 (a), [eα, eβ] ∈ Lα+β. Moreover, part (d) of the previous proposition allows us to
define Nα,β for all α, β ∈ Φ such that α + β 6= 0: we put Nα,β := 0 whenever α + β /∈ Φ.
Just for convenience, we put Nα,β := 0 for all non zero α, β ∈ H∗ such that at least one
of α and β is not a root.

To specify those Nα,β, α + β ∈ Φ, we have to do more work. We start with two
auxiliary assertions (cf. [9], Sec. 25.1) and then we use them to present the relations
among the structure constants Nα,β (cf. [4], Sec. 4.1).

Proposition 4.2. Let α, β ∈ Φ. At most two different lengths of roots occur in the α-root
string through β.

Proof. Let us denote Φ′ := Φ ∩
{

aα + bβ
∣∣ a, b ∈ Z

}
. Obviously, Φ′ satisfies the four

axioms for the root system in E′ := SpanR {α, β}: (R1), (R2) and (R4) are satisfied
trivially; for (R3), for any a, b, c, d ∈ Z such that aα + bβ, cα + dβ ∈ Φ′ we have

saα+bβ(cα + dβ) = cα + dβ + 〈cα + dβ, aα + bβ〉(aα + bβ)

= (c + a〈cα + dβ, aα + bβ〉)α + (d + b〈cα + dβ, aα + bβ〉)β ∈ Φ′

by (R3) for Φ and because the coefficients are obviously integral. Further, the rank of
Φ′ is at most 2 thus there are obviously at most two different lengths of simple roots in
Φ. But the lemmas and propositions on the Weyl group discussed in Section 3.2 imply
that each root can be generated from a simple root by finitely many simple reflections
which preserve the inner product and hence the norm as well.

Lemma 4.3. Suppose that α, β, α + β ∈ Φ. Let {β− pα, . . . , β + qα} be the α-root string
through β. Then

p + 1 = q
(α + β, α + β)

(β, β)
. (4.3)

63



Proof. First, we have p− q = β(hα) =
2

(α,α)β(tα) = 2 κ(tβ,tα)

(α,α) = 2(β,α)
(α,α) = 〈β, α〉. To prove

the lemma we must prove that

A : = p + 1− q
(α + β, α + β)

(β, β)
= p + 1− q

(
(α, α)

(β, β)
+ 2

(β, α)

(β, β)
+ 1
)

= 〈β, α〉+ 1− q(
‖α‖2

‖β‖2 + 〈α, β〉) = (〈β, α〉+ 1)

(
1− q

‖α‖2

‖β‖2

)

equals zero.
First, assume that ‖α‖ ≥ ‖β‖. This implies |〈β, α〉| ≤ |〈α, β〉| and hence, by Table

3.1, 〈β, α〉 ∈ {−1, 0, 1}. If 〈β, α〉 = −1, then A = 0. Otherwise (β, α) ≥ 0 and hence
‖α + β‖2 = (α+ β, α+ β) = ‖α‖2 + 2(α, β) + ‖β‖2 ≥ ‖α‖2 + ‖β‖2. Therefore α+ β ∈ Φ
is strictly longer then both α and β and, by Proposition 4.2, ‖α‖ = ‖β‖. Similarly,
‖β + 2α‖ > ‖α + β‖ and thus β + 2α /∈ Φ. Consequently q = 1 and hence A = 0.

Now, suppose that ‖α‖ < ‖β‖. Then either α or β must have the same length as
α + β and therefore ‖α + β‖2 = ‖α‖2 + 2(α, β) + ‖β‖2 implies that (α, β) < 0. This fact
results in ‖β− α‖2 = (β− α, β− α) = ‖β‖2 − 2(β, α) + ‖α‖2 > ‖β‖2 > ‖α‖2 and hence
β − α /∈ Φ or equivalently p = 0. As (α, β) < 0 and ‖α‖ < ‖β‖, there remains only
these two possibilities in Table 3.1: 〈α, β〉 = −1 and 〈β, α〉 = −2 or 〈α, β〉 = −1 and

〈β, α〉 = −3. In either case q = p− 〈β, α〉 = 0 + 〈β,α〉
(−1) = 〈β,α〉

〈α,β〉 =
‖β‖2

‖α‖2 and hence A = 0
again.

Theorem 4.4. The structure constants Nα,β defined by (4.2) satisfy the following relations:

(a) if α, β ∈ Φ, then
Nα,β = −Nβ,α. (4.4)

(b) if α, β, γ ∈ Φ such that α + β + γ = 0, then

Nα,β

‖γ‖2 =
Nβ,γ

‖α‖2 =
Nγ,α

‖β‖2 ; (4.5)

(c) if α, β ∈ Φ such that α 6= ±β, then

Nα,βN−α,−β = −(p + 1)2, (4.6)

where p is the largest (non-negative) integer such that β− pα ∈ Φ;

(d) if α, β, γ, δ ∈ Φ such that α + β + γ + δ = 0 and no pair is opposite, then

Nα,βNγ,δ

‖α + β‖2 +
Nβ,γNα,δ

‖β + γ‖2 +
Nγ,αNβ,δ

‖γ + α‖2 = 0. (4.7)

Proof.

(a) It follows from [eα, eβ] = −[eβ, eα].

(b) The Jacobi identity takes the following form:

[eα, [eβ, eγ]] + [eβ, [eγ, eα]] + [eγ, [eα, eβ]] = 0.

Since α + β + γ = 0, then also tα + tβ + tγ = tα+β+γ = 0 and hence we may write

0 = Nβ,γ[eα, e−α] + Nγ,α[eβ, e−β] + Nα,β[eγ, e−γ]
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= Nβ,γhα + Nγ,αhβ + Nα,βhγ

= Nβ,γ
2tα

‖α‖2 + Nγ,α
2tβ

‖β‖2 + Nα,β
2tγ

‖γ‖2

= 2

(
Nβ,γ

‖α‖2 −
Nα,β

‖γ‖2

)
tα + 2

(
Nγ,α

‖β‖2 −
Nα,β

‖γ‖2

)
tβ.

Now, we claim that α and β are linearly independent. Indeed, if not, α = ±β and
thus either γ = 0 or γ = −2α, a contradiction. As α and β are linearly independent,
tα and tβ are linearly independent as well and therefore both coefficients in our
linear combination equal to zero.

(c) Again we start with the Jacobi identity (we put eδ := 0, whenever δ ∈ H∗/Φ):

0 = [eα, [e−α, eβ]] + [e−α, [eβ, eα]] + [eβ, [eα, e−α]]

= N−α,β[eα, e−α+β] + Nβ,α[e−α, eα+β]− [hα, eβ]

= N−α,βNα,−α+βeβ + Nβ,αN−α,α+βeβ − β(hα)eβ

= (N−α,βNα,−α+β + Nβ,αN−α,α+β − 〈β, α〉)eβ.

Now, realizing that eβ 6= 0 and using item (a) additionally, we obtain

〈β, α〉 = Nβ,αN−α,α+β + N−α,βNα,−α+β

= Nα,βNα+β,−α − Nα,−α+βNβ,−α.

At this place we use item (b), where we put α̃ = α + β, β̃ = −α, γ̃ = −β and α̃ = β,
β̃ = −α, γ̃ = α− β, respectively. We have

〈β, α〉 = Nα,βN−α,−β
‖−β‖2

‖α + β‖2 − Nα,−α+βN−α,α−β
‖α− β‖2

‖β‖2 . (4.8)

If we denote Mα,β := Nα,βN−α,−β
‖β‖2

‖α+β‖2 for all non-zero α, β ∈ H∗ such that α+ β 6=
0, we can rewrite (4.8) as

〈β, α〉 = Mα,β −Mα,−α+β. (4.9)

Let {β− pα, . . . , β + qα} be the α-root string through β. We can repeat the proce-
dure above for all pairs of roots {α, β− jα}, j ∈ p̂. In this way we obtain p + 1
equations parallel to (4.9):

Mα,β −Mα,−α+β = 〈β, α〉
Mα,−α+β −Mα,−2α+β = 〈−α + β, α〉 = −〈α, α〉+ 〈β, α〉 = −2 + 〈β, α〉

...
Mα,−jα+β −Mα,−(j+1)α+β = 〈−jα + β, α〉 = −j〈α, α〉+ 〈β, α〉 = −2j + 〈β, α〉

...
Mα,−pα+β −Mα,−(p+1)α+β = 〈−pα + β, α〉 = −p〈α, α〉+ 〈β, α〉 = −2p + 〈β, α〉.

Adding this equations together and realizing Mα,−(p+1)α+β = 0 (because it is true
that −(p + 1)α + β /∈ Φ), we obtain

Mα,β = (p + 1)〈β, α〉 −
p

∑
j=1

2j = (p + 1)〈β, α〉 − p(p + 1).
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Now, substituting for Mα,β and for 〈β, α〉 (for the second substitution, cf. part (b) of
Proposition 3.18), we have

Nα,βN−α,−β
‖β‖2

‖α + β‖2 = Mα,β = (p + 1)〈β, α〉 − p(p + 1) = (p + 1)(p− q)− p(p + 1)

= −q(p + 1)

and finally, according to Lemma 4.3,

Nα,βN−α,−β = −q(p + 1)
‖α + β‖2

‖β‖2 = −(p + 1)2.

(d) Again from the Jacobi identity we obtain

0 = [eα, [eβ, eγ]] + [eβ, [eγ, eα]] + [eγ, [eα, eβ]]

= (Nβ,γNα,β+γ + Nγ,αNβ,γ+α + Nα,βNγ,α+β)eα+β+γ

and consequently, since α + β + γ = −δ ∈ Φ and thus eα+β+γ 6= 0,

0 = Nβ,γNα,β+γ + Nγ,αNβ,γ+α + Nα,βNγ,α+β

= Nβ,γNδ,α
‖δ‖2

‖β + γ‖2 + Nγ,αNδ,β
‖δ‖2

‖γ + α‖2 + Nα,βNδ,γ
‖δ‖2

‖α + β‖2

= −‖δ‖2

(
Nα,βNγ,δ

‖α + β‖2 +
Nβ,γNα,δ

‖β + γ‖2 +
Nγ,αNβ,δ

‖γ + α‖2

)
.

Since −‖δ‖2 is obviously non-zero, we get the desired identity. Remark that we
have used results (b) and (a), respectively.

The relations presented in the previous theorem hold for any choice of basis B0
introduced in Remark 4.1. However, it is possible to choose the basis vectors in such a
way that the relations among the structure constants are even more convenient (cf. [4],
Sec. 4.2).

Proposition 4.5. Suppose α ∈ Φ+. Then there exist (not necessarily distinct) simple roots
β1, . . . , βm ∈ ∆ such that α = ∑m

i=1 βi and for all k ∈ m̂ it holds true that ∑k
i=1 βi ∈ Φ+.

Proof. We use induction on height of α. Notice that ht α > 0. If ht α = 1, then α ∈ ∆ and
we are done. For the inductive step suppose that the proposition holds for positive
roots of height m ≥ 0 and take any α ∈ Φ+ such that ht α = m + 1. We know that
α = ∑β∈∆ kββ, whereas kβ ≥ 0 for all β ∈ ∆. Moreover

0 < (α, α) = (α, ∑
β∈∆

kββ) = ∑
β∈∆

kβ(α, β)

and hence there exists β̃ ∈ ∆ such that kβ̃(α, β̃) > 0 and (α, β̃) > 0, consequently. α and
β̃ are obviously linearly independent and thus the angle between them is non-zero and
strictly acute. But, by Proposition 3.28 (a), α̃ := α− β̃ ∈ Φ. In addition, it holds true
that

α̃ = ∑
β∈∆
β 6=β̃

kββ + (kβ̃ − 1)β̃

and hence α̃ is a positive root of height m which our induction hypothesis can be ap-
plied on. Since α = α̃ + β̃, the statement is now obvious.
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Lemma 4.6. One can choose the basis B0 in such a way that for all α, β ∈ Φ it holds true that

Nα,β = −N−α,−β. (4.10)

Proof. We define an automorphism ψ : L → L. According to Corollary 3.63 (b), such
the automorphism is fully determined by an isomorphism ϕ : Φ → Φ′ between root
systems and by the choice of

{
ψ(eα)

∣∣ α ∈ ∆
}

. Thus, for α ∈ Φ we define

ϕ(α) := −α.

Obviously, Φ′ := ϕ(Φ) is a root system of L with the base ∆′ := ϕ(∆) and ϕ is an
isomorphism between the root systems. Then for all α ∈ ∆ we have

ψ(hα) = hϕ(α) = h−α = −hα.

Further, for all α ∈ ∆ we define
ψ(eα) := −e−α.

As seen from the proof of Corollary 3.63, the images ψ(e−α) ∈ L−ϕ(α) = Lα, α ∈ ∆, have
to satisfy [ψ(eα), ψ(e−α)] = ψ(hα). Clearly, this condition is fulfilled for

ψ(e−α) := −eα.

Now, consider α ∈ Φ such that ±α /∈ ∆. If α ∈ Φ+, then Proposition 4.5 implies
existence of α1, . . . , αm ∈ ∆ such that α = α1 + · · ·+ αm and for all k ∈ m̂ it holds true
that α1 + · · ·+ αk ∈ Φ. The generalization for negative roots is obvious. Proposition
3.18 (d) then implies existence of non-zero λα ∈ C such that

[[. . . [[eα1 , eα2 ], eα3 ], . . . , eαm−1 ], eαm ] = λαeα.

Applying the isomorphism ψ we obtain

[[. . . [[e−α1 , e−α2 ], e−α3 ], . . . , e−αm−1 ], e−αm ] = (−1)mλαψ(eα).

As in the previous case, there exists a non-zero λ′α ∈ C such that

[[. . . [[e−α1 , e−α2 ], e−α3 ], . . . , e−αm−1 ], e−αm ] = λ′αe−α.

Altogether, for all α ∈ Φ/
{
±β

∣∣ β ∈ ∆
}

there is a non-zero Λα ≡ (−1)m λ′α
λα
∈ C such

that ψ(eα) = Λαe−α. Our aim is to set new basis vectors ẽα ∈ Lα, α ∈ Φ, in such a
way that ψ(ẽα) = −ẽ−α, for all α ∈ Φ. Then, applying ψ on relation [ẽα, ẽβ] = Nα,β ẽα+β,
where α, β, α + β ∈ Φ, we would have

−Nα,β ẽ−α−β = ψ(Nα,β ẽα+β) = ψ([ẽα, ẽβ]) = [ψ(ẽα), ψ(ẽβ)] = [−ẽ−α,−ẽ−β]

= N−α,−β ẽ−α−β

and thus Nα,β = −N−α,−β.
The question is whether such a choice can be made. For the vectors correspond-

ing to the simple roots and their negatives, we are already done; we let them without
change (ẽ±α := e±α, α ∈ ∆). Regarding the others, the only freedom in choosing vector
ẽα ∈ Lα is in (non-zero) scalar multiplication. Hence we search for convenient non-
zero constants µα ∈ C, α ∈ Φ/

{
±β

∣∣ β ∈ ∆
}

, such that for all the new basis vectors
ẽα = µαeα the condition ψ(ẽα) = −ẽ−α is fulfilled. First, from

[eα, e−α] = hα = [ẽα, ẽ−α] = [µαeα, µ−αe−α] = µαµ−α[eα, e−α]

we obtain the condition µα = µ−1
−α. Second, we apply our isomorphism:

ψ(ẽα) = ψ(µαeα) = µαψ(eα) = µαΛαe−α = µαΛαµαµ−αe−α = µ2
αΛα ẽ−α.

One can see that to satisfy our desire for ψ(ẽα) = −ẽ−α it is necessary to choose µα such
that µ2

αΛα = −1. However, this is certainly possible since we are working over C.
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Remark 4.3. Given a root system Φ in a real inner-product space E, one can show that
the set Φ# :=

{
α# ≡ 2α

‖α‖2

∣∣ α ∈ Φ
}

, the so-called dual root system of Φ, is a root system

in E as well. Indeed. Axioms (R1) and (R2) are satisfied obviously. Further, for any
α#, β# ∈ Φ#, we have

sα#(β#) = β# − 2(β#, α#)

(α#, α#)
α# =

2β

‖β‖2 −
2
(

2β

‖β‖2 , 2α

‖α‖2

)
(

2α

‖α‖2 , 2α

‖α‖2

) 2α

‖α‖2 =
2

‖β‖2

(
β− 2(β, α)

(α, α)
α

)

and hence, because
∥∥∥β− 2(β,α)

(α,α) α
∥∥∥2

= ‖β‖2, (R3) holds as well. Finally, for (R4) we have

〈α#, β#〉 = 2(α#, β#)

(β#, β#)
=

2
(

2α

‖α‖2 , 2β

‖β‖2

)
(

2β

‖β‖2 , 2β

‖β‖2

) =
2(α, β)

(α, α)
= 〈β, α〉 ∈ Z.

Additionally, it can be shown that if ∆ is a base for Φ, then ∆# :=
{

α#
∣∣ α ∈ ∆

}
is a

base for Φ#. This fact follows immediately from the proof of Theorem 10.1 in [9] (“Each
root system has a base”) which we did not prove here. We only presented the fact that
there is a base for an arbitrary root system in Section 3.2.

Remark 4.4. Given a semisimple Lie algebra L, its Cartan subalgebra H and the root
system Φ incident to H, one can show that the set

{
tα

∣∣ α ∈ Φ
}

is a root system in E∗,
where the inner product is defined for all h1, h2 ∈ E∗ ⊂ H naturally as

(h1, h2) := κ(h1, h2). (4.11)

For verification of the four axioms of root system, it suffices to realize that (α, β) =
(tα, tβ) for any α, β ∈ Φ and that the assignment α 7→ tα is linear (cf. Remark 3.3).

Theorem 4.7 (Chevalley). The basis B0 :=
{

hα

∣∣ α ∈ ∆
}
∪
{

eα

∣∣ α ∈ Φ
}

of L introduced
above can be chosen in such a way that the commutation relations of basis vectors are as follows:

(a) if α, β ∈ ∆, then
[hα, hβ] = 0; (4.12)

(b) if α ∈ ∆ and β ∈ Φ, then
[hα, eβ] = 〈β, α〉eβ; (4.13)

(c) if α ∈ Φ, then
[eα, e−α] = hα; (4.14)

(d) if α, β ∈ Φ such that α 6= −β and α + β /∈ Φ, then

[eα, eβ] = 0; (4.15)

(e) if α, β, α + β ∈ Φ, then
[eα, eβ] = ±(p + 1)eα+β, (4.16)

where p is the largest integer such that β− pα ∈ Φ.

In particular, if such a basis is chosen, then all the structure constants of L with respect to this
basis are integral.
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Proof. The first four items are precisely the statement of Proposition 4.1. For (e), by
(4.2) we have [eα, eβ] = Nα,βeα. Further, according to Theorem 4.4 (c), −Nα,βN−α,−β =
(p + 1)2, where p is the largest non-negative integer such that β− pα ∈ Φ. But we saw
in Lemma 4.6 that we might choose the basis B0 such that−N−α,−β = Nα,β. Altogether,
we have

N2
α,β = (p + 1)2

and hence, because (p + 1) ∈ R≥0 obviously, Nα,β = ±(p + 1).
For integrality of the the structure constants, notice first that it suffices to verify in-

tegrality of the non-zero structure constants appearing in items (a) - (e) of this theorem.
Any other remaining structure constant is either zero or (-1)-multiple of some constant
already appeared. First, 〈β, α〉 ∈ Z for all α, β ∈ Φ by the definition of root system
(axiom (R4)). Second, according to (4.1), for each α = ∑β∈∆ kββ ∈ Φ we have

hα = ∑
β∈∆

(
‖β‖2

‖α‖2 cβ

)
hβ.

Moreover, Remarks 4.3 and 4.4 together imply that the set
{

hα

∣∣ α ∈ Φ
}

forms a root

system and the set
{

hα

∣∣ α ∈ ∆
}

is its base. Hence, we obtain ‖β‖
2

‖α‖2 cβ ∈ Z for each β ∈ ∆

from the definition of base for a root system. Finally, it is clear that ±(p + 1) ∈ Z since
p ∈ Z≥0.

Definition 4.8. A basis satisfying the conditions from Chevalley’s Theorem is called a
Chevalley basis for L. We shall denote such a basis by B.

4.2 Construction of a Simple Lie Algebra

Now we introduce the algorithms used for construction of a simple Lie algebra with
the root system of an arbitrary type. These algorithms were implemented into several
procedures in Maple 16 computer algebra system and they together provide the pro-
gram that computes a Chevalley basis of a simple Lie algebra of any type. The whole
Maple code is attached in Appendix A.

4.2.1 Determination of the Root System from its Cartan Matrix

The very first step in construction of simple Lie algebra corresponding to a given type
of root system (which is determined by its Dynkin diagram or Cartan matrix, equiv-
alently) is to determine which integral combinations of simple roots are in the root
system. We saw in the previous chapter that, in principle, it was possible to recover
whole root system by finitely many simple reflections of simple roots. However, this
way is inconvenient for computation. The algorithm that is usually used and that we
present here is taken from [6]. We assume E to be an l-dimensional real vector space
again.

Algorithm 1 (RootSystem).

Input: Cartan matrix C ∈ Zl,l of type Tl and a set ∆ = {α1, . . . , αl} of linearly indepen-
dent vectors from E satisfying 〈αi, αj〉 = Cij.

Step 1. Set Φ+ := ∆ and n := 1.

Step 2. For all α ∈ Φ+ such that ht α = n and for all αj ∈ ∆ do the following:
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Substep 2.1. Write

α =
l

∑
i=1

kiαi.

Substep 2.2. Determine the largest integer p such that α− pαj ∈ Φ+.

Substep 2.3. Set

q := p−
l

∑
i=1

kiCij.

Substep 2.4. If q > 0, then set Φ+ := Φ+ ∪
{

α + αj
}

.

Step 3. If Φ+ has changed throughout Step 2, then set n := n + 1 and repeat Step 2.
Otherwise return Φ+ ∪

{
β ∈ E

∣∣ −β ∈ Φ+
}

.

Output: the root system Φ in E that has ∆ as its base and is of the type Tl .

Remark 4.5. It is very useful to work with l-tuples (k1, k2, . . . , kl) of coefficients in base ∆
within a computation with roots or with some constants having roots as indices. Note
that our computations were conducted in this way as well.

Proposition 4.9. Let Φ be a root system and let ∆ be a base for Φ. Suppose that C is the Cartan
matrix of Φ with respect to ∆. Then Algorithm 1 returns the set Φ indeed.

Proof. It is enough to show that Φ+ contains all positive roots of Φ after the final rep-
etition of Step 2. Then it is clear that in the final step we obtain whole Φ. We will
proceed by incomplete induction on the (positive) height of positive roots contained in
Φ+. First, the only positive roots of height one are obviously the simple ones and these
are all included in Φ+ by Step 1. Second, suppose that Φ+ contains all positive roots of
height at most n and take any α ∈ Φ, ht α = n + 1. According to Proposition 4.5, we
may write

α = β + αj,

where β is a positive root of height n and αj ∈ ∆. Thus, Step 2 takes into consideration
the pair (β, α1) and therefore it suffices to show that, with the notation of the algorithm,
the number p can be determined and the number q is positive. Let β− p′αj, . . . , β + q′αj
be the αj-root string through β. Since β + αj ∈ Φ, certainly β 6= αj. Consequently, if
we decompose β as β = ∑l

i=1 kiαi, then there is i ∈ l̂ such that i 6= j and ki > 0. This
coefficient stays unchanged even if we add or subtract some multiples of αj, hence all
roots in the αj-root string through β are positive and the desired number p is the p′

from the string. Finally, since β + 1 · αj = α ∈ Φ, we have

1 ≤ q′ = p′ − β(hαj) = p− 〈β, αj〉 = p− 〈
l

∑
i=1

kiαi, αj〉 = p−
l

∑
i=1

kiCij = q.

We did not have to implement whole of the previous algorithm in Maple 16 be-
cause the major part of it was already contained as PositiveRoots procedure. As the
title suggest, this procedure computes the positive roots, hence we had to only add the
set of negative roots which was not difficult apparently. Remark that the procedure
PositiveRoots is based precisely on the algorithm 1, as one can find in Maple 16 docu-
mentation. Another advantage of the used computer algebra system is that all Cartan
matrices are included as well. One can call the appropriate matrix by command Car-
tanMatrix. Both PositiveRoots and CartanMatrix are parts of LieAlgebras Maple package
which is a subpackage of DifferentialGeometry package.
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4.2.2 Special and Extraspecial Pairs of Roots

Now, when we already know a whole root system, we may consider an abstract Cheval-
ley basis introduced in the first section of this chapter. To determine the Lie algebra
structure, we need to define commutators of the basis vectors. We saw in Chevalley’s
Theorem that if our basis ought to be “Chevalley”, then the commutators were already
“almost” determined by the definition of this basis. The only potential degrees of free-
dom were in the signs of the structure constants Nα,β = ±(p+ 1) in (4.16). On the other
hand one can see that we may not choose all signs arbitrarily; we have to bear in mind
that the Jacobi identity has to be still fulfilled. In the following subsection, we establish
exactly which signs can be chosen arbitrarily and we show that the others are uniquely
determined (cf. [4], Sec. 4.2). Firstly, we shall need the ordering of positive roots.

Definition 4.10. Let Φ be a root system and let ∆ = {α1, . . . , αl} be a base of Φ. For any
positive roots α = ∑l

i=1 aiαi and β = ∑l
i=1 biαi such that α 6= β we put

α ≺ β

whenever ht α < ht β or if ht α = ht β and am > bm, where m = min
{

i ∈ l̂
∣∣ ai 6= bi

}
.

For any α, β ∈ Φ+ we denote
α � β

if either α ≺ β or α = β.

Remark 4.6. Obviously, the relation ≺ is a total order of Φ+ (cf. [12]).

One can easily see that the part of Algorithm 1 that computes the set of positive
roots works precisely with respect to the ordering just defined providing that we take
the roots α ∈ Φ+ by our ordering and the simple roots αj by j increasing from 1 to l in
Step 2. As one can convince herself by command

showstat(PositiveRoots::PositiveRootsFromCartanMatrix),

Maple 16 works exactly in this way and hence the positive roots are computed in ac-
cordance with our ordering.

Definition 4.11. An ordered pair (α, β) of positive roots is called a special pair if α ≺ β
and α+ β ∈ Φ. A special pair (α, β) is said to be extraspecial if for all special pairs (α′, β′)
such that α′ + β′ = α + β it holds true that α � α′.

Remark 4.7. Let α ∈ Φ+. In case α ∈ ∆ we have ht α = 1 and α cannot be expressed
as the sum of two positive roots forming an extraspecial pair (not even a special one)
obviously. Suppose now that ht α > 1. Then Proposition 4.5 guarantees the existence of
a special pair (β, γ) such that α = β+γ. Since Φ is finite, the number of such the pairs is
finite as well and hence we may find the extraspecial one among them. Notice that the
extraspecial pair is unique because the order of positive roots is total. To summarize,
the set of all extraspecial pairs is in one-to-one correspondence with the set Φ+/∆.

Proposition 4.12. The signs of the structure constants Nα,β may be chosen arbitrarily for ex-
traspecial pairs (α, β). Furthermore, the signs of Nα,β for all other pairs are uniquely determined
by this choice.

Proof. We saw in the proof of Lemma 4.6 how to transform any basis B0 defined in
Remark 4.1 into a Chevalley one. Remind that the transformation consists in multipli-
cation of basis vectors eα, α ∈ Φ/

{
±β

∣∣ β ∈ ∆
}

, by a number µα ∈ C which satisfies
µ2

αΛα = −1 for given non-zero Λα ∈ C. Obviously, for each α we have precisely two
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possibilities for the choice of µα, namely ±
√
−1
Λα

. Moreover the relation µα = µ−1
−α must

hold true. Altogether, we may choose arbitrarily the signs of µα, and thus of eα conse-
quently, for α ∈ Φ+/∆. If we modify the signs of these vectors, we obtain a Chevalley
basis again. But this modification agrees precisely with the alteration of the structure
constants Nβ,γ for extraspecial pairs (β, γ). Indeed, the extraspecial pairs are in bijec-
tive correspondence with the non-simple positive roots and, considering an extraspe-
cial pair, the left hand side in (4.16) stays unchanged and thus the change of the sign of
vector on the right hand side must be succeeded by the change of the sign of respective
structure constant.

For the second part, consider two Chevalley bases B =
{

hα

∣∣ α ∈ ∆
}
∪
{

eβ

∣∣ β ∈ Φ
}

and B′ =
{

hα

∣∣ α ∈ ∆
}
∪
{

e′β
∣∣ β ∈ Φ

}
. Let Nα,β and N′α,β be the structure constants as

before corresponding to B and B′, respectively. For all α, β ∈ Φ it holds true that
[eα, eβ] = Nα,βeα+β and [e′α, e′β] = N′α,βe′α+β whenever α + β ∈ Φ. We know that, for
all α ∈ Φ, eα and e′α have to be linearly dependent and non-zero, thus there is a non-
zero λα ∈ C such that e′α = λαeα. Then for α + β ∈ Φ we have λαλβNα,β = λα+βN′α,β.
Now suppose that Nα,β = N′α,β for all extraspecial pairs (α, β). Since the structure
constants Nα,β are non-zero, it follows that λαλβ = λα+β for extraspecial pairs. Let
∆ = {α1, . . . , αl}. Taken any α ∈ Φ+ we may decompose it as α = ∑l

i=1 kiαi, ki ∈ Z≥0,
i ∈ l̂. We claim that the following relation holds true:

λα = λk1
α1

λk2
α2

. . . λkl
αl . (4.17)

We prove this assertion by induction on ht α. If ht α = 1, then α ∈ ∆ and hence (4.17)
obviously holds. For the inductive step, suppose that ht α = n > 1 and that (4.17) holds
for all positive roots of height less then n. As α ∈ Φ+/∆, there exists an extraspecial
pair (β, γ) such that β + γ = α and hence λα = λβ+γ = λβλγ. Now, since ht β, ht γ <
ht α = n, we may apply (4.17) on β and γ to obtain the decomposition (4.17) for α as
well.

Further, for all α ∈ Φ+, it must be true that [eα, e−α] = hα = [e′α, e′−α] and conse-
quently λαλ−α = 1. Thus for all α = ∑l

i=1 kiαi ∈ Φ− (notice that ki ∈ Z≤0, i ∈ l̂, now)
we may write

λα = (λ−α)
−1 = (λ

|k1|
α1 λ

|k2|
α2 . . . λ

|kl |
αl )−1 = λk1

α1
λk2

α2
. . . λkl

αl

in order to extend validity of (4.17) also to the negative roots.
Finally, since (4.17) holds true for all α ∈ Φ, we have λβλγ = λβ+γ 6= 0 and con-

sequently Nβ,γ = N′β,γ for all β, γ, β + γ ∈ Φ. Thus, we have no freedom in choice of
the signs of constants Nα,β for pairs (α, β) that are not extraspecial, when the signs of
those constants are given for the extraspecial pairs. This proves the second part of the
proposition.

According to the previous proposition, the next task of our construction is to find
the extraspecial pairs among all pairs of positive roots. Concerning this problem, we
present the following algorithm. We use the fact that the positive roots are computed
with respect to their order introduced above and hence we do not have to browse on
all special pairs intricately and determine whether a pair is extraspecial or not.

Algorithm 2 (ExtraspecialPairs).

Input: ordered set of positive roots Φ+ = {α1, . . . , αm}, αi ≺ αj when 1 ≤ i < j ≤ m.

Step 1. Set i := 1, j := 1 and ESP := ∅.
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Step 2. Substep 2.1. If αi + αj ∈ Φ and if for any (α, β) ∈ ESP it holds true that α + β 6=
αi + αj, then set ESP := ESP ∪

{
(αi, αj)

}
.

Substep 2.2. Set j := j + 1.

Step 3. If j ≤ m, then repeat Step 2. Otherwise set i := i + 1.

Step 4. If i ≤ m, then set j := i and go back to Step 2. Otherwise return ESP.

Output: the set ESP of all extraspecial pairs of roots in the root system Φ corresponding
to the set of positive roots Φ+.

Remark 4.8. Obviously, Algorithm 2 takes into consideration all special pairs and in fact
even more pairs of roots, namely the pairs of type (α, α) are inspected as well. Clearly,
these pairs can never satisfy the condition in Substep 2.1 (twice a root is never a root)
but, writing the algorithm in this way, we do not have to investigate the case l = 1
separately.

The question that still remains is whether the conditions in Substep 2.1 are adequate
to explore all extraspecial pairs. Indeed. If (α, β) is an extraspecial pair, then α + β ∈ Φ
and for all other pairs (γ, δ) such that γ + δ = α + β it holds true that γ � α. Thus
both conditions in Substep 2.1 are fulfilled and (α, β) is added to ESP. Conversely, if
α + β /∈ Φ, then (α, β) is clearly not extraspecial. Otherwise, if α + β ∈ Φ and some
(γ, δ), such that γ + δ = α + β, is already contained in ESP, then it must be γ ≺ α and
thus (α, β) is not extraspecial again.

4.2.3 Determination of the Norms of Roots

Later we shall need to compute the squares of (relative) norms of roots. Obviously, the
absolute norms are indeterminable for an abstract root system, because if Φ is a root
system, then, for any k ∈ R/ {0}, Φ′ :=

{
kα
∣∣ α ∈ Φ

}
is a root system of the same type

as Φ. Thus, we will accept the following convention: given a root system Φ of rank l
and its base ∆ = {α1, . . . , αl}, we will assume that the simple roots αi, i ∈ l̂, correspond
precisely to the labeled Dynkin diagrams in Theorem 3.55 (this is exactly the reason
why we have labeled the diagrams there) and further that ‖α1‖2 = 2. Accepting this
convention, one can easily determine the squares of norms of all other simple roots
from the shape of respective Dynkin diagram by virtue of (cf. Remark 3.19):

α β
=⇒ ‖α‖2 = ‖β‖2 ,

α β
=⇒ ‖α‖2 = 2 ‖β‖2 ,

α β
=⇒ ‖α‖2 = 3 ‖β‖2 .

Recall that we construct a simple Lie algebra and hence we consider an irreducible root
system whose Dynkin diagram is connected.

The square of norm of any other (non-simple) root γ = ∑l
i=1 kiαi can be then deter-

mined as follows:

‖γ‖2 = (γ, γ) =
l

∑
i,j=1

kik j(αi, αj) =
l

∑
i,j=1

kik j

2
(αj, αj)〈αi, αj〉 =

l

∑
i,j=1

kik j

2

∥∥αj
∥∥2 Cij,

where Cij is the i, j-th entry of the corresponding Cartan matrix.
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4.2.4 Computation of the Structure Constants Nα,β

At first, according to the definition of Chevalley basis, for all α, β ∈ Φ such that α + β ∈
Φ we have

∣∣Nα,β
∣∣ = p + 1, where p is the largest integer such that β − pα ∈ Φ. We

know that the roots such as β − pα, p ∈ Z, form a string (cf. part (b) of Proposition
3.18) thus it is enough to find an integer p such that β− pα ∈ Φ and β− (p + 1)α /∈ Φ.

The remaining problem is how to establish the signs of these constants. Recall that,
according to Proposition 4.12, we may choose the signs arbitrarily for those Nα,β which
correspond to the extraspecial pairs (α, β) and the others are then determined uniquely.
In the following text we present the derivation of the signs of any Nα,β from the val-
ues of the structure constants corresponding to the extraspecial pairs. We proceed in
two steps. First, we determine the signs corresponding to those pairs of positive roots
whose sum is a root again and second, we compute all remaining signs. Both the parts
are based on algorithms introduced in [5].

Remark at this place that we have found two mistakes in the original paper [5].
First, there is an ambiguity in the algorithm corresponding to the first part: in that
paper, this first step consists in computation of the structure constants corresponding
only to the special pairs of roots. However, we uncovered that it was not possible to
compute precisely this set of structure constants in general. One needs to use also the
structure constants corresponding to the swapped special pairs. Thus, it is necessary
to determine the structure constants for all pairs of positive roots such that their sum
is a (positive) root again. The second incorrectness has occurred in the algorithm cor-
responding to the second part. We have verified that the computation including this
mistake did not produce a Lie algebra at all because the Jacobi identity failed for some
vectors. This defect is specified below.

In spite of the first mistake, we have to determine the special pairs of roots first of
all. On this problem, we present the following simple algorithm computing the special
pairs (α, β) in the following order: first by ht(α + β) and second by the order of α with
respect to the total order of positive roots introduced above. Notice that we use the fact
that Algorithm 1 produces the positive roots with respect to the total order again.

Algorithm 3 (SpecialPairs).

Input: ordered set of positive roots Φ+ = {α1, . . . , αm}, αi ≺ αj when 1 ≤ i < j ≤ m.

Step 1. Set i := 1 and SP := ∅.

Step 2. Substep 2.1. For all integers k, j such that 1 ≤ k ≤ j ≤ i do the following: if
αk + αj = αi, then set SP := SP ∪

{
(αk, αj)

}
.

Substep 2.2. Set i := i + 1.

Step 3. If i ≤ m, then repeat Step 2. Otherwise return SP.

Output: the set SP of all special pairs of roots in the root system Φ corresponding to the
set of positive roots Φ+.

Remark 4.9. Clearly, if the sum of two positive roots is a root, then this sum is a positive
root as well. Now it is obvious that Algorithm 3 produces precisely all special pairs
of roots indeed. Remark once again that the set of special pairs computed by the al-
gorithm is ordered (first by the height of the sum of roots and then by the order of the
first root), we shall use this fact immediately.

Now, we may approach to the algorithm for computation of the structure constants
Nα,β, α, β, α + β ∈ Φ+, based originally on “ALGORITHM 1” from the source paper [5].
Considering a root system, We assume that some base for this system is given as well
and thus it makes sense to talk about the set of positive roots, special pairs, etc.
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Algorithm 4 (StructureConstantsForPositivePairs).

Input: root system Φ, the set SP = {(α1, β1), . . . , (αm, βm)} of special pairs of roots from
Φ, such that ht(αi + βi) ≤ ht(αj + β j) or αi ≺ αj in case of equality for all 1 ≤ i <
j ≤ m, the set ESP of extraspecial pairs of roots from Φ and the structure constants
(Nα,β)(α,β)∈ESP.

Step 1. For all (α, β) ∈ ESP set Nβ,α := −Nα,β.

Step 2. Set i := 1.

Step 3. Substep 3.1. Set α := αi and β := βi.

Substep 3.2. If (α, β) ∈ ESP, then skip to Substep 3.7. Otherwise find (α′, β′) ∈
ESP such that α + β = α′ + β′.

Substep 3.3. If β− α′ ∈ Φ, then set

t1 :=
‖β− α′‖2

‖β‖2 Nα′,β−α′Nα,β′−α.

Otherwise set t1 := 0.

Substep 3.4. If α− α′ ∈ Φ, then set

t2 :=
‖α− α′‖2

‖α‖2 Nα′,α−α′Nβ,β′−β.

Otherwise set t2 := 0.

Substep 3.5. Determine the integer p such that β− pα ∈ Φ and β− (p+ 1)α /∈ Φ.

Substep 3.6. Return

Nαi ,βi ≡ Nα,β := sgn(Nα′,β′) sgn(t1 − t2) · (p + 1)

and
Nβi ,αi ≡ Nβ,α := −Nα,β.

Substep 3.7. Set i := i + 1.

Step 4. If i ≤ m, then repeat Step 3. Otherwise end.

Output: the structure constants Nα,β for all α, β ∈ Φ+ such that α + β ∈ Φ+.

Lemma 4.13. Let Φ be a root system, let ∆ = {α1, . . . , αl} be its base and let α, β ∈ Φ+,
where Φ+ is taken with respect to ∆. If α ≺ β and β− α ∈ Φ, then ht α < ht β.

Proof. According to the definition of the ordering of positive roots, ht α ≤ ht β. Suppose
for contradiction that ht α = ht β. We decompose α and β as α = ∑l

i=1 kiαi and β =

∑l
i=1 miαi, respectively. Consequently, β− α = ∑l

i=1(ki −mi)αi. Since ht α = ht β, then
∑l

i=1 ki = ∑l
i=1 mi. Further, because α ≺ β, there exists i0 ∈ l̂ such that ki0 < mi0 . On the

other hand, as heights of α and β are equal, there must exist i1 ∈ l̂ such that ki1 > mi1 .
Yet, according to the definition of a base for a root system, β− α cannot be a root, hence
we reached a contradiction.

Proposition 4.14. Let Φ be a root system with a given base. Let SP = {(α1, β1), . . . , (αm, βm)}
be the set of special pairs of roots from Φ ordered such that for all 1 ≤ i < j ≤ m we have
ht(αi + βi) ≤ ht(αj + β j) or, in case of equality, αi ≺ αj. Let ESP be the set of extraspecial
pairs of roots from Φ. Suppose that the structure constants (Nα,β)(α,β)∈ESP are given. Then
Algorithm 4 determines the structure constants Nα,β for α, β, α + β ∈ Φ+ correctly.
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Proof. First, notice that the algorithm leaves the structure constants Nα,β correspond-
ing to extraspecial pairs (α, β) unchanged. Second, according to (4.4), Step 1 works
properly. Now, take any special pair (α, β) which is not extraspecial and take the ex-
traspecial pair (α′, β′) such that α + β = α′ + β′. Then α + β− α′ − β′ = 0. Moreover,
the following inequalities certainly hold: α ≺ β, α′ ≺ β′ and α′ ≺ α. Consequently
α′ ≺ β and hence no pair among α, β, α′ and β′ is antipodal and thus, according to (4.7),
we have

Nα,βN−α′,−β′

‖α + β‖2 +
Nβ,−α′Nα,−β′

‖β− α′‖2 +
N−α′,αNβ,−β′

‖α− α′‖2 = 0.

Using (4.10), the property of Chevalley basis, we have

Nα,β =
‖α + β‖2

Nα′,β′

(
Nβ,−α′Nα,−β′

‖β− α′‖2 +
N−α′,αNβ,−β′

‖α− α′‖2

)
. (4.18)

Assuming both β− α′ and α− α′ are roots, then β′ − α and β′ − β′ are roots as well and
we may use (4.5) and (4.4) to obtain

Nα,β =
‖α + β‖2

Nα′,β′

(
N−α′,−β+α′

‖β‖2 Nα,−β′ +
Nα′−α,−α′

‖α‖2 Nβ,−β′

)

=
‖α + β‖2

Nα′,β′

(
N−α′,−β+α′

‖β‖2
‖β′ − α‖2

‖β′‖2 Nβ′−α,α +
Nα′−α,−α′

‖α‖2
‖β′ − β‖2

‖β′‖2 Nβ′−β,β

)
.

Now, using properties (4.10) and (4.4) together with the fact that α + β = α′ + β′, we
may continue as

Nα,β =
‖α + β‖2

Nα′,β′ ‖β′‖2

(
‖β− α′‖2

‖β‖2 Nα′,β−α′Nα,β′−α −
‖α− α′‖2

‖α‖2 Nα′,α−α′Nβ,β′−β

)

=
‖α + β‖2

Nα′,β′ ‖β′‖2 (t1 − t2) .

If β− α′ /∈ Φ, then Nβ,−α′ = 0 and therefore the first summand in the bracket on the
right-hand side in (4.18) equals zero. Similarly, if α − α′ /∈ Φ, then the same holds
for the second one. All in all, the last relation holds generally, also if β − α′ /∈ Φ or
α− α′ /∈ Φ. Now it is clear that sgn(Nα,β) = sgn(Nα′,β′) sgn(t1 − t2). Since the absolute
value of Nα,β is known to be p + 1, where p is the largest integer such that β− pα ∈ Φ,
correctness of the computed structure constants is verified.

The remaining question is whether the constants Nα′,β−α′ , Nα,β′−α, Nα′,α−α′ , Nβ,β′−β

are among those already known and they can be used for computation of Nα,β. In other
words, we must check that for each of these constants of the form Nγ,δ it holds true
γ, δ, γ + δ ∈ Φ+ and ht(γ + δ) ≤ ht(α + β) or γ ≺ α, in case of equality between
heights. We show this in the first two cases (corresponding to the constant t1), for
the remaining two pairs (corresponding to t2), the procedure is completely analogous.
First, α′, α, β, β′ ∈ Φ+. Second, we assume that β − α′, β′ − α ∈ Φ and that α′ ≺ β.
Consequently, α = α′ + β′ − β ≺ β′. According to Lemma 4.13, we may write

ht(β− α′) = ht(β)− ht(α′) > 0,
ht(β′ − α) = ht(β′)− ht(α) > 0

and therefore both roots β− α′ and β′ − α are positive. Finally, we have

ht(α′ + (β− α′)) = ht β < ht(α + β),
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ht(α + (β′ − α)) = ht β′ < ht(α′ + β′) = ht(α + β).

Now we are able to determine the structure constants Nα,β for an arbitrary pair of
roots, using “ALGORITHM 2” from [5]. Remind that an incorrectness has occurred in
the original algorithm, we specify it below.

Algorithm 5 (StructureConstantForAnyPair).

Input: root system Φ, pair of roots (α, β) from Φ and the structure constants Nγ,δ for
γ, δ, γ + δ ∈ Φ+.

Step 1. If α + β /∈ Φ, then return Nα,β := 0 and end. Otherwise set m := 1 and (γ, δ) :=
(α, β).

Step 2. If δ ∈ Φ−, then set (γ, δ) := (−γ,−δ) and m := −m.

Step 3. If γ ∈ Φ−, then do the following:

Substep 3.1. If −γ ≺ δ, then set (γ, δ) := (γ + δ,−γ) and m := −m1. Otherwise
set (γ, δ) := (δ,−γ− δ).

Step 4. Determine the integer p such that β− pα ∈ Φ and β− (p + 1)α /∈ Φ.

Step 5. Return Nα,β := m · sgn(Nγ,δ) · (p + 1).

Output: the structure constant Nα,β.

Proposition 4.15. Let Φ be a root system and let α, β ∈ Φ. Then Algorithm 5 determines the
structure constant Nα,β correctly.

Proof. First, it is our convention to put Nα,β = 0 when α + β /∈ Φ. Second, suppose that
α + β ∈ Φ. The absolute value of Nα,β is already prescribed and one can see from Steps
4 and 5 that it is computed correctly. It remains to verify the sign of Nα,β. We keep the
notation from the algorithm. Obviously, each change of m corresponds to the change
of the sign of Nγ,δ within the algorithm. As Nγ,δ = Nα,β in the beginning, the sign of
Nα,β must equal to m · sgn(Nγ,δ), where Nγ,δ is the final one. This agrees with Step 5.
The question is whether the (final) constant Nγ,δ is among those Nγ,δ given in input of
the algorithm.

Step 2 arranges the pair (γ, δ) in such a way that δ ∈ Φ+, however by (4.10) we
have Nγ,δ = −N−γ,−δ, the sign changes here and hence we must set m := −m. Further,
we claim that we have γ, δ ∈ Φ+ after Step 3. Indeed. Suppose that γ ∈ Φ− before
this step, otherwise we are done. First, if −γ ≺ δ, then −γ is a positive root obviously
and, according to Lemma 4.13, γ + δ = δ− (−γ) ∈ Φ+ as well. For the sign alteration,
(4.5) and (4.10) imply sgn(Nγ,δ) = sgn(N−γ−δ,γ) = − sgn(Nγ+δ,−γ) and thus we must
set m := −m. Second, if −γ � δ, δ ∈ Φ+ thanks to Step 2 and −γ − δ ∈ Φ+ is a
consequence of Lemma 4.13. In this case m stays unchanged since we have sgn(Nγ,δ) =
sgn(Nδ,−γ−δ) by (4.5).

Remark 4.10. There is one more step in the original algorithm in [5] in comparison to
Algorithm 5. Namely, it is the command putting the pair (γ, δ) of positive roots such
that γ + δ is a positive root as well into the right order to be the special one. We could
omit this step since we have computed the structure constants Nα,β for all α, β, α + β ∈
Φ+ by Algorithm 4.

1At this place the incorrectness has occurred in the original paper [5]. In ALGORITHM 1 on page 1482
of that paper the command m := −m is missing in this step.

77



Conclusion

In this thesis we have focused on the construction of the Chevalley basis for a simple
Lie algebra, the first step in the construction of various bases for representations of
simple Lie algebras.

In the first three chapters we have summarized the fundamentals of Lie algebras
theory needed for the construction. Especially, we have defined semisimple and simple
Lie algebras and we have presented their complete classification.

In the first part of the fourth chapter we have introduced the Chevalley basis for a
semisimple Lie algebra. We have established the set of basis vectors and we have un-
covered the structure constants with respect to this basis. Furthermore, we have shown
that such the basis existed for each algebra. In the second part of the final chapter we
have introduced the series of algorithms for practical computation of the Chevalley
basis and the respective structure constants. Most of the structure constants were al-
ready prescribed by the definition of the Chevalley basis, in fact many of them were
trivial. The only problem was to discover the signs for certain subset of the structure
constants (we have denoted these constants by Nα,β in the main text). We have shown
which of these signs could be chosen arbitrarily and that the others were then uniquely
determined. We have chosen the optional signs to be all equal to +1. Determination
of the remaining signs was the pivotal step of the construction. For this task, we have
used two algorithms introduced originally in paper [5]. However we have found an
incorrectness in each of them. We have specified the mistakes and we have proposed
our algorithms avoiding this inaccuracy.

Subsequently, the algorithms presented in the fourth chapter were implemented
into several Maple 16 procedures providing together the program for computation of
the Chevalley basis for a simple Lie of an arbitrary type (for both classical and excep-
tional simple Lie algebras). More precisely, our program writes out all the non-zero
commutators of basis vectors from the Chevalley basis. Additionally, the option of
writing out the list of vectors contained in the Chevalley basis is available as well. The
whole Maple source code is attached in the first appendix. As an example, we have
presented the computed Chevalley bases for all simple Lie algebras up to the rank 4 in
the second appendix.

As mentioned, the construction of a basis for a simple Lie algebra is the first task
in the construction of bases for representations. In our following work (research work,
diploma thesis) we are going to use the results presented in this thesis to study the
problems concerning the construction of bases for representations of simple Lie alge-
bras as well as the comparison of the different kinds of bases.
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Appendix A

Maple 16 Source Code

In the first appendix, we present several Maple 16 procedures based on the algorithms
introduced in Chapter 4 which together provide a program for computing of Chevalley
basis for a simple Lie algebra of an arbitrary type. Before stating the proper code, we
give a brief description of the particular procedures.

A.1 Specification

First of all, one has to call packages DifferentialGeometry and LieAlgebras to keep the
Cartan matrices and positive roots at disposition.

The procedure RootSystem produces the table of n-tuples of coefficients of all roots
in root system of type Tn with respect to the standard basis (established by the labeling
of Dynkin diagrams in Theorem 3.55). This is based on the final step of Algorithm 1.
The preceding steps of that algorithm are already implemented in PositiveRoots Maple
procedure as discussed in Subsection 4.2.1.

The procedure sqNorm calculates the square of norm of an arbitrary root r from the
squares of norms of the simple roots (SsqN).

The next procedure, MaxPab takes two roots a, b and determines the largest integer
p such that b− p · a is a root.

The procedure StructureConstants computes the table of structure constants with re-
spect to a Chevalley basis in a simple Lie algebra of type Tn. This procedure is based
on algorithms and methods introduced in Subsections 4.2.2, 4.2.3 and 4.2.4 completely.
Notice that not all the structure constants are computed; we determine only such con-
stants that are needed in the pivotal procedure WriteCommutators. Within the procedure
StructureConstants, the choice of the signs of the structure constants Nα,β has to be made
for the extraspecial pairs (α, β) (cf. Proposition 4.12). We chose these signs to be all +1.

Further, the procedure Direction gives the basis vectors occurring non-trivially in the
decomposition of vector [a, b] into the Chevalley basis. Then, the linear combination
of these vectors with the respective structure constants as coefficients is the required
commutator [a, b].

The semifinal procedure WriteBasis writes out the set of vectors forming a Chevalley
basis in a simple Lie algebra of type Tn.

The last procedure WriteCommutators is the pivotal one. After compiling this and
all the previous procedures (except WriteBasis, that is not needed), the command

WriteCommutators(T,n)

writes out all the non-zero commutators of all pairs of basis vectors from the Chevalley
basis (with the signs of Nα,β chosen for the extraspecial pairs (α, β) as above) for a
simple Lie algebra of type Tn.
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A.2 Proper Code

> with(DifferentialGeometry): with(LieAlgebras):

> RootSystem:=proc(T,n)::table;
local CM,PR,i;
global RS;
if T=A then CM:=CartanMatrix("A",n);
elif T=B then CM:=CartanMatrix("B",n);
elif T=C then CM:=CartanMatrix("C",n);
elif T=D then CM:=CartanMatrix("D",n);
elif T=E then CM:=CartanMatrix("E",n,version ="I");
elif T=F then CM:=CartanMatrix("F",n);
elif T=G then CM:=CartanMatrix("G",n);
end if;
PR:=PositiveRoots(CM);
RS:=table( );
for i from 1 to numelems(PR) do

RS[i]:=[seq(PR[i][j],j=1..n)];
end do;
for i from 1 to numelems(PR) do

RS[i+numelems(PR)]:=[seq(-PR[i][j],j=1..n)];
end do;
RS;
end proc:

> sqNorm:=proc(r::list,SsqN::table,CM::Matrix)
local i,j,n;
global N;
n:=numelems([entries(SsqN)]);
N:=0;
for i from 1 to n do

for j from 1 to n do
N:=N+(1/2)*r[i]*r[j]*CM[i][j]*SsqN[j];

end do;
end do;
end proc:

> MaxPab:=proc(RS::table,a::list,b::list)
local j;
global p;
p:=0;
j:=1;
while p<j do

if -j*a+b in [entries(RS,’nolist’)] then
p:=j;
j:=j+1;

else j:=j-1;
end if;

end do;
p;
end proc:

> StructureConstants:=proc(T,n)::table;
local CM,RS,i,j,k,l,m,count1,SsqN,SP,ESP,Nab,t1,t2,N,a,b,c;
global SC;
if T=A then CM:=CartanMatrix("A",n);
elif T=B then CM:=CartanMatrix("B",n);
elif T=C then CM:=CartanMatrix("C",n);
elif T=D then CM:=CartanMatrix("D",n);
elif T=E then CM:=CartanMatrix("E",n,version="I");
elif T=F then CM:=CartanMatrix("F",n);
elif T=G then CM:=CartanMatrix("G",n);

80



end if;
count1:=0;
RS:=table([ ]);
RS:=RootSystem(T,n);
N:=(1/2)*numelems(RS);

SsqN:=table([ ]);
if T=B then

for i from 1 to n-1 do SsqN[i]:=2 end do;
SsqN[n]:=1;

elif T=C then
for i from 1 to n-1 do SsqN[i]:=2 end do;
SsqN[n]:=4;

elif T=F then
SsqN[1]:=2;
SsqN[2]:=2;
SsqN[3]:=1;
SsqN[4]:=1;

elif T=G then
SsqN[1]:=2;
SsqN[2]:=6;

else for i from 1 to n do SsqN[i]:=2 end do;
end if;

ESP:=table([ ]);
for i from 1 to N do

for j from i+1 to N do
if RS[i]+RS[j] in [entries(RS,’nolist’)] then

if not RS[i]+RS[j] in [indices(ESP,’nolist’)] then
ESP[RS[i]+RS[j]]:=[RS[i],RS[j]];

end if;
end if;

end do;
end do;

SP:=table([ ]);
l:=1;
for i from 1 to N do

for j from 1 to i do
for k from j to i do

if RS[j]+RS[k]=RS[i] then
SP[l]:=[RS[j],RS[k]];
l:=l+1;

end if;
end do;

end do;
end do;

Nab:=table([ ]);
for i from 1 to N do

for j from i+1 to N do
if [RS[i],RS[j]] in [entries(ESP,’nolist’)] then

Nab[RS[i],RS[j]]:=MaxPab(RS,RS[i],RS[j])+1;
end if;

end do;
end do;
for i from 1 to N do

for j from i+1 to N do
if [RS[i],RS[j]] in [entries(ESP,’nolist’)] then

Nab[RS[j],RS[i]]:=-Nab[RS[i],RS[j]];
end if;

end do;
end do;
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for i from 1 to numelems([entries(SP)]) do
if not [op(SP[i])] in [entries(ESP,’nolist’)] then

if SP[i][2]-ESP[SP[i][1]+SP[i][2]][1] in [entries(RS,’nolist’)] then
t1:=(sqNorm(SP[i][2]-ESP[SP[i][1]+SP[i][2]][1],SsqN,CM))/(sqNorm(SP[i][2],

SsqN,CM))*Nab[ESP[SP[i][1]+SP[i][2]][1],SP[i][2]-ESP[SP[i][1]+SP[i
][2]][1]]*Nab[SP[i][1],ESP[SP[i][1]+SP[i][2]][2]-SP[i][1]]

else t1:=0;
end if;
if SP[i][1]-ESP[SP[i][1]+SP[i][2]][1] in [entries(RS,’nolist’)] then

t2:=(sqNorm(SP[i][1]-ESP[SP[i][1]+SP[i][2]][1],SsqN,CM))/(sqNorm(SP[i][1],
SsqN,CM))*Nab[ESP[SP[i][1]+SP[i][2]][1],SP[i][1]-ESP[SP[i][1]+SP[i
][2]][1]]*Nab[SP[i][2],ESP[SP[i][1]+SP[i][2]][2]-SP[i][2]]

else t2:=0;
end if;
Nab[op(SP[i])]:=sign(t1-t2)*sign(Nab[op(ESP[SP[i][1]+SP[i][2]])])*(MaxPab(RS,op

(SP[i]))+1);
Nab[op(SP[i])[2], op(SP[i])[1]]:=-Nab[op(SP[i])];

end if;
end do;

SC:=table([ ]);
for i from 1 to n do

for j from 1 to 2*N do
for k from 1 to n do

count1:=count1+RS[j][k]*CM[k][i];
end do;
SC[[h,RS[i]],[e,RS[j]]]:=[count1];
count1:=0;

end do;
end do;
for i from 1 to 2*N do

for j from i+1 to 2*N do
if RS[i]=-RS[j] then

SC[[e,RS[i]],[e,RS[j]]]:=[ ];
for k from 1 to n do

SC[[e,RS[i]],[e,RS[j]]]:=[op(SC[[e,RS[i]],[e,RS[j]]]),RS[i][k]*(SsqN[k])
/(sqNorm(RS[i],SsqN,CM))];

end do;
elif not RS[i]+RS[j] in [entries(RS,’nolist’)] then

SC[[e,RS[i]],[e,RS[j]]]:=[0];
elif[RS[i],RS[j]] in [entries(SP,’nolist’)] then

SC[[e,RS[i]],[e,RS[j]]]:=[Nab[RS[i],RS[j]]];
else

m:=1;
k:=i;
l:=j;
a:=RS[k];
b:=RS[l];
if l>N then

l:=l-N;
m:=-m;
if k<=N then k:=k+N;
else k:=k-N;
end if;
a:=RS[k];
b:=RS[l];

end if;
if k>N then

if k-N<l then
c:=-RS[k];
a:=RS[k]+RS[l];
b:=c;
m:=-m;
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else
c:=-RS[k]-RS[l];
a:=RS[l];
b:=c;

end if;
end if;
SC[[e,RS[i]],[e,RS[j]]]:=[m*sign(Nab[a,b])*(MaxPab(RS,RS[i],RS[j])+1)];

end if;
end do;

end do;

SC;
end proc:

> Direction:=proc(a::list,b::list,RS::table,n)::list;
global c;
if a[1]=b[1]=e then

if a[2]=-b[2] then
c:=[seq([h,RS[j]],j=1..n)];

elif a[2]+b[2] in [entries(RS,’nolist’)] then
c:=[[e,a[2]+b[2]]];

end if;
elif a[1]=h and b[1]=e then

c:=[b];
end if;
end proc:

> WriteBasis:=proc(T,n)
local i,RS;
RS:=RootSystem(T,n);
for i from 1 to n do

print(h(op(RS[i])));
end do;
for i from 1 to numelems([entries(RS)]) do

print(e(op(RS[i])));
end do;
end proc:

> WriteCommutators:=proc(T,n)
local i,j,k,SC,RS,count;
SC:=StructureConstants(T,n);
RS:=RootSystem(T,n);
for i from 1 to n do

for j from 1 to numelems(RS) do
if not SC[[h,RS[i]],[e,RS[j]]]=[0] then

print([h(op(RS[i])),e(op(RS[j]))]=SC[[h,RS[i]],[e,RS[j]]][1]*Direction([h,
RS[i]],[e,RS[j]],RS,n)[1][1](op(Direction([h,RS[i]],[e,RS[j]],RS,n)
[1][2])));

end if;
end do;

end do;
for i from 1 to numelems(RS) do

for j from i+1 to numelems(RS) do
if not SC[[e,RS[i]],[e,RS[j]]]=[0] then

count:=0;
for k from 1 to numelems(SC[[e,RS[i]],[e,RS[j]]]) do

count:=count+SC[[e,RS[i]],[e,RS[j]]][k]*Direction([e,RS[i]],[e,RS[j]],RS
,n)[k][1](op(Direction([e,RS[i]],[e,RS[j]],RS,n)[k][2]));

end do;
print([e(op(RS[i])),e(op(RS[j]))]=count);

end if;
end do;

end do;
end proc:
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Appendix B

Examples of Computed Bases

In the second appendix, we present Chevalley bases for all simple Lie algebras up to
the rank 4. The bases were calculated exactly in the way introduced in Appendix A.

A1
[h(1),e(1)]=2e(1)
[h(1),e(-1)]=-2e(-1)
[e(1),e(-1)]=h(1)

A2
[h(1,0),e(1,0)]=2e(1,0)
[h(1,0),e(0,1)]=-e(0,1)
[h(1,0),e(1,1)]=e(1,1)
[h(1,0),e(-1,0)]=-2e(-1,0)
[h(1,0),e(0,-1)]=e(0,-1)
[h(1,0),e(-1,-1)]=-e(-1,-1)
[h(0,1),e(1,0)]=-e(1,0)
[h(0,1),e(0,1)]=2e(0,1)
[h(0,1),e(1,1)]=e(1,1)
[h(0,1),e(-1,0)]=e(-1,0)
[h(0,1),e(0,-1)]=-2e(0,-1)
[h(0,1),e(-1,-1)]=-e(-1,-1)
[e(1,0),e(0,1)]=e(1,1)
[e(1,0),e(-1,0)]=h(1,0)
[e(1,0),e(-1,-1)]=-e(0,-1)
[e(0,1),e(0,-1)]=h(0,1)
[e(0,1),e(-1,-1)]=e(-1,0)
[e(1,1),e(-1,0)]=-e(0,1)
[e(1,1),e(0,-1)]=e(1,0)
[e(1,1),e(-1,-1)]=h(1,0)+h(0,1)
[e(-1,0),e(0,-1)]=-e(-1,-1)

B2
[h(1,0),e(1,0)]=2e(1,0)
[h(1,0),e(0,1)]=-e(0,1)
[h(1,0),e(1,1)]=e(1,1)
[h(1,0),e(-1,0)]=-2e(-1,0)
[h(1,0),e(0,-1)]=e(0,-1)
[h(1,0),e(-1,-1)]=-e(-1,-1)
[h(0,1),e(1,0)]=-2e(1,0)
[h(0,1),e(0,1)]=2e(0,1)
[h(0,1),e(1,2)]=2e(1,2)
[h(0,1),e(-1,0)]=2e(-1,0)
[h(0,1),e(0,-1)]=-2e(0,-1)
[h(0,1),e(-1,-2)]=-2e(-1,-2)
[e(1,0),e(0,1)]=e(1,1)
[e(1,0),e(-1,0)]=h(1,0)
[e(1,0),e(-1,-1)]=-e(0,-1)
[e(0,1),e(1,1)]=2e(1,2)
[e(0,1),e(0,-1)]=h(0,1)
[e(0,1),e(-1,-1)]=2e(-1,0)

[e(0,1),e(-1,-2)]=-e(-1,-1)
[e(1,1),e(-1,0)]=-e(0,1)
[e(1,1),e(0,-1)]=2e(1,0)
[e(1,1),e(-1,-1)]=2h(1,0)+h(0,1)
[e(1,1),e(-1,-2)]=e(0,-1)
[e(1,2),e(0,-1)]=-e(1,1)
[e(1,2),e(-1,-1)]=e(0,1)
[e(1,2),e(-1,-2)]=h(1,0)+h(0,1)
[e(-1,0),e(0,-1)]=-e(-1,-1)
[e(0,-1),e(-1,-1)]=-2e(-1,-2)

G2
[h(1,0),e(1,0)]=2e(1,0)
[h(1,0),e(0,1)]=-3e(0,1)
[h(1,0),e(1,1)]=-e(1,1)
[h(1,0),e(2,1)]=e(2,1)
[h(1,0),e(3,1)]=3e(3,1)
[h(1,0),e(-1,0)]=-2e(-1,0)
[h(1,0),e(0,-1)]=3e(0,-1)
[h(1,0),e(-1,-1)]=e(-1,-1)
[h(1,0),e(-2,-1)]=-e(-2,-1)
[h(1,0),e(-3,-1)]=-3e(-3,-1)
[h(0,1),e(1,0)]=-e(1,0)
[h(0,1),e(0,1)]=2e(0,1)
[h(0,1),e(1,1)]=e(1,1)
[h(0,1),e(3,1)]=-e(3,1)
[h(0,1),e(3,2)]=e(3,2)
[h(0,1),e(-1,0)]=e(-1,0)
[h(0,1),e(0,-1)]=-2e(0,-1)
[h(0,1),e(-1,-1)]=-e(-1,-1)
[h(0,1),e(-3,-1)]=e(-3,-1)
[h(0,1),e(-3,-2)]=-e(-3,-2)
[e(1,0),e(0,1)]=e(1,1)
[e(1,0),e(1,1)]=2e(2,1)
[e(1,0),e(2,1)]=3e(3,1)
[e(1,0),e(-1,0)]=h(1,0)
[e(1,0),e(-1,-1)]=-3e(0,-1)
[e(1,0),e(-2,-1)]=-2e(-1,-1)
[e(1,0),e(-3,-1)]=-e(-2,-1)
[e(0,1),e(3,1)]=e(3,2)
[e(0,1),e(0,-1)]=h(0,1)
[e(0,1),e(-1,-1)]=e(-1,0)
[e(0,1),e(-3,-2)]=-e(-3,-1)
[e(1,1),e(2,1)]=-3e(3,2)
[e(1,1),e(-1,0)]=-3e(0,1)
[e(1,1),e(0,-1)]=e(1,0)
[e(1,1),e(-1,-1)]=h(1,0)+3h(0,1)
[e(1,1),e(-2,-1)]=2e(-1,0)
[e(1,1),e(-3,-2)]=e(-2,-1)
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[e(2,1),e(-1,0)]=-2e(1,1)
[e(2,1),e(-1,-1)]=2e(1,0)
[e(2,1),e(-2,-1)]=2h(1,0)+3h(0,1)
[e(2,1),e(-3,-1)]=e(-1,0)
[e(2,1),e(-3,-2)]=-e(-1,-1)
[e(3,1),e(-1,0)]=-e(2,1)
[e(3,1),e(-2,-1)]=e(1,0)
[e(3,1),e(-3,-1)]=h(1,0)+h(0,1)
[e(3,1),e(-3,-2)]=e(0,-1)
[e(3,2),e(0,-1)]=-e(3,1)
[e(3,2),e(-1,-1)]=e(2,1)
[e(3,2),e(-2,-1)]=-e(1,1)
[e(3,2),e(-3,-1)]=e(0,1)
[e(3,2),e(-3,-2)]=h(1,0)+2h(0,1)
[e(-1,0),e(0,-1)]=-e(-1,-1)
[e(-1,0),e(-1,-1)]=-2e(-2,-1)
[e(-1,0),e(-2,-1)]=-3e(-3,-1)
[e(0,-1),e(-3,-1)]=-e(-3,-2)
[e(-1,-1),e(-2,-1)]=3e(-3,-2)

A3
[h(1,0,0),e(1,0,0)]=2e(1,0,0)
[h(1,0,0),e(0,1,0)]=-e(0,1,0)
[h(1,0,0),e(1,1,0)]=e(1,1,0)
[h(1,0,0),e(0,1,1)]=-e(0,1,1)
[h(1,0,0),e(1,1,1)]=e(1,1,1)
[h(1,0,0),e(-1,0,0)]=-2e(-1,0,0)
[h(1,0,0),e(0,-1,0)]=e(0,-1,0)
[h(1,0,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(1,0,0),e(0,-1,-1)]=e(0,-1,-1)
[h(1,0,0),e(-1,-1,-1)]=-e(-1,-1,-1)
[h(0,1,0),e(1,0,0)]=-e(1,0,0)
[h(0,1,0),e(0,1,0)]=2e(0,1,0)
[h(0,1,0),e(0,0,1)]=-e(0,0,1)
[h(0,1,0),e(1,1,0)]=e(1,1,0)
[h(0,1,0),e(0,1,1)]=e(0,1,1)
[h(0,1,0),e(-1,0,0)]=e(-1,0,0)
[h(0,1,0),e(0,-1,0)]=-2e(0,-1,0)
[h(0,1,0),e(0,0,-1)]=e(0,0,-1)
[h(0,1,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(0,1,0),e(0,-1,-1)]=-e(0,-1,-1)
[h(0,0,1),e(0,1,0)]=-e(0,1,0)
[h(0,0,1),e(0,0,1)]=2e(0,0,1)
[h(0,0,1),e(1,1,0)]=-e(1,1,0)
[h(0,0,1),e(0,1,1)]=e(0,1,1)
[h(0,0,1),e(1,1,1)]=e(1,1,1)
[h(0,0,1),e(0,-1,0)]=e(0,-1,0)
[h(0,0,1),e(0,0,-1)]=-2e(0,0,-1)
[h(0,0,1),e(-1,-1,0)]=e(-1,-1,0)
[h(0,0,1),e(0,-1,-1)]=-e(0,-1,-1)
[h(0,0,1),e(-1,-1,-1)]=-e(-1,-1,-1)
[e(1,0,0),e(0,1,0)]=e(1,1,0)
[e(1,0,0),e(0,1,1)]=e(1,1,1)
[e(1,0,0),e(-1,0,0)]=h(1,0,0)
[e(1,0,0),e(-1,-1,0)]=-e(0,-1,0)
[e(1,0,0),e(-1,-1,-1)]=-e(0,-1,-1)
[e(0,1,0),e(0,0,1)]=e(0,1,1)
[e(0,1,0),e(0,-1,0)]=h(0,1,0)
[e(0,1,0),e(-1,-1,0)]=e(-1,0,0)
[e(0,1,0),e(0,-1,-1)]=-e(0,0,-1)
[e(0,0,1),e(1,1,0)]=-e(1,1,1)
[e(0,0,1),e(0,0,-1)]=h(0,0,1)
[e(0,0,1),e(0,-1,-1)]=e(0,-1,0)
[e(0,0,1),e(-1,-1,-1)]=e(-1,-1,0)
[e(1,1,0),e(-1,0,0)]=-e(0,1,0)
[e(1,1,0),e(0,-1,0)]=e(1,0,0)
[e(1,1,0),e(-1,-1,0)]=h(1,0,0)+h(0,1,0)
[e(1,1,0),e(-1,-1,-1)]=-e(0,0,-1)
[e(0,1,1),e(0,-1,0)]=-e(0,0,1)
[e(0,1,1),e(0,0,-1)]=e(0,1,0)
[e(0,1,1),e(0,-1,-1)]=h(0,1,0)+h(0,0,1)
[e(0,1,1),e(-1,-1,-1)]=e(-1,0,0)

[e(1,1,1),e(-1,0,0)]=-e(0,1,1)
[e(1,1,1),e(0,0,-1)]=e(1,1,0)
[e(1,1,1),e(-1,-1,0)]=-e(0,0,1)
[e(1,1,1),e(0,-1,-1)]=e(1,0,0)
[e(1,1,1),e(-1,-1,-1)]=
=h(1,0,0)+h(0,1,0)+h(0,0,1)
[e(-1,0,0),e(0,-1,0)]=-e(-1,-1,0)
[e(-1,0,0),e(0,-1,-1)]=-e(-1,-1,-1)
[e(0,-1,0),e(0,0,-1)]=-e(0,-1,-1)
[e(0,0,-1),e(-1,-1,0)]=e(-1,-1,-1)

B3
[h(1,0,0),e(1,0,0)]=2e(1,0,0)
[h(1,0,0),e(0,1,0)]=-e(0,1,0)
[h(1,0,0),e(1,1,0)]=e(1,1,0)
[h(1,0,0),e(0,1,1)]=-e(0,1,1)
[h(1,0,0),e(1,1,1)]=e(1,1,1)
[h(1,0,0),e(0,1,2)]=-e(0,1,2)
[h(1,0,0),e(1,1,2)]=e(1,1,2)
[h(1,0,0),e(-1,0,0)]=-2e(-1,0,0)
[h(1,0,0),e(0,-1,0)]=e(0,-1,0)
[h(1,0,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(1,0,0),e(0,-1,-1)]=e(0,-1,-1)
[h(1,0,0),e(-1,-1,-1)]=-e(-1,-1,-1)
[h(1,0,0),e(0,-1,-2)]=e(0,-1,-2)
[h(1,0,0),e(-1,-1,-2)]=-e(-1,-1,-2)
[h(0,1,0),e(1,0,0)]=-e(1,0,0)
[h(0,1,0),e(0,1,0)]=2e(0,1,0)
[h(0,1,0),e(0,0,1)]=-e(0,0,1)
[h(0,1,0),e(1,1,0)]=e(1,1,0)
[h(0,1,0),e(0,1,1)]=e(0,1,1)
[h(0,1,0),e(1,1,2)]=-e(1,1,2)
[h(0,1,0),e(1,2,2)]=e(1,2,2)
[h(0,1,0),e(-1,0,0)]=e(-1,0,0)
[h(0,1,0),e(0,-1,0)]=-2e(0,-1,0)
[h(0,1,0),e(0,0,-1)]=e(0,0,-1)
[h(0,1,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(0,1,0),e(0,-1,-1)]=-e(0,-1,-1)
[h(0,1,0),e(-1,-1,-2)]=e(-1,-1,-2)
[h(0,1,0),e(-1,-2,-2)]=-e(-1,-2,-2)
[h(0,0,1),e(0,1,0)]=-2e(0,1,0)
[h(0,0,1),e(0,0,1)]=2e(0,0,1)
[h(0,0,1),e(1,1,0)]=-2e(1,1,0)
[h(0,0,1),e(0,1,2)]=2e(0,1,2)
[h(0,0,1),e(1,1,2)]=2e(1,1,2)
[h(0,0,1),e(0,-1,0)]=2e(0,-1,0)
[h(0,0,1),e(0,0,-1)]=-2e(0,0,-1)
[h(0,0,1),e(-1,-1,0)]=2e(-1,-1,0)
[h(0,0,1),e(0,-1,-2)]=-2e(0,-1,-2)
[h(0,0,1),e(-1,-1,-2)]=-2e(-1,-1,-2)
[e(1,0,0),e(0,1,0)]=e(1,1,0)
[e(1,0,0),e(0,1,1)]=e(1,1,1)
[e(1,0,0),e(0,1,2)]=e(1,1,2)
[e(1,0,0),e(-1,0,0)]=h(1,0,0)
[e(1,0,0),e(-1,-1,0)]=-e(0,-1,0)
[e(1,0,0),e(-1,-1,-1)]=-e(0,-1,-1)
[e(1,0,0),e(-1,-1,-2)]=-e(0,-1,-2)
[e(0,1,0),e(0,0,1)]=e(0,1,1)
[e(0,1,0),e(1,1,2)]=e(1,2,2)
[e(0,1,0),e(0,-1,0)]=h(0,1,0)
[e(0,1,0),e(-1,-1,0)]=e(-1,0,0)
[e(0,1,0),e(0,-1,-1)]=-e(0,0,-1)
[e(0,1,0),e(-1,-2,-2)]=-e(-1,-1,-2)
[e(0,0,1),e(1,1,0)]=-e(1,1,1)
[e(0,0,1),e(0,1,1)]=2e(0,1,2)
[e(0,0,1),e(1,1,1)]=2e(1,1,2)
[e(0,0,1),e(0,0,-1)]=h(0,0,1)
[e(0,0,1),e(0,-1,-1)]=2e(0,-1,0)
[e(0,0,1),e(-1,-1,-1)]=2e(-1,-1,0)
[e(0,0,1),e(0,-1,-2)]=-e(0,-1,-1)
[e(0,0,1),e(-1,-1,-2)]=-e(-1,-1,-1)
[e(1,1,0),e(0,1,2)]=-e(1,2,2)
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[e(1,1,0),e(-1,0,0)]=-e(0,1,0)
[e(1,1,0),e(0,-1,0)]=e(1,0,0)
[e(1,1,0),e(-1,-1,0)]=h(1,0,0)+h(0,1,0)
[e(1,1,0),e(-1,-1,-1)]=-e(0,0,-1)
[e(1,1,0),e(-1,-2,-2)]=e(0,-1,-2)
[e(0,1,1),e(1,1,1)]=2e(1,2,2)
[e(0,1,1),e(0,-1,0)]=-e(0,0,1)
[e(0,1,1),e(0,0,-1)]=2e(0,1,0)
[e(0,1,1),e(0,-1,-1)]=2h(0,1,0)+h(0,0,1)
[e(0,1,1),e(-1,-1,-1)]=2e(-1,0,0)
[e(0,1,1),e(0,-1,-2)]=e(0,0,-1)
[e(0,1,1),e(-1,-2,-2)]=-e(-1,-1,-1)
[e(1,1,1),e(-1,0,0)]=-e(0,1,1)
[e(1,1,1),e(0,0,-1)]=2e(1,1,0)
[e(1,1,1),e(-1,-1,0)]=-e(0,0,1)
[e(1,1,1),e(0,-1,-1)]=2e(1,0,0)
[e(1,1,1),e(-1,-1,-1)]=
=2h(1,0,0)+2h(0,1,0)+h(0,0,1)
[e(1,1,1),e(-1,-1,-2)]=e(0,0,-1)
[e(1,1,1),e(-1,-2,-2)]=e(0,-1,-1)
[e(0,1,2),e(0,0,-1)]=-e(0,1,1)
[e(0,1,2),e(0,-1,-1)]=e(0,0,1)
[e(0,1,2),e(0,-1,-2)]=h(0,1,0)+h(0,0,1)
[e(0,1,2),e(-1,-1,-2)]=e(-1,0,0)
[e(0,1,2),e(-1,-2,-2)]=-e(-1,-1,0)
[e(1,1,2),e(-1,0,0)]=-e(0,1,2)
[e(1,1,2),e(0,0,-1)]=-e(1,1,1)
[e(1,1,2),e(-1,-1,-1)]=e(0,0,1)
[e(1,1,2),e(0,-1,-2)]=e(1,0,0)
[e(1,1,2),e(-1,-1,-2)]=
=h(1,0,0)+h(0,1,0)+h(0,0,1)
[e(1,1,2),e(-1,-2,-2)]=e(0,-1,0)
[e(1,2,2),e(0,-1,0)]=-e(1,1,2)
[e(1,2,2),e(-1,-1,0)]=e(0,1,2)
[e(1,2,2),e(0,-1,-1)]=-e(1,1,1)
[e(1,2,2),e(-1,-1,-1)]=e(0,1,1)
[e(1,2,2),e(0,-1,-2)]=-e(1,1,0)
[e(1,2,2),e(-1,-1,-2)]=e(0,1,0)
[e(1,2,2),e(-1,-2,-2)]=
=h(1,0,0)+2h(0,1,0)+h(0,0,1)
[e(-1,0,0),e(0,-1,0)]=-e(-1,-1,0)
[e(-1,0,0),e(0,-1,-1)]=-e(-1,-1,-1)
[e(-1,0,0),e(0,-1,-2)]=-e(-1,-1,-2)
[e(0,-1,0),e(0,0,-1)]=-e(0,-1,-1)
[e(0,-1,0),e(-1,-1,-2)]=-e(-1,-2,-2)
[e(0,0,-1),e(-1,-1,0)]=e(-1,-1,-1)
[e(0,0,-1),e(0,-1,-1)]=-2e(0,-1,-2)
[e(0,0,-1),e(-1,-1,-1)]=-2e(-1,-1,-2)
[e(-1,-1,0),e(0,-1,-2)]=e(-1,-2,-2)
[e(0,-1,-1),e(-1,-1,-1)]=-2e(-1,-2,-2)

C3
[h(1,0,0),e(1,0,0)]=2e(1,0,0)
[h(1,0,0),e(0,1,0)]=-e(0,1,0)
[h(1,0,0),e(1,1,0)]=e(1,1,0)
[h(1,0,0),e(0,1,1)]=-e(0,1,1)
[h(1,0,0),e(1,1,1)]=e(1,1,1)
[h(1,0,0),e(0,2,1)]=-2e(0,2,1)
[h(1,0,0),e(2,2,1)]=2e(2,2,1)
[h(1,0,0),e(-1,0,0)]=-2e(-1,0,0)
[h(1,0,0),e(0,-1,0)]=e(0,-1,0)
[h(1,0,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(1,0,0),e(0,-1,-1)]=e(0,-1,-1)
[h(1,0,0),e(-1,-1,-1)]=-e(-1,-1,-1)
[h(1,0,0),e(0,-2,-1)]=2e(0,-2,-1)
[h(1,0,0),e(-2,-2,-1)]=-2e(-2,-2,-1)
[h(0,1,0),e(1,0,0)]=-e(1,0,0)
[h(0,1,0),e(0,1,0)]=2e(0,1,0)
[h(0,1,0),e(0,0,1)]=-2e(0,0,1)
[h(0,1,0),e(1,1,0)]=e(1,1,0)
[h(0,1,0),e(1,1,1)]=-e(1,1,1)
[h(0,1,0),e(0,2,1)]=2e(0,2,1)

[h(0,1,0),e(1,2,1)]=e(1,2,1)
[h(0,1,0),e(-1,0,0)]=e(-1,0,0)
[h(0,1,0),e(0,-1,0)]=-2e(0,-1,0)
[h(0,1,0),e(0,0,-1)]=2e(0,0,-1)
[h(0,1,0),e(-1,-1,0)]=-e(-1,-1,0)
[h(0,1,0),e(-1,-1,-1)]=e(-1,-1,-1)
[h(0,1,0),e(0,-2,-1)]=-2e(0,-2,-1)
[h(0,1,0),e(-1,-2,-1)]=-e(-1,-2,-1)
[h(0,0,1),e(0,1,0)]=-e(0,1,0)
[h(0,0,1),e(0,0,1)]=2e(0,0,1)
[h(0,0,1),e(1,1,0)]=-e(1,1,0)
[h(0,0,1),e(0,1,1)]=e(0,1,1)
[h(0,0,1),e(1,1,1)]=e(1,1,1)
[h(0,0,1),e(0,-1,0)]=e(0,-1,0)
[h(0,0,1),e(0,0,-1)]=-2e(0,0,-1)
[h(0,0,1),e(-1,-1,0)]=e(-1,-1,0)
[h(0,0,1),e(0,-1,-1)]=-e(0,-1,-1)
[h(0,0,1),e(-1,-1,-1)]=-e(-1,-1,-1)
[e(1,0,0),e(0,1,0)]=e(1,1,0)
[e(1,0,0),e(0,1,1)]=e(1,1,1)
[e(1,0,0),e(0,2,1)]=e(1,2,1)
[e(1,0,0),e(1,2,1)]=2e(2,2,1)
[e(1,0,0),e(-1,0,0)]=h(1,0,0)
[e(1,0,0),e(-1,-1,0)]=-e(0,-1,0)
[e(1,0,0),e(-1,-1,-1)]=-e(0,-1,-1)
[e(1,0,0),e(-1,-2,-1)]=-2e(0,-2,-1)
[e(1,0,0),e(-2,-2,-1)]=-e(-1,-2,-1)
[e(0,1,0),e(0,0,1)]=e(0,1,1)
[e(0,1,0),e(0,1,1)]=2e(0,2,1)
[e(0,1,0),e(1,1,1)]=e(1,2,1)
[e(0,1,0),e(0,-1,0)]=h(0,1,0)
[e(0,1,0),e(-1,-1,0)]=e(-1,0,0)
[e(0,1,0),e(0,-1,-1)]=-2e(0,0,-1)
[e(0,1,0),e(0,-2,-1)]=-e(0,-1,-1)
[e(0,1,0),e(-1,-2,-1)]=-e(-1,-1,-1)
[e(0,0,1),e(1,1,0)]=-e(1,1,1)
[e(0,0,1),e(0,0,-1)]=h(0,0,1)
[e(0,0,1),e(0,-1,-1)]=e(0,-1,0)
[e(0,0,1),e(-1,-1,-1)]=e(-1,-1,0)
[e(1,1,0),e(0,1,1)]=e(1,2,1)
[e(1,1,0),e(1,1,1)]=2e(2,2,1)
[e(1,1,0),e(-1,0,0)]=-e(0,1,0)
[e(1,1,0),e(0,-1,0)]=e(1,0,0)
[e(1,1,0),e(-1,-1,0)]=h(1,0,0)+h(0,1,0)
[e(1,1,0),e(-1,-1,-1)]=-2e(0,0,-1)
[e(1,1,0),e(-1,-2,-1)]=-e(0,-1,-1)
[e(1,1,0),e(-2,-2,-1)]=-e(-1,-1,-1)
[e(0,1,1),e(0,-1,0)]=-2e(0,0,1)
[e(0,1,1),e(0,0,-1)]=e(0,1,0)
[e(0,1,1),e(0,-1,-1)]=h(0,1,0)+2h(0,0,1)
[e(0,1,1),e(-1,-1,-1)]=e(-1,0,0)
[e(0,1,1),e(0,-2,-1)]=e(0,-1,0)
[e(0,1,1),e(-1,-2,-1)]=e(-1,-1,0)
[e(1,1,1),e(-1,0,0)]=-e(0,1,1)
[e(1,1,1),e(0,0,-1)]=e(1,1,0)
[e(1,1,1),e(-1,-1,0)]=-2e(0,0,1)
[e(1,1,1),e(0,-1,-1)]=e(1,0,0)
[e(1,1,1),e(-1,-1,-1)]=
=h(1,0,0)+h(0,1,0)+2h(0,0,1)
[e(1,1,1),e(-1,-2,-1)]=e(0,-1,0)
[e(1,1,1),e(-2,-2,-1)]=e(-1,-1,0)
[e(0,2,1),e(0,-1,0)]=-e(0,1,1)
[e(0,2,1),e(0,-1,-1)]=e(0,1,0)
[e(0,2,1),e(0,-2,-1)]=h(0,1,0)+h(0,0,1)
[e(0,2,1),e(-1,-2,-1)]=e(-1,0,0)
[e(1,2,1),e(-1,0,0)]=-2e(0,2,1)
[e(1,2,1),e(0,-1,0)]=-e(1,1,1)
[e(1,2,1),e(-1,-1,0)]=-e(0,1,1)
[e(1,2,1),e(0,-1,-1)]=e(1,1,0)
[e(1,2,1),e(-1,-1,-1)]=e(0,1,0)
[e(1,2,1),e(0,-2,-1)]=e(1,0,0)
[e(1,2,1),e(-1,-2,-1)]=
=h(1,0,0)+2h(0,1,0)+2h(0,0,1)
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[e(1,2,1),e(-2,-2,-1)]=e(-1,0,0)
[e(2,2,1),e(-1,0,0)]=-e(1,2,1)
[e(2,2,1),e(-1,-1,0)]=-e(1,1,1)
[e(2,2,1),e(-1,-1,-1)]=e(1,1,0)
[e(2,2,1),e(-1,-2,-1)]=e(1,0,0)
[e(2,2,1),e(-2,-2,-1)]=
=h(1,0,0)+h(0,1,0)+h(0,0,1)
[e(-1,0,0),e(0,-1,0)]=-e(-1,-1,0)
[e(-1,0,0),e(0,-1,-1)]=-e(-1,-1,-1)
[e(-1,0,0),e(0,-2,-1)]=-e(-1,-2,-1)
[e(-1,0,0),e(-1,-2,-1)]=-2e(-2,-2,-1)
[e(0,-1,0),e(0,0,-1)]=-e(0,-1,-1)
[e(0,-1,0),e(0,-1,-1)]=-2e(0,-2,-1)
[e(0,-1,0),e(-1,-1,-1)]=-e(-1,-2,-1)
[e(0,0,-1),e(-1,-1,0)]=e(-1,-1,-1)
[e(-1,-1,0),e(0,-1,-1)]=-e(-1,-2,-1)
[e(-1,-1,0),e(-1,-1,-1)]=-2e(-2,-2,-1)

A4
[h(1,0,0,0),e(1,0,0,0)]=2e(1,0,0,0)
[h(1,0,0,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(1,0,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(1,0,0,0),e(0,1,1,0)]=-e(0,1,1,0)
[h(1,0,0,0),e(1,1,1,0)]=e(1,1,1,0)
[h(1,0,0,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(1,0,0,0),e(1,1,1,1)]=e(1,1,1,1)
[h(1,0,0,0),e(-1,0,0,0)]=-2e(-1,0,0,0)
[h(1,0,0,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(1,0,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(1,0,0,0),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(1,0,0,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(1,0,0,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(1,0,0,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(0,1,0,0),e(1,0,0,0)]=-e(1,0,0,0)
[h(0,1,0,0),e(0,1,0,0)]=2e(0,1,0,0)
[h(0,1,0,0),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,1,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(0,1,0,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,1,0,0),e(0,0,1,1)]=-e(0,0,1,1)
[h(0,1,0,0),e(0,1,1,1)]=e(0,1,1,1)
[h(0,1,0,0),e(-1,0,0,0)]=e(-1,0,0,0)
[h(0,1,0,0),e(0,-1,0,0)]=-2e(0,-1,0,0)
[h(0,1,0,0),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,1,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(0,1,0,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,1,0,0),e(0,0,-1,-1)]=e(0,0,-1,-1)
[h(0,1,0,0),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,1,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(0,0,1,0),e(0,0,1,0)]=2e(0,0,1,0)
[h(0,0,1,0),e(0,0,0,1)]=-e(0,0,0,1)
[h(0,0,1,0),e(1,1,0,0)]=-e(1,1,0,0)
[h(0,0,1,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,0,1,0),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,1,0),e(1,1,1,0)]=e(1,1,1,0)
[h(0,0,1,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(0,0,1,0),e(0,0,-1,0)]=-2e(0,0,-1,0)
[h(0,0,1,0),e(0,0,0,-1)]=e(0,0,0,-1)
[h(0,0,1,0),e(-1,-1,0,0)]=e(-1,-1,0,0)
[h(0,0,1,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,-1,-1)
[h(0,0,1,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(0,0,0,1),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,0,0,1),e(0,0,0,1)]=2e(0,0,0,1)
[h(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,0)
[h(0,0,0,1),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,0)
[h(0,0,0,1),e(0,1,1,1)]=e(0,1,1,1)
[h(0,0,0,1),e(1,1,1,1)]=e(1,1,1,1)
[h(0,0,0,1),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,0,0,1),e(0,0,0,-1)]=-2e(0,0,0,-1)
[h(0,0,0,1),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(0,0,0,1),e(0,0,-1,-1)]=-e(0,0,-1,-1)

[h(0,0,0,1),e(-1,-1,-1,0)]=e(-1,-1,-1,0)
[h(0,0,0,1),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,0,1),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(1,0,0,0),e(0,1,0,0)]=e(1,1,0,0)
[e(1,0,0,0),e(0,1,1,0)]=e(1,1,1,0)
[e(1,0,0,0),e(0,1,1,1)]=e(1,1,1,1)
[e(1,0,0,0),e(-1,0,0,0)]=h(1,0,0,0)
[e(1,0,0,0),e(-1,-1,0,0)]=-e(0,-1,0,0)
[e(1,0,0,0),e(-1,-1,-1,0)]=-e(0,-1,-1,0)
[e(1,0,0,0),e(-1,-1,-1,-1)]=-e(0,-1,-1,-1)
[e(0,1,0,0),e(0,0,1,0)]=e(0,1,1,0)
[e(0,1,0,0),e(0,0,1,1)]=e(0,1,1,1)
[e(0,1,0,0),e(0,-1,0,0)]=h(0,1,0,0)
[e(0,1,0,0),e(-1,-1,0,0)]=e(-1,0,0,0)
[e(0,1,0,0),e(0,-1,-1,0)]=-e(0,0,-1,0)
[e(0,1,0,0),e(0,-1,-1,-1)]=-e(0,0,-1,-1)
[e(0,0,1,0),e(0,0,0,1)]=e(0,0,1,1)
[e(0,0,1,0),e(1,1,0,0)]=-e(1,1,1,0)
[e(0,0,1,0),e(0,0,-1,0)]=h(0,0,1,0)
[e(0,0,1,0),e(0,-1,-1,0)]=e(0,-1,0,0)
[e(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,0,-1)
[e(0,0,1,0),e(-1,-1,-1,0)]=e(-1,-1,0,0)
[e(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,1)
[e(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,1)
[e(0,0,0,1),e(0,0,0,-1)]=h(0,0,0,1)
[e(0,0,0,1),e(0,0,-1,-1)]=e(0,0,-1,0)
[e(0,0,0,1),e(0,-1,-1,-1)]=e(0,-1,-1,0)
[e(0,0,0,1),e(-1,-1,-1,-1)]=e(-1,-1,-1,0)
[e(1,1,0,0),e(0,0,1,1)]=e(1,1,1,1)
[e(1,1,0,0),e(-1,0,0,0)]=-e(0,1,0,0)
[e(1,1,0,0),e(0,-1,0,0)]=e(1,0,0,0)
[e(1,1,0,0),e(-1,-1,0,0)]=h(1,0,0,0)+h(0,1,0,0)
[e(1,1,0,0),e(-1,-1,-1,0)]=-e(0,0,-1,0)
[e(1,1,0,0),e(-1,-1,-1,-1)]=-e(0,0,-1,-1)
[e(0,1,1,0),e(0,-1,0,0)]=-e(0,0,1,0)
[e(0,1,1,0),e(0,0,-1,0)]=e(0,1,0,0)
[e(0,1,1,0),e(0,-1,-1,0)]=h(0,1,0,0)+h(0,0,1,0)
[e(0,1,1,0),e(-1,-1,-1,0)]=e(-1,0,0,0)
[e(0,1,1,0),e(0,-1,-1,-1)]=-e(0,0,0,-1)
[e(0,0,1,1),e(0,0,-1,0)]=-e(0,0,0,1)
[e(0,0,1,1),e(0,0,0,-1)]=e(0,0,1,0)
[e(0,0,1,1),e(0,0,-1,-1)]=h(0,0,1,0)+h(0,0,0,1)
[e(0,0,1,1),e(0,-1,-1,-1)]=e(0,-1,0,0)
[e(0,0,1,1),e(-1,-1,-1,-1)]=e(-1,-1,0,0)
[e(1,1,1,0),e(-1,0,0,0)]=-e(0,1,1,0)
[e(1,1,1,0),e(0,0,-1,0)]=e(1,1,0,0)
[e(1,1,1,0),e(-1,-1,0,0)]=-e(0,0,1,0)
[e(1,1,1,0),e(0,-1,-1,0)]=e(1,0,0,0)
[e(1,1,1,0),e(-1,-1,-1,0)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)
[e(1,1,1,0),e(-1,-1,-1,-1)]=-e(0,0,0,-1)
[e(0,1,1,1),e(0,-1,0,0)]=-e(0,0,1,1)
[e(0,1,1,1),e(0,0,0,-1)]=e(0,1,1,0)
[e(0,1,1,1),e(0,-1,-1,0)]=-e(0,0,0,1)
[e(0,1,1,1),e(0,0,-1,-1)]=e(0,1,0,0)
[e(0,1,1,1),e(0,-1,-1,-1)]=
=h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,1,1,1),e(-1,-1,-1,-1)]=e(-1,0,0,0)
[e(1,1,1,1),e(-1,0,0,0)]=-e(0,1,1,1)
[e(1,1,1,1),e(0,0,0,-1)]=e(1,1,1,0)
[e(1,1,1,1),e(-1,-1,0,0)]=-e(0,0,1,1)
[e(1,1,1,1),e(0,0,-1,-1)]=e(1,1,0,0)
[e(1,1,1,1),e(-1,-1,-1,0)]=-e(0,0,0,1)
[e(1,1,1,1),e(0,-1,-1,-1)]=e(1,0,0,0)
[e(1,1,1,1),e(-1,-1,-1,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(-1,0,0,0),e(0,-1,0,0)]=-e(-1,-1,0,0)
[e(-1,0,0,0),e(0,-1,-1,0)]=-e(-1,-1,-1,0)
[e(-1,0,0,0),e(0,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(0,-1,0,0),e(0,0,-1,0)]=-e(0,-1,-1,0)
[e(0,-1,0,0),e(0,0,-1,-1)]=-e(0,-1,-1,-1)
[e(0,0,-1,0),e(0,0,0,-1)]=-e(0,0,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,0)]=e(-1,-1,-1,0)
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[e(0,0,0,-1),e(0,-1,-1,0)]=e(0,-1,-1,-1)
[e(0,0,0,-1),e(-1,-1,-1,0)]=e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,0,-1,-1)]=-e(-1,-1,-1,-1)

B4
[h(1,0,0,0),e(1,0,0,0)]=2e(1,0,0,0)
[h(1,0,0,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(1,0,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(1,0,0,0),e(0,1,1,0)]=-e(0,1,1,0)
[h(1,0,0,0),e(1,1,1,0)]=e(1,1,1,0)
[h(1,0,0,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(1,0,0,0),e(1,1,1,1)]=e(1,1,1,1)
[h(1,0,0,0),e(0,1,1,2)]=-e(0,1,1,2)
[h(1,0,0,0),e(1,1,1,2)]=e(1,1,1,2)
[h(1,0,0,0),e(0,1,2,2)]=-e(0,1,2,2)
[h(1,0,0,0),e(1,1,2,2)]=e(1,1,2,2)
[h(1,0,0,0),e(-1,0,0,0)]=-2e(-1,0,0,0)
[h(1,0,0,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(1,0,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(1,0,0,0),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(1,0,0,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(1,0,0,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(1,0,0,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(1,0,0,0),e(0,-1,-1,-2)]=e(0,-1,-1,-2)
[h(1,0,0,0),e(-1,-1,-1,-2)]=-e(-1,-1,-1,-2)
[h(1,0,0,0),e(0,-1,-2,-2)]=e(0,-1,-2,-2)
[h(1,0,0,0),e(-1,-1,-2,-2)]=-e(-1,-1,-2,-2)
[h(0,1,0,0),e(1,0,0,0)]=-e(1,0,0,0)
[h(0,1,0,0),e(0,1,0,0)]=2e(0,1,0,0)
[h(0,1,0,0),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,1,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(0,1,0,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,1,0,0),e(0,0,1,1)]=-e(0,0,1,1)
[h(0,1,0,0),e(0,1,1,1)]=e(0,1,1,1)
[h(0,1,0,0),e(0,0,1,2)]=-e(0,0,1,2)
[h(0,1,0,0),e(0,1,1,2)]=e(0,1,1,2)
[h(0,1,0,0),e(1,1,2,2)]=-e(1,1,2,2)
[h(0,1,0,0),e(1,2,2,2)]=e(1,2,2,2)
[h(0,1,0,0),e(-1,0,0,0)]=e(-1,0,0,0)
[h(0,1,0,0),e(0,-1,0,0)]=-2e(0,-1,0,0)
[h(0,1,0,0),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,1,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(0,1,0,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,1,0,0),e(0,0,-1,-1)]=e(0,0,-1,-1)
[h(0,1,0,0),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,1,0,0),e(0,0,-1,-2)]=e(0,0,-1,-2)
[h(0,1,0,0),e(0,-1,-1,-2)]=-e(0,-1,-1,-2)
[h(0,1,0,0),e(-1,-1,-2,-2)]=e(-1,-1,-2,-2)
[h(0,1,0,0),e(-1,-2,-2,-2)]=-e(-1,-2,-2,-2)
[h(0,0,1,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(0,0,1,0),e(0,0,1,0)]=2e(0,0,1,0)
[h(0,0,1,0),e(0,0,0,1)]=-e(0,0,0,1)
[h(0,0,1,0),e(1,1,0,0)]=-e(1,1,0,0)
[h(0,0,1,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,0,1,0),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,1,0),e(1,1,1,0)]=e(1,1,1,0)
[h(0,0,1,0),e(0,1,1,2)]=-e(0,1,1,2)
[h(0,0,1,0),e(1,1,1,2)]=-e(1,1,1,2)
[h(0,0,1,0),e(0,1,2,2)]=e(0,1,2,2)
[h(0,0,1,0),e(1,1,2,2)]=e(1,1,2,2)
[h(0,0,1,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(0,0,1,0),e(0,0,-1,0)]=-2e(0,0,-1,0)
[h(0,0,1,0),e(0,0,0,-1)]=e(0,0,0,-1)
[h(0,0,1,0),e(-1,-1,0,0)]=e(-1,-1,0,0)
[h(0,0,1,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,-1,-1)
[h(0,0,1,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(0,0,1,0),e(0,-1,-1,-2)]=e(0,-1,-1,-2)
[h(0,0,1,0),e(-1,-1,-1,-2)]=e(-1,-1,-1,-2)
[h(0,0,1,0),e(0,-1,-2,-2)]=-e(0,-1,-2,-2)
[h(0,0,1,0),e(-1,-1,-2,-2)]=-e(-1,-1,-2,-2)
[h(0,0,0,1),e(0,0,1,0)]=-2e(0,0,1,0)

[h(0,0,0,1),e(0,0,0,1)]=2e(0,0,0,1)
[h(0,0,0,1),e(0,1,1,0)]=-2e(0,1,1,0)
[h(0,0,0,1),e(1,1,1,0)]=-2e(1,1,1,0)
[h(0,0,0,1),e(0,0,1,2)]=2e(0,0,1,2)
[h(0,0,0,1),e(0,1,1,2)]=2e(0,1,1,2)
[h(0,0,0,1),e(1,1,1,2)]=2e(1,1,1,2)
[h(0,0,0,1),e(0,0,-1,0)]=2e(0,0,-1,0)
[h(0,0,0,1),e(0,0,0,-1)]=-2e(0,0,0,-1)
[h(0,0,0,1),e(0,-1,-1,0)]=2e(0,-1,-1,0)
[h(0,0,0,1),e(-1,-1,-1,0)]=2e(-1,-1,-1,0)
[h(0,0,0,1),e(0,0,-1,-2)]=-2e(0,0,-1,-2)
[h(0,0,0,1),e(0,-1,-1,-2)]=-2e(0,-1,-1,-2)
[h(0,0,0,1),e(-1,-1,-1,-2)]=-2e(-1,-1,-1,-2)
[e(1,0,0,0),e(0,1,0,0)]=e(1,1,0,0)
[e(1,0,0,0),e(0,1,1,0)]=e(1,1,1,0)
[e(1,0,0,0),e(0,1,1,1)]=e(1,1,1,1)
[e(1,0,0,0),e(0,1,1,2)]=e(1,1,1,2)
[e(1,0,0,0),e(0,1,2,2)]=e(1,1,2,2)
[e(1,0,0,0),e(-1,0,0,0)]=h(1,0,0,0)
[e(1,0,0,0),e(-1,-1,0,0)]=-e(0,-1,0,0)
[e(1,0,0,0),e(-1,-1,-1,0)]=-e(0,-1,-1,0)
[e(1,0,0,0),e(-1,-1,-1,-1)]=-e(0,-1,-1,-1)
[e(1,0,0,0),e(-1,-1,-1,-2)]=-e(0,-1,-1,-2)
[e(1,0,0,0),e(-1,-1,-2,-2)]=-e(0,-1,-2,-2)
[e(0,1,0,0),e(0,0,1,0)]=e(0,1,1,0)
[e(0,1,0,0),e(0,0,1,1)]=e(0,1,1,1)
[e(0,1,0,0),e(0,0,1,2)]=e(0,1,1,2)
[e(0,1,0,0),e(1,1,2,2)]=e(1,2,2,2)
[e(0,1,0,0),e(0,-1,0,0)]=h(0,1,0,0)
[e(0,1,0,0),e(-1,-1,0,0)]=e(-1,0,0,0)
[e(0,1,0,0),e(0,-1,-1,0)]=-e(0,0,-1,0)
[e(0,1,0,0),e(0,-1,-1,-1)]=-e(0,0,-1,-1)
[e(0,1,0,0),e(0,-1,-1,-2)]=-e(0,0,-1,-2)
[e(0,1,0,0),e(-1,-2,-2,-2)]=-e(-1,-1,-2,-2)
[e(0,0,1,0),e(0,0,0,1)]=e(0,0,1,1)
[e(0,0,1,0),e(1,1,0,0)]=-e(1,1,1,0)
[e(0,0,1,0),e(0,1,1,2)]=e(0,1,2,2)
[e(0,0,1,0),e(1,1,1,2)]=e(1,1,2,2)
[e(0,0,1,0),e(0,0,-1,0)]=h(0,0,1,0)
[e(0,0,1,0),e(0,-1,-1,0)]=e(0,-1,0,0)
[e(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,0,-1)
[e(0,0,1,0),e(-1,-1,-1,0)]=e(-1,-1,0,0)
[e(0,0,1,0),e(0,-1,-2,-2)]=-e(0,-1,-1,-2)
[e(0,0,1,0),e(-1,-1,-2,-2)]=-e(-1,-1,-1,-2)
[e(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,1)
[e(0,0,0,1),e(0,0,1,1)]=2e(0,0,1,2)
[e(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,1)
[e(0,0,0,1),e(0,1,1,1)]=2e(0,1,1,2)
[e(0,0,0,1),e(1,1,1,1)]=2e(1,1,1,2)
[e(0,0,0,1),e(0,0,0,-1)]=h(0,0,0,1)
[e(0,0,0,1),e(0,0,-1,-1)]=2e(0,0,-1,0)
[e(0,0,0,1),e(0,-1,-1,-1)]=2e(0,-1,-1,0)
[e(0,0,0,1),e(0,0,-1,-2)]=-e(0,0,-1,-1)
[e(0,0,0,1),e(-1,-1,-1,-1)]=2e(-1,-1,-1,0)
[e(0,0,0,1),e(0,-1,-1,-2)]=-e(0,-1,-1,-1)
[e(0,0,0,1),e(-1,-1,-1,-2)]=-e(-1,-1,-1,-1)
[e(1,1,0,0),e(0,0,1,1)]=e(1,1,1,1)
[e(1,1,0,0),e(0,0,1,2)]=e(1,1,1,2)
[e(1,1,0,0),e(0,1,2,2)]=-e(1,2,2,2)
[e(1,1,0,0),e(-1,0,0,0)]=-e(0,1,0,0)
[e(1,1,0,0),e(0,-1,0,0)]=e(1,0,0,0)
[e(1,1,0,0),e(-1,-1,0,0)]=h(1,0,0,0)+h(0,1,0,0)
[e(1,1,0,0),e(-1,-1,-1,0)]=-e(0,0,-1,0)
[e(1,1,0,0),e(-1,-1,-1,-1)]=-e(0,0,-1,-1)
[e(1,1,0,0),e(-1,-1,-1,-2)]=-e(0,0,-1,-2)
[e(1,1,0,0),e(-1,-2,-2,-2)]=e(0,-1,-2,-2)
[e(0,1,1,0),e(0,0,1,2)]=-e(0,1,2,2)
[e(0,1,1,0),e(1,1,1,2)]=e(1,2,2,2)
[e(0,1,1,0),e(0,-1,0,0)]=-e(0,0,1,0)
[e(0,1,1,0),e(0,0,-1,0)]=e(0,1,0,0)
[e(0,1,1,0),e(0,-1,-1,0)]=h(0,1,0,0)+h(0,0,1,0)
[e(0,1,1,0),e(-1,-1,-1,0)]=e(-1,0,0,0)
[e(0,1,1,0),e(0,-1,-1,-1)]=-e(0,0,0,-1)
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[e(0,1,1,0),e(0,-1,-2,-2)]=e(0,0,-1,-2)
[e(0,1,1,0),e(-1,-2,-2,-2)]=-e(-1,-1,-1,-2)
[e(0,0,1,1),e(0,1,1,1)]=2e(0,1,2,2)
[e(0,0,1,1),e(1,1,1,1)]=2e(1,1,2,2)
[e(0,0,1,1),e(0,0,-1,0)]=-e(0,0,0,1)
[e(0,0,1,1),e(0,0,0,-1)]=2e(0,0,1,0)
[e(0,0,1,1),e(0,0,-1,-1)]=
=2h(0,0,1,0)+h(0,0,0,1)
[e(0,0,1,1),e(0,-1,-1,-1)]=2e(0,-1,0,0)
[e(0,0,1,1),e(0,0,-1,-2)]=e(0,0,0,-1)
[e(0,0,1,1),e(-1,-1,-1,-1)]=2e(-1,-1,0,0)
[e(0,0,1,1),e(0,-1,-2,-2)]=-e(0,-1,-1,-1)
[e(0,0,1,1),e(-1,-1,-2,-2)]=-e(-1,-1,-1,-1)
[e(1,1,1,0),e(0,0,1,2)]=-e(1,1,2,2)
[e(1,1,1,0),e(0,1,1,2)]=-e(1,2,2,2)
[e(1,1,1,0),e(-1,0,0,0)]=-e(0,1,1,0)
[e(1,1,1,0),e(0,0,-1,0)]=e(1,1,0,0)
[e(1,1,1,0),e(-1,-1,0,0)]=-e(0,0,1,0)
[e(1,1,1,0),e(0,-1,-1,0)]=e(1,0,0,0)
[e(1,1,1,0),e(-1,-1,-1,0)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)
[e(1,1,1,0),e(-1,-1,-1,-1)]=-e(0,0,0,-1)
[e(1,1,1,0),e(-1,-1,-2,-2)]=e(0,0,-1,-2)
[e(1,1,1,0),e(-1,-2,-2,-2)]=e(0,-1,-1,-2)
[e(0,1,1,1),e(1,1,1,1)]=2e(1,2,2,2)
[e(0,1,1,1),e(0,-1,0,0)]=-e(0,0,1,1)
[e(0,1,1,1),e(0,0,0,-1)]=2e(0,1,1,0)
[e(0,1,1,1),e(0,-1,-1,0)]=-e(0,0,0,1)
[e(0,1,1,1),e(0,0,-1,-1)]=2e(0,1,0,0)
[e(0,1,1,1),e(0,-1,-1,-1)]=
=2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(0,1,1,1),e(-1,-1,-1,-1)]=2e(-1,0,0,0)
[e(0,1,1,1),e(0,-1,-1,-2)]=e(0,0,0,-1)
[e(0,1,1,1),e(0,-1,-2,-2)]=e(0,0,-1,-1)
[e(0,1,1,1),e(-1,-2,-2,-2)]=-e(-1,-1,-1,-1)
[e(0,0,1,2),e(0,0,0,-1)]=-e(0,0,1,1)
[e(0,0,1,2),e(0,0,-1,-1)]=e(0,0,0,1)
[e(0,0,1,2),e(0,0,-1,-2)]=h(0,0,1,0)+h(0,0,0,1)
[e(0,0,1,2),e(0,-1,-1,-2)]=e(0,-1,0,0)
[e(0,0,1,2),e(-1,-1,-1,-2)]=e(-1,-1,0,0)
[e(0,0,1,2),e(0,-1,-2,-2)]=-e(0,-1,-1,0)
[e(0,0,1,2),e(-1,-1,-2,-2)]=-e(-1,-1,-1,0)
[e(1,1,1,1),e(-1,0,0,0)]=-e(0,1,1,1)
[e(1,1,1,1),e(0,0,0,-1)]=2e(1,1,1,0)
[e(1,1,1,1),e(-1,-1,0,0)]=-e(0,0,1,1)
[e(1,1,1,1),e(0,0,-1,-1)]=2e(1,1,0,0)
[e(1,1,1,1),e(-1,-1,-1,0)]=-e(0,0,0,1)
[e(1,1,1,1),e(0,-1,-1,-1)]=2e(1,0,0,0)
[e(1,1,1,1),e(-1,-1,-1,-1)]=
=2h(1,0,0,0)+2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,1,1,1),e(-1,-1,-1,-2)]=e(0,0,0,-1)
[e(1,1,1,1),e(-1,-1,-2,-2)]=e(0,0,-1,-1)
[e(1,1,1,1),e(-1,-2,-2,-2)]=e(0,-1,-1,-1)
[e(0,1,1,2),e(0,-1,0,0)]=-e(0,0,1,2)
[e(0,1,1,2),e(0,0,0,-1)]=-e(0,1,1,1)
[e(0,1,1,2),e(0,-1,-1,-1)]=e(0,0,0,1)
[e(0,1,1,2),e(0,0,-1,-2)]=e(0,1,0,0)
[e(0,1,1,2),e(0,-1,-1,-2)]=
=h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,1,1,2),e(-1,-1,-1,-2)]=e(-1,0,0,0)
[e(0,1,1,2),e(0,-1,-2,-2)]=e(0,0,-1,0)
[e(0,1,1,2),e(-1,-2,-2,-2)]=-e(-1,-1,-1,0)
[e(1,1,1,2),e(-1,0,0,0)]=-e(0,1,1,2)
[e(1,1,1,2),e(0,0,0,-1)]=-e(1,1,1,1)
[e(1,1,1,2),e(-1,-1,0,0)]=-e(0,0,1,2)
[e(1,1,1,2),e(0,0,-1,-2)]=e(1,1,0,0)
[e(1,1,1,2),e(-1,-1,-1,-1)]=e(0,0,0,1)
[e(1,1,1,2),e(0,-1,-1,-2)]=e(1,0,0,0)
[e(1,1,1,2),e(-1,-1,-1,-2)]=h(1,0,0,0)
+h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(1,1,1,2),e(-1,-1,-2,-2)]=e(0,0,-1,0)
[e(1,1,1,2),e(-1,-2,-2,-2)]=e(0,-1,-1,0)
[e(0,1,2,2),e(0,0,-1,0)]=-e(0,1,1,2)

[e(0,1,2,2),e(0,-1,-1,0)]=e(0,0,1,2)
[e(0,1,2,2),e(0,0,-1,-1)]=-e(0,1,1,1)
[e(0,1,2,2),e(0,-1,-1,-1)]=e(0,0,1,1)
[e(0,1,2,2),e(0,0,-1,-2)]=-e(0,1,1,0)
[e(0,1,2,2),e(0,-1,-1,-2)]=e(0,0,1,0)
[e(0,1,2,2),e(0,-1,-2,-2)]=
=h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(0,1,2,2),e(-1,-1,-2,-2)]=e(-1,0,0,0)
[e(0,1,2,2),e(-1,-2,-2,-2)]=-e(-1,-1,0,0)
[e(1,1,2,2),e(-1,0,0,0)]=-e(0,1,2,2)
[e(1,1,2,2),e(0,0,-1,0)]=-e(1,1,1,2)
[e(1,1,2,2),e(0,0,-1,-1)]=-e(1,1,1,1)
[e(1,1,2,2),e(-1,-1,-1,0)]=e(0,0,1,2)
[e(1,1,2,2),e(0,0,-1,-2)]=-e(1,1,1,0)
[e(1,1,2,2),e(-1,-1,-1,-1)]=e(0,0,1,1)
[e(1,1,2,2),e(-1,-1,-1,-2)]=e(0,0,1,0)
[e(1,1,2,2),e(0,-1,-2,-2)]=e(1,0,0,0)
[e(1,1,2,2),e(-1,-1,-2,-2)]=
=h(1,0,0,0)+h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,1,2,2),e(-1,-2,-2,-2)]=e(0,-1,0,0)
[e(1,2,2,2),e(0,-1,0,0)]=-e(1,1,2,2)
[e(1,2,2,2),e(-1,-1,0,0)]=e(0,1,2,2)
[e(1,2,2,2),e(0,-1,-1,0)]=-e(1,1,1,2)
[e(1,2,2,2),e(-1,-1,-1,0)]=e(0,1,1,2)
[e(1,2,2,2),e(0,-1,-1,-1)]=-e(1,1,1,1)
[e(1,2,2,2),e(-1,-1,-1,-1)]=e(0,1,1,1)
[e(1,2,2,2),e(0,-1,-1,-2)]=-e(1,1,1,0)
[e(1,2,2,2),e(-1,-1,-1,-2)]=e(0,1,1,0)
[e(1,2,2,2),e(0,-1,-2,-2)]=-e(1,1,0,0)
[e(1,2,2,2),e(-1,-1,-2,-2)]=e(0,1,0,0)
[e(1,2,2,2),e(-1,-2,-2,-2)]=
=h(1,0,0,0)+2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(-1,0,0,0),e(0,-1,0,0)]=-e(-1,-1,0,0)
[e(-1,0,0,0),e(0,-1,-1,0)]=-e(-1,-1,-1,0)
[e(-1,0,0,0),e(0,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,0,0,0),e(0,-1,-1,-2)]=-e(-1,-1,-1,-2)
[e(-1,0,0,0),e(0,-1,-2,-2)]=-e(-1,-1,-2,-2)
[e(0,-1,0,0),e(0,0,-1,0)]=-e(0,-1,-1,0)
[e(0,-1,0,0),e(0,0,-1,-1)]=-e(0,-1,-1,-1)
[e(0,-1,0,0),e(0,0,-1,-2)]=-e(0,-1,-1,-2)
[e(0,-1,0,0),e(-1,-1,-2,-2)]=-e(-1,-2,-2,-2)
[e(0,0,-1,0),e(0,0,0,-1)]=-e(0,0,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,0)]=e(-1,-1,-1,0)
[e(0,0,-1,0),e(0,-1,-1,-2)]=-e(0,-1,-2,-2)
[e(0,0,-1,0),e(-1,-1,-1,-2)]=-e(-1,-1,-2,-2)
[e(0,0,0,-1),e(0,-1,-1,0)]=e(0,-1,-1,-1)
[e(0,0,0,-1),e(0,0,-1,-1)]=-2e(0,0,-1,-2)
[e(0,0,0,-1),e(-1,-1,-1,0)]=e(-1,-1,-1,-1)
[e(0,0,0,-1),e(0,-1,-1,-1)]=-2e(0,-1,-1,-2)
[e(0,0,0,-1),e(-1,-1,-1,-1)]=-2e(-1,-1,-1,-2)
[e(-1,-1,0,0),e(0,0,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,0,-1,-2)]=-e(-1,-1,-1,-2)
[e(-1,-1,0,0),e(0,-1,-2,-2)]=e(-1,-2,-2,-2)
[e(0,-1,-1,0),e(0,0,-1,-2)]=e(0,-1,-2,-2)
[e(0,-1,-1,0),e(-1,-1,-1,-2)]=-e(-1,-2,-2,-2)
[e(0,0,-1,-1),e(0,-1,-1,-1)]=-2e(0,-1,-2,-2)
[e(0,0,-1,-1),e(-1,-1,-1,-1)]=-2e(-1,-1,-2,-2)
[e(-1,-1,-1,0),e(0,0,-1,-2)]=e(-1,-1,-2,-2)
[e(-1,-1,-1,0),e(0,-1,-1,-2)]=e(-1,-2,-2,-2)
[e(0,-1,-1,-1),e(-1,-1,-1,-1)]=-2e(-1,-2,-2,-2)

C4
[h(1,0,0,0),e(1,0,0,0)]=2e(1,0,0,0)
[h(1,0,0,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(1,0,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(1,0,0,0),e(0,1,1,0)]=-e(0,1,1,0)
[h(1,0,0,0),e(1,1,1,0)]=e(1,1,1,0)
[h(1,0,0,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(1,0,0,0),e(1,1,1,1)]=e(1,1,1,1)
[h(1,0,0,0),e(0,1,2,1)]=-e(0,1,2,1)
[h(1,0,0,0),e(1,1,2,1)]=e(1,1,2,1)
[h(1,0,0,0),e(0,2,2,1)]=-2e(0,2,2,1)
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[h(1,0,0,0),e(2,2,2,1)]=2e(2,2,2,1)
[h(1,0,0,0),e(-1,0,0,0)]=-2e(-1,0,0,0)
[h(1,0,0,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(1,0,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(1,0,0,0),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(1,0,0,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(1,0,0,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(1,0,0,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(1,0,0,0),e(0,-1,-2,-1)]=e(0,-1,-2,-1)
[h(1,0,0,0),e(-1,-1,-2,-1)]=-e(-1,-1,-2,-1)
[h(1,0,0,0),e(0,-2,-2,-1)]=2e(0,-2,-2,-1)
[h(1,0,0,0),e(-2,-2,-2,-1)]=-2e(-2,-2,-2,-1)
[h(0,1,0,0),e(1,0,0,0)]=-e(1,0,0,0)
[h(0,1,0,0),e(0,1,0,0)]=2e(0,1,0,0)
[h(0,1,0,0),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,1,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(0,1,0,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,1,0,0),e(0,0,1,1)]=-e(0,0,1,1)
[h(0,1,0,0),e(0,1,1,1)]=e(0,1,1,1)
[h(0,1,0,0),e(0,0,2,1)]=-2e(0,0,2,1)
[h(0,1,0,0),e(1,1,2,1)]=-e(1,1,2,1)
[h(0,1,0,0),e(0,2,2,1)]=2e(0,2,2,1)
[h(0,1,0,0),e(1,2,2,1)]=e(1,2,2,1)
[h(0,1,0,0),e(-1,0,0,0)]=e(-1,0,0,0)
[h(0,1,0,0),e(0,-1,0,0)]=-2e(0,-1,0,0)
[h(0,1,0,0),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,1,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(0,1,0,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,1,0,0),e(0,0,-1,-1)]=e(0,0,-1,-1)
[h(0,1,0,0),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,1,0,0),e(0,0,-2,-1)]=2e(0,0,-2,-1)
[h(0,1,0,0),e(-1,-1,-2,-1)]=e(-1,-1,-2,-1)
[h(0,1,0,0),e(0,-2,-2,-1)]=-2e(0,-2,-2,-1)
[h(0,1,0,0),e(-1,-2,-2,-1)]=-e(-1,-2,-2,-1)
[h(0,0,1,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(0,0,1,0),e(0,0,1,0)]=2e(0,0,1,0)
[h(0,0,1,0),e(0,0,0,1)]=-2e(0,0,0,1)
[h(0,0,1,0),e(1,1,0,0)]=-e(1,1,0,0)
[h(0,0,1,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,0,1,0),e(1,1,1,0)]=e(1,1,1,0)
[h(0,0,1,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(0,0,1,0),e(0,0,2,1)]=2e(0,0,2,1)
[h(0,0,1,0),e(1,1,1,1)]=-e(1,1,1,1)
[h(0,0,1,0),e(0,1,2,1)]=e(0,1,2,1)
[h(0,0,1,0),e(1,1,2,1)]=e(1,1,2,1)
[h(0,0,1,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(0,0,1,0),e(0,0,-1,0)]=-2e(0,0,-1,0)
[h(0,0,1,0),e(0,0,0,-1)]=2e(0,0,0,-1)
[h(0,0,1,0),e(-1,-1,0,0)]=e(-1,-1,0,0)
[h(0,0,1,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,0,1,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(0,0,1,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(0,0,1,0),e(0,0,-2,-1)]=-2e(0,0,-2,-1)
[h(0,0,1,0),e(-1,-1,-1,-1)]=e(-1,-1,-1,-1)
[h(0,0,1,0),e(0,-1,-2,-1)]=-e(0,-1,-2,-1)
[h(0,0,1,0),e(-1,-1,-2,-1)]=-e(-1,-1,-2,-1)
[h(0,0,0,1),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,0,0,1),e(0,0,0,1)]=2e(0,0,0,1)
[h(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,0)
[h(0,0,0,1),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,0)
[h(0,0,0,1),e(0,1,1,1)]=e(0,1,1,1)
[h(0,0,0,1),e(1,1,1,1)]=e(1,1,1,1)
[h(0,0,0,1),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,0,0,1),e(0,0,0,-1)]=-2e(0,0,0,-1)
[h(0,0,0,1),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(0,0,0,1),e(0,0,-1,-1)]=-e(0,0,-1,-1)
[h(0,0,0,1),e(-1,-1,-1,0)]=e(-1,-1,-1,0)
[h(0,0,0,1),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,0,1),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(1,0,0,0),e(0,1,0,0)]=e(1,1,0,0)
[e(1,0,0,0),e(0,1,1,0)]=e(1,1,1,0)
[e(1,0,0,0),e(0,1,1,1)]=e(1,1,1,1)

[e(1,0,0,0),e(0,1,2,1)]=e(1,1,2,1)
[e(1,0,0,0),e(0,2,2,1)]=e(1,2,2,1)
[e(1,0,0,0),e(1,2,2,1)]=2e(2,2,2,1)
[e(1,0,0,0),e(-1,0,0,0)]=h(1,0,0,0)
[e(1,0,0,0),e(-1,-1,0,0)]=-e(0,-1,0,0)
[e(1,0,0,0),e(-1,-1,-1,0)]=-e(0,-1,-1,0)
[e(1,0,0,0),e(-1,-1,-1,-1)]=-e(0,-1,-1,-1)
[e(1,0,0,0),e(-1,-1,-2,-1)]=-e(0,-1,-2,-1)
[e(1,0,0,0),e(-1,-2,-2,-1)]=-2e(0,-2,-2,-1)
[e(1,0,0,0),e(-2,-2,-2,-1)]=-e(-1,-2,-2,-1)
[e(0,1,0,0),e(0,0,1,0)]=e(0,1,1,0)
[e(0,1,0,0),e(0,0,1,1)]=e(0,1,1,1)
[e(0,1,0,0),e(0,0,2,1)]=e(0,1,2,1)
[e(0,1,0,0),e(0,1,2,1)]=2e(0,2,2,1)
[e(0,1,0,0),e(1,1,2,1)]=e(1,2,2,1)
[e(0,1,0,0),e(0,-1,0,0)]=h(0,1,0,0)
[e(0,1,0,0),e(-1,-1,0,0)]=e(-1,0,0,0)
[e(0,1,0,0),e(0,-1,-1,0)]=-e(0,0,-1,0)
[e(0,1,0,0),e(0,-1,-1,-1)]=-e(0,0,-1,-1)
[e(0,1,0,0),e(0,-1,-2,-1)]=-2e(0,0,-2,-1)
[e(0,1,0,0),e(0,-2,-2,-1)]=-e(0,-1,-2,-1)
[e(0,1,0,0),e(-1,-2,-2,-1)]=-e(-1,-1,-2,-1)
[e(0,0,1,0),e(0,0,0,1)]=e(0,0,1,1)
[e(0,0,1,0),e(1,1,0,0)]=-e(1,1,1,0)
[e(0,0,1,0),e(0,0,1,1)]=2e(0,0,2,1)
[e(0,0,1,0),e(0,1,1,1)]=e(0,1,2,1)
[e(0,0,1,0),e(1,1,1,1)]=e(1,1,2,1)
[e(0,0,1,0),e(0,0,-1,0)]=h(0,0,1,0)
[e(0,0,1,0),e(0,-1,-1,0)]=e(0,-1,0,0)
[e(0,0,1,0),e(0,0,-1,-1)]=-2e(0,0,0,-1)
[e(0,0,1,0),e(-1,-1,-1,0)]=e(-1,-1,0,0)
[e(0,0,1,0),e(0,0,-2,-1)]=-e(0,0,-1,-1)
[e(0,0,1,0),e(0,-1,-2,-1)]=-e(0,-1,-1,-1)
[e(0,0,1,0),e(-1,-1,-2,-1)]=-e(-1,-1,-1,-1)
[e(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,1)
[e(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,1)
[e(0,0,0,1),e(0,0,0,-1)]=h(0,0,0,1)
[e(0,0,0,1),e(0,0,-1,-1)]=e(0,0,-1,0)
[e(0,0,0,1),e(0,-1,-1,-1)]=e(0,-1,-1,0)
[e(0,0,0,1),e(-1,-1,-1,-1)]=e(-1,-1,-1,0)
[e(1,1,0,0),e(0,0,1,1)]=e(1,1,1,1)
[e(1,1,0,0),e(0,0,2,1)]=e(1,1,2,1)
[e(1,1,0,0),e(0,1,2,1)]=e(1,2,2,1)
[e(1,1,0,0),e(1,1,2,1)]=2e(2,2,2,1)
[e(1,1,0,0),e(-1,0,0,0)]=-e(0,1,0,0)
[e(1,1,0,0),e(0,-1,0,0)]=e(1,0,0,0)
[e(1,1,0,0),e(-1,-1,0,0)]=h(1,0,0,0)+h(0,1,0,0)
[e(1,1,0,0),e(-1,-1,-1,0)]=-e(0,0,-1,0)
[e(1,1,0,0),e(-1,-1,-1,-1)]=-e(0,0,-1,-1)
[e(1,1,0,0),e(-1,-1,-2,-1)]=-2e(0,0,-2,-1)
[e(1,1,0,0),e(-1,-2,-2,-1)]=-e(0,-1,-2,-1)
[e(1,1,0,0),e(-2,-2,-2,-1)]=-e(-1,-1,-2,-1)
[e(0,1,1,0),e(0,0,1,1)]=e(0,1,2,1)
[e(0,1,1,0),e(0,1,1,1)]=2e(0,2,2,1)
[e(0,1,1,0),e(1,1,1,1)]=e(1,2,2,1)
[e(0,1,1,0),e(0,-1,0,0)]=-e(0,0,1,0)
[e(0,1,1,0),e(0,0,-1,0)]=e(0,1,0,0)
[e(0,1,1,0),e(0,-1,-1,0)]=h(0,1,0,0)+h(0,0,1,0)
[e(0,1,1,0),e(-1,-1,-1,0)]=e(-1,0,0,0)
[e(0,1,1,0),e(0,-1,-1,-1)]=-2e(0,0,0,-1)
[e(0,1,1,0),e(0,-1,-2,-1)]=-e(0,0,-1,-1)
[e(0,1,1,0),e(0,-2,-2,-1)]=-e(0,-1,-1,-1)
[e(0,1,1,0),e(-1,-2,-2,-1)]=-e(-1,-1,-1,-1)
[e(0,0,1,1),e(1,1,1,0)]=-e(1,1,2,1)
[e(0,0,1,1),e(0,0,-1,0)]=-2e(0,0,0,1)
[e(0,0,1,1),e(0,0,0,-1)]=e(0,0,1,0)
[e(0,0,1,1),e(0,0,-1,-1)]=
=h(0,0,1,0)+2h(0,0,0,1)
[e(0,0,1,1),e(0,-1,-1,-1)]=e(0,-1,0,0)
[e(0,0,1,1),e(0,0,-2,-1)]=e(0,0,-1,0)
[e(0,0,1,1),e(-1,-1,-1,-1)]=e(-1,-1,0,0)
[e(0,0,1,1),e(0,-1,-2,-1)]=e(0,-1,-1,0)
[e(0,0,1,1),e(-1,-1,-2,-1)]=e(-1,-1,-1,0)
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[e(1,1,1,0),e(0,1,1,1)]=e(1,2,2,1)
[e(1,1,1,0),e(1,1,1,1)]=2e(2,2,2,1)
[e(1,1,1,0),e(-1,0,0,0)]=-e(0,1,1,0)
[e(1,1,1,0),e(0,0,-1,0)]=e(1,1,0,0)
[e(1,1,1,0),e(-1,-1,0,0)]=-e(0,0,1,0)
[e(1,1,1,0),e(0,-1,-1,0)]=e(1,0,0,0)
[e(1,1,1,0),e(-1,-1,-1,0)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)
[e(1,1,1,0),e(-1,-1,-1,-1)]=-2e(0,0,0,-1)
[e(1,1,1,0),e(-1,-1,-2,-1)]=-e(0,0,-1,-1)
[e(1,1,1,0),e(-1,-2,-2,-1)]=-e(0,-1,-1,-1)
[e(1,1,1,0),e(-2,-2,-2,-1)]=-e(-1,-1,-1,-1)
[e(0,1,1,1),e(0,-1,0,0)]=-e(0,0,1,1)
[e(0,1,1,1),e(0,0,0,-1)]=e(0,1,1,0)
[e(0,1,1,1),e(0,-1,-1,0)]=-2e(0,0,0,1)
[e(0,1,1,1),e(0,0,-1,-1)]=e(0,1,0,0)
[e(0,1,1,1),e(0,-1,-1,-1)]=
=h(0,1,0,0)+h(0,0,1,0)+2h(0,0,0,1)
[e(0,1,1,1),e(-1,-1,-1,-1)]=e(-1,0,0,0)
[e(0,1,1,1),e(0,-1,-2,-1)]=e(0,0,-1,0)
[e(0,1,1,1),e(0,-2,-2,-1)]=e(0,-1,-1,0)
[e(0,1,1,1),e(-1,-2,-2,-1)]=e(-1,-1,-1,0)
[e(0,0,2,1),e(0,0,-1,0)]=-e(0,0,1,1)
[e(0,0,2,1),e(0,0,-1,-1)]=e(0,0,1,0)
[e(0,0,2,1),e(0,0,-2,-1)]=h(0,0,1,0)+h(0,0,0,1)
[e(0,0,2,1),e(0,-1,-2,-1)]=e(0,-1,0,0)
[e(0,0,2,1),e(-1,-1,-2,-1)]=e(-1,-1,0,0)
[e(1,1,1,1),e(-1,0,0,0)]=-e(0,1,1,1)
[e(1,1,1,1),e(0,0,0,-1)]=e(1,1,1,0)
[e(1,1,1,1),e(-1,-1,0,0)]=-e(0,0,1,1)
[e(1,1,1,1),e(0,0,-1,-1)]=e(1,1,0,0)
[e(1,1,1,1),e(-1,-1,-1,0)]=-2e(0,0,0,1)
[e(1,1,1,1),e(0,-1,-1,-1)]=e(1,0,0,0)
[e(1,1,1,1),e(-1,-1,-1,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)+2h(0,0,0,1)
[e(1,1,1,1),e(-1,-1,-2,-1)]=e(0,0,-1,0)
[e(1,1,1,1),e(-1,-2,-2,-1)]=e(0,-1,-1,0)
[e(1,1,1,1),e(-2,-2,-2,-1)]=e(-1,-1,-1,0)
[e(0,1,2,1),e(0,-1,0,0)]=-2e(0,0,2,1)
[e(0,1,2,1),e(0,0,-1,0)]=-e(0,1,1,1)
[e(0,1,2,1),e(0,-1,-1,0)]=-e(0,0,1,1)
[e(0,1,2,1),e(0,0,-1,-1)]=e(0,1,1,0)
[e(0,1,2,1),e(0,-1,-1,-1)]=e(0,0,1,0)
[e(0,1,2,1),e(0,0,-2,-1)]=e(0,1,0,0)
[e(0,1,2,1),e(0,-1,-2,-1)]=
=h(0,1,0,0)+2h(0,0,1,0)+2h(0,0,0,1)
[e(0,1,2,1),e(-1,-1,-2,-1)]=e(-1,0,0,0)
[e(0,1,2,1),e(0,-2,-2,-1)]=e(0,-1,0,0)
[e(0,1,2,1),e(-1,-2,-2,-1)]=e(-1,-1,0,0)
[e(1,1,2,1),e(-1,0,0,0)]=-e(0,1,2,1)
[e(1,1,2,1),e(0,0,-1,0)]=-e(1,1,1,1)
[e(1,1,2,1),e(-1,-1,0,0)]=-2e(0,0,2,1)
[e(1,1,2,1),e(0,0,-1,-1)]=e(1,1,1,0)
[e(1,1,2,1),e(-1,-1,-1,0)]=-e(0,0,1,1)
[e(1,1,2,1),e(0,0,-2,-1)]=e(1,1,0,0)
[e(1,1,2,1),e(-1,-1,-1,-1)]=e(0,0,1,0)
[e(1,1,2,1),e(0,-1,-2,-1)]=e(1,0,0,0)
[e(1,1,2,1),e(-1,-1,-2,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+2h(0,0,1,0)+2h(0,0,0,1)
[e(1,1,2,1),e(-1,-2,-2,-1)]=e(0,-1,0,0)
[e(1,1,2,1),e(-2,-2,-2,-1)]=e(-1,-1,0,0)
[e(0,2,2,1),e(0,-1,0,0)]=-e(0,1,2,1)
[e(0,2,2,1),e(0,-1,-1,0)]=-e(0,1,1,1)
[e(0,2,2,1),e(0,-1,-1,-1)]=e(0,1,1,0)
[e(0,2,2,1),e(0,-1,-2,-1)]=e(0,1,0,0)
[e(0,2,2,1),e(0,-2,-2,-1)]=
=h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,2,2,1),e(-1,-2,-2,-1)]=e(-1,0,0,0)
[e(1,2,2,1),e(-1,0,0,0)]=-2e(0,2,2,1)
[e(1,2,2,1),e(0,-1,0,0)]=-e(1,1,2,1)
[e(1,2,2,1),e(-1,-1,0,0)]=-e(0,1,2,1)
[e(1,2,2,1),e(0,-1,-1,0)]=-e(1,1,1,1)
[e(1,2,2,1),e(-1,-1,-1,0)]=-e(0,1,1,1)

[e(1,2,2,1),e(0,-1,-1,-1)]=e(1,1,1,0)
[e(1,2,2,1),e(-1,-1,-1,-1)]=e(0,1,1,0)
[e(1,2,2,1),e(0,-1,-2,-1)]=e(1,1,0,0)
[e(1,2,2,1),e(-1,-1,-2,-1)]=e(0,1,0,0)
[e(1,2,2,1),e(0,-2,-2,-1)]=e(1,0,0,0)
[e(1,2,2,1),e(-1,-2,-2,-1)]=
=h(1,0,0,0)+2h(0,1,0,0)+2h(0,0,1,0)+2h(0,0,0,1)
[e(1,2,2,1),e(-2,-2,-2,-1)]=e(-1,0,0,0)
[e(2,2,2,1),e(-1,0,0,0)]=-e(1,2,2,1)
[e(2,2,2,1),e(-1,-1,0,0)]=-e(1,1,2,1)
[e(2,2,2,1),e(-1,-1,-1,0)]=-e(1,1,1,1)
[e(2,2,2,1),e(-1,-1,-1,-1)]=e(1,1,1,0)
[e(2,2,2,1),e(-1,-1,-2,-1)]=e(1,1,0,0)
[e(2,2,2,1),e(-1,-2,-2,-1)]=e(1,0,0,0)
[e(2,2,2,1),e(-2,-2,-2,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(-1,0,0,0),e(0,-1,0,0)]=-e(-1,-1,0,0)
[e(-1,0,0,0),e(0,-1,-1,0)]=-e(-1,-1,-1,0)
[e(-1,0,0,0),e(0,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,0,0,0),e(0,-1,-2,-1)]=-e(-1,-1,-2,-1)
[e(-1,0,0,0),e(0,-2,-2,-1)]=-e(-1,-2,-2,-1)
[e(-1,0,0,0),e(-1,-2,-2,-1)]=-2e(-2,-2,-2,-1)
[e(0,-1,0,0),e(0,0,-1,0)]=-e(0,-1,-1,0)
[e(0,-1,0,0),e(0,0,-1,-1)]=-e(0,-1,-1,-1)
[e(0,-1,0,0),e(0,0,-2,-1)]=-e(0,-1,-2,-1)
[e(0,-1,0,0),e(0,-1,-2,-1)]=-2e(0,-2,-2,-1)
[e(0,-1,0,0),e(-1,-1,-2,-1)]=-e(-1,-2,-2,-1)
[e(0,0,-1,0),e(0,0,0,-1)]=-e(0,0,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,0)]=e(-1,-1,-1,0)
[e(0,0,-1,0),e(0,0,-1,-1)]=-2e(0,0,-2,-1)
[e(0,0,-1,0),e(0,-1,-1,-1)]=-e(0,-1,-2,-1)
[e(0,0,-1,0),e(-1,-1,-1,-1)]=-e(-1,-1,-2,-1)
[e(0,0,0,-1),e(0,-1,-1,0)]=e(0,-1,-1,-1)
[e(0,0,0,-1),e(-1,-1,-1,0)]=e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,0,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,0,-2,-1)]=-e(-1,-1,-2,-1)
[e(-1,-1,0,0),e(0,-1,-2,-1)]=-e(-1,-2,-2,-1)
[e(-1,-1,0,0),e(-1,-1,-2,-1)]=-2e(-2,-2,-2,-1)
[e(0,-1,-1,0),e(0,0,-1,-1)]=-e(0,-1,-2,-1)
[e(0,-1,-1,0),e(0,-1,-1,-1)]=-2e(0,-2,-2,-1)
[e(0,-1,-1,0),e(-1,-1,-1,-1)]=-e(-1,-2,-2,-1)
[e(0,0,-1,-1),e(-1,-1,-1,0)]=e(-1,-1,-2,-1)
[e(-1,-1,-1,0),e(0,-1,-1,-1)]=-e(-1,-2,-2,-1)
[e(-1,-1,-1,0),e(-1,-1,-1,-1)]=-2e(-2,-2,-2,-1)

D4
[h(1,0,0,0),e(1,0,0,0)]=2e(1,0,0,0)
[h(1,0,0,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(1,0,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(1,0,0,0),e(0,1,1,0)]=-e(0,1,1,0)
[h(1,0,0,0),e(0,1,0,1)]=-e(0,1,0,1)
[h(1,0,0,0),e(1,1,1,0)]=e(1,1,1,0)
[h(1,0,0,0),e(1,1,0,1)]=e(1,1,0,1)
[h(1,0,0,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(1,0,0,0),e(1,1,1,1)]=e(1,1,1,1)
[h(1,0,0,0),e(-1,0,0,0)]=-2e(-1,0,0,0)
[h(1,0,0,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(1,0,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(1,0,0,0),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(1,0,0,0),e(0,-1,0,-1)]=e(0,-1,0,-1)
[h(1,0,0,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(1,0,0,0),e(-1,-1,0,-1)]=-e(-1,-1,0,-1)
[h(1,0,0,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(1,0,0,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(0,1,0,0),e(1,0,0,0)]=-e(1,0,0,0)
[h(0,1,0,0),e(0,1,0,0)]=2e(0,1,0,0)
[h(0,1,0,0),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,1,0,0),e(0,0,0,1)]=-e(0,0,0,1)
[h(0,1,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(0,1,0,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,1,0,0),e(0,1,0,1)]=e(0,1,0,1)
[h(0,1,0,0),e(1,1,1,1)]=-e(1,1,1,1)
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[h(0,1,0,0),e(1,2,1,1)]=e(1,2,1,1)
[h(0,1,0,0),e(-1,0,0,0)]=e(-1,0,0,0)
[h(0,1,0,0),e(0,-1,0,0)]=-2e(0,-1,0,0)
[h(0,1,0,0),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,1,0,0),e(0,0,0,-1)]=e(0,0,0,-1)
[h(0,1,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(0,1,0,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,1,0,0),e(0,-1,0,-1)]=-e(0,-1,0,-1)
[h(0,1,0,0),e(-1,-1,-1,-1)]=e(-1,-1,-1,-1)
[h(0,1,0,0),e(-1,-2,-1,-1)]=-e(-1,-2,-1,-1)
[h(0,0,1,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(0,0,1,0),e(0,0,1,0)]=2e(0,0,1,0)
[h(0,0,1,0),e(1,1,0,0)]=-e(1,1,0,0)
[h(0,0,1,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,0,1,0),e(0,1,0,1)]=-e(0,1,0,1)
[h(0,0,1,0),e(1,1,1,0)]=e(1,1,1,0)
[h(0,0,1,0),e(1,1,0,1)]=-e(1,1,0,1)
[h(0,0,1,0),e(0,1,1,1)]=e(0,1,1,1)
[h(0,0,1,0),e(1,1,1,1)]=e(1,1,1,1)
[h(0,0,1,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(0,0,1,0),e(0,0,-1,0)]=-2e(0,0,-1,0)
[h(0,0,1,0),e(-1,-1,0,0)]=e(-1,-1,0,0)
[h(0,0,1,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,0,1,0),e(0,-1,0,-1)]=e(0,-1,0,-1)
[h(0,0,1,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(0,0,1,0),e(-1,-1,0,-1)]=e(-1,-1,0,-1)
[h(0,0,1,0),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,1,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(0,0,0,1),e(0,1,0,0)]=-e(0,1,0,0)
[h(0,0,0,1),e(0,0,0,1)]=2e(0,0,0,1)
[h(0,0,0,1),e(1,1,0,0)]=-e(1,1,0,0)
[h(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,0)
[h(0,0,0,1),e(0,1,0,1)]=e(0,1,0,1)
[h(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,0)
[h(0,0,0,1),e(1,1,0,1)]=e(1,1,0,1)
[h(0,0,0,1),e(0,1,1,1)]=e(0,1,1,1)
[h(0,0,0,1),e(1,1,1,1)]=e(1,1,1,1)
[h(0,0,0,1),e(0,-1,0,0)]=e(0,-1,0,0)
[h(0,0,0,1),e(0,0,0,-1)]=-2e(0,0,0,-1)
[h(0,0,0,1),e(-1,-1,0,0)]=e(-1,-1,0,0)
[h(0,0,0,1),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(0,0,0,1),e(0,-1,0,-1)]=-e(0,-1,0,-1)
[h(0,0,0,1),e(-1,-1,-1,0)]=e(-1,-1,-1,0)
[h(0,0,0,1),e(-1,-1,0,-1)]=-e(-1,-1,0,-1)
[h(0,0,0,1),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,0,1),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(1,0,0,0),e(0,1,0,0)]=e(1,1,0,0)
[e(1,0,0,0),e(0,1,1,0)]=e(1,1,1,0)
[e(1,0,0,0),e(0,1,0,1)]=e(1,1,0,1)
[e(1,0,0,0),e(0,1,1,1)]=e(1,1,1,1)
[e(1,0,0,0),e(-1,0,0,0)]=h(1,0,0,0)
[e(1,0,0,0),e(-1,-1,0,0)]=-e(0,-1,0,0)
[e(1,0,0,0),e(-1,-1,-1,0)]=-e(0,-1,-1,0)
[e(1,0,0,0),e(-1,-1,0,-1)]=-e(0,-1,0,-1)
[e(1,0,0,0),e(-1,-1,-1,-1)]=-e(0,-1,-1,-1)
[e(0,1,0,0),e(0,0,1,0)]=e(0,1,1,0)
[e(0,1,0,0),e(0,0,0,1)]=e(0,1,0,1)
[e(0,1,0,0),e(1,1,1,1)]=e(1,2,1,1)
[e(0,1,0,0),e(0,-1,0,0)]=h(0,1,0,0)
[e(0,1,0,0),e(-1,-1,0,0)]=e(-1,0,0,0)
[e(0,1,0,0),e(0,-1,-1,0)]=-e(0,0,-1,0)
[e(0,1,0,0),e(0,-1,0,-1)]=-e(0,0,0,-1)
[e(0,1,0,0),e(-1,-2,-1,-1)]=-e(-1,-1,-1,-1)
[e(0,0,1,0),e(1,1,0,0)]=-e(1,1,1,0)
[e(0,0,1,0),e(0,1,0,1)]=e(0,1,1,1)
[e(0,0,1,0),e(1,1,0,1)]=e(1,1,1,1)
[e(0,0,1,0),e(0,0,-1,0)]=h(0,0,1,0)
[e(0,0,1,0),e(0,-1,-1,0)]=e(0,-1,0,0)
[e(0,0,1,0),e(-1,-1,-1,0)]=e(-1,-1,0,0)
[e(0,0,1,0),e(0,-1,-1,-1)]=-e(0,-1,0,-1)
[e(0,0,1,0),e(-1,-1,-1,-1)]=-e(-1,-1,0,-1)
[e(0,0,0,1),e(1,1,0,0)]=-e(1,1,0,1)
[e(0,0,0,1),e(0,1,1,0)]=e(0,1,1,1)

[e(0,0,0,1),e(1,1,1,0)]=e(1,1,1,1)
[e(0,0,0,1),e(0,0,0,-1)]=h(0,0,0,1)
[e(0,0,0,1),e(0,-1,0,-1)]=e(0,-1,0,0)
[e(0,0,0,1),e(-1,-1,0,-1)]=e(-1,-1,0,0)
[e(0,0,0,1),e(0,-1,-1,-1)]=-e(0,-1,-1,0)
[e(0,0,0,1),e(-1,-1,-1,-1)]=-e(-1,-1,-1,0)
[e(1,1,0,0),e(0,1,1,1)]=-e(1,2,1,1)
[e(1,1,0,0),e(-1,0,0,0)]=-e(0,1,0,0)
[e(1,1,0,0),e(0,-1,0,0)]=e(1,0,0,0)
[e(1,1,0,0),e(-1,-1,0,0)]=h(1,0,0,0)+h(0,1,0,0)
[e(1,1,0,0),e(-1,-1,-1,0)]=-e(0,0,-1,0)
[e(1,1,0,0),e(-1,-1,0,-1)]=-e(0,0,0,-1)
[e(1,1,0,0),e(-1,-2,-1,-1)]=e(0,-1,-1,-1)
[e(0,1,1,0),e(1,1,0,1)]=e(1,2,1,1)
[e(0,1,1,0),e(0,-1,0,0)]=-e(0,0,1,0)
[e(0,1,1,0),e(0,0,-1,0)]=e(0,1,0,0)
[e(0,1,1,0),e(0,-1,-1,0)]=h(0,1,0,0)+h(0,0,1,0)
[e(0,1,1,0),e(-1,-1,-1,0)]=e(-1,0,0,0)
[e(0,1,1,0),e(0,-1,-1,-1)]=e(0,0,0,-1)
[e(0,1,1,0),e(-1,-2,-1,-1)]=-e(-1,-1,0,-1)
[e(0,1,0,1),e(1,1,1,0)]=e(1,2,1,1)
[e(0,1,0,1),e(0,-1,0,0)]=-e(0,0,0,1)
[e(0,1,0,1),e(0,0,0,-1)]=e(0,1,0,0)
[e(0,1,0,1),e(0,-1,0,-1)]=h(0,1,0,0)+h(0,0,0,1)
[e(0,1,0,1),e(-1,-1,0,-1)]=e(-1,0,0,0)
[e(0,1,0,1),e(0,-1,-1,-1)]=e(0,0,-1,0)
[e(0,1,0,1),e(-1,-2,-1,-1)]=-e(-1,-1,-1,0)
[e(1,1,1,0),e(-1,0,0,0)]=-e(0,1,1,0)
[e(1,1,1,0),e(0,0,-1,0)]=e(1,1,0,0)
[e(1,1,1,0),e(-1,-1,0,0)]=-e(0,0,1,0)
[e(1,1,1,0),e(0,-1,-1,0)]=e(1,0,0,0)
[e(1,1,1,0),e(-1,-1,-1,0)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)
[e(1,1,1,0),e(-1,-1,-1,-1)]=e(0,0,0,-1)
[e(1,1,1,0),e(-1,-2,-1,-1)]=e(0,-1,0,-1)
[e(1,1,0,1),e(-1,0,0,0)]=-e(0,1,0,1)
[e(1,1,0,1),e(0,0,0,-1)]=e(1,1,0,0)
[e(1,1,0,1),e(-1,-1,0,0)]=-e(0,0,0,1)
[e(1,1,0,1),e(0,-1,0,-1)]=e(1,0,0,0)
[e(1,1,0,1),e(-1,-1,0,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,0,1)
[e(1,1,0,1),e(-1,-1,-1,-1)]=e(0,0,-1,0)
[e(1,1,0,1),e(-1,-2,-1,-1)]=e(0,-1,-1,0)
[e(0,1,1,1),e(0,0,-1,0)]=-e(0,1,0,1)
[e(0,1,1,1),e(0,0,0,-1)]=-e(0,1,1,0)
[e(0,1,1,1),e(0,-1,-1,0)]=e(0,0,0,1)
[e(0,1,1,1),e(0,-1,0,-1)]=e(0,0,1,0)
[e(0,1,1,1),e(0,-1,-1,-1)]=
=h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,1,1,1),e(-1,-1,-1,-1)]=e(-1,0,0,0)
[e(0,1,1,1),e(-1,-2,-1,-1)]=-e(-1,-1,0,0)
[e(1,1,1,1),e(-1,0,0,0)]=-e(0,1,1,1)
[e(1,1,1,1),e(0,0,-1,0)]=-e(1,1,0,1)
[e(1,1,1,1),e(0,0,0,-1)]=-e(1,1,1,0)
[e(1,1,1,1),e(-1,-1,-1,0)]=e(0,0,0,1)
[e(1,1,1,1),e(-1,-1,0,-1)]=e(0,0,1,0)
[e(1,1,1,1),e(0,-1,-1,-1)]=e(1,0,0,0)
[e(1,1,1,1),e(-1,-1,-1,-1)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(1,1,1,1),e(-1,-2,-1,-1)]=e(0,-1,0,0)
[e(1,2,1,1),e(0,-1,0,0)]=-e(1,1,1,1)
[e(1,2,1,1),e(-1,-1,0,0)]=e(0,1,1,1)
[e(1,2,1,1),e(0,-1,-1,0)]=-e(1,1,0,1)
[e(1,2,1,1),e(0,-1,0,-1)]=-e(1,1,1,0)
[e(1,2,1,1),e(-1,-1,-1,0)]=e(0,1,0,1)
[e(1,2,1,1),e(-1,-1,0,-1)]=e(0,1,1,0)
[e(1,2,1,1),e(0,-1,-1,-1)]=-e(1,1,0,0)
[e(1,2,1,1),e(-1,-1,-1,-1)]=e(0,1,0,0)
[e(1,2,1,1),e(-1,-2,-1,-1)]=
=h(1,0,0,0)+2h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(-1,0,0,0),e(0,-1,0,0)]=-e(-1,-1,0,0)
[e(-1,0,0,0),e(0,-1,-1,0)]=-e(-1,-1,-1,0)
[e(-1,0,0,0),e(0,-1,0,-1)]=-e(-1,-1,0,-1)
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[e(-1,0,0,0),e(0,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(0,-1,0,0),e(0,0,-1,0)]=-e(0,-1,-1,0)
[e(0,-1,0,0),e(0,0,0,-1)]=-e(0,-1,0,-1)
[e(0,-1,0,0),e(-1,-1,-1,-1)]=-e(-1,-2,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,0)]=e(-1,-1,-1,0)
[e(0,0,-1,0),e(0,-1,0,-1)]=-e(0,-1,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,-1)]=-e(-1,-1,-1,-1)
[e(0,0,0,-1),e(-1,-1,0,0)]=e(-1,-1,0,-1)
[e(0,0,0,-1),e(0,-1,-1,0)]=-e(0,-1,-1,-1)
[e(0,0,0,-1),e(-1,-1,-1,0)]=-e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,-1,-1,-1)]=e(-1,-2,-1,-1)
[e(0,-1,-1,0),e(-1,-1,0,-1)]=-e(-1,-2,-1,-1)
[e(0,-1,0,-1),e(-1,-1,-1,0)]=-e(-1,-2,-1,-1)

F4
[h(1,0,0,0),e(1,0,0,0)]=2e(1,0,0,0)
[h(1,0,0,0),e(0,1,0,0)]=-e(0,1,0,0)
[h(1,0,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(1,0,0,0),e(0,1,1,0)]=-e(0,1,1,0)
[h(1,0,0,0),e(1,1,1,0)]=e(1,1,1,0)
[h(1,0,0,0),e(0,1,2,0)]=-e(0,1,2,0)
[h(1,0,0,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(1,0,0,0),e(1,1,2,0)]=e(1,1,2,0)
[h(1,0,0,0),e(1,1,1,1)]=e(1,1,1,1)
[h(1,0,0,0),e(0,1,2,1)]=-e(0,1,2,1)
[h(1,0,0,0),e(1,1,2,1)]=e(1,1,2,1)
[h(1,0,0,0),e(0,1,2,2)]=-e(0,1,2,2)
[h(1,0,0,0),e(1,1,2,2)]=e(1,1,2,2)
[h(1,0,0,0),e(1,3,4,2)]=-e(1,3,4,2)
[h(1,0,0,0),e(2,3,4,2)]=e(2,3,4,2)
[h(1,0,0,0),e(-1,0,0,0)]=-2e(-1,0,0,0)
[h(1,0,0,0),e(0,-1,0,0)]=e(0,-1,0,0)
[h(1,0,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(1,0,0,0),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(1,0,0,0),e(-1,-1,-1,0)]=-e(-1,-1,-1,0)
[h(1,0,0,0),e(0,-1,-2,0)]=e(0,-1,-2,0)
[h(1,0,0,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(1,0,0,0),e(-1,-1,-2,0)]=-e(-1,-1,-2,0)
[h(1,0,0,0),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(1,0,0,0),e(0,-1,-2,-1)]=e(0,-1,-2,-1)
[h(1,0,0,0),e(-1,-1,-2,-1)]=-e(-1,-1,-2,-1)
[h(1,0,0,0),e(0,-1,-2,-2)]=e(0,-1,-2,-2)
[h(1,0,0,0),e(-1,-1,-2,-2)]=-e(-1,-1,-2,-2)
[h(1,0,0,0),e(-1,-3,-4,-2)]=e(-1,-3,-4,-2)
[h(1,0,0,0),e(-2,-3,-4,-2)]=-e(-2,-3,-4,-2)
[h(0,1,0,0),e(1,0,0,0)]=-e(1,0,0,0)
[h(0,1,0,0),e(0,1,0,0)]=2e(0,1,0,0)
[h(0,1,0,0),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,1,0,0),e(1,1,0,0)]=e(1,1,0,0)
[h(0,1,0,0),e(0,1,1,0)]=e(0,1,1,0)
[h(0,1,0,0),e(0,0,1,1)]=-e(0,0,1,1)
[h(0,1,0,0),e(0,1,1,1)]=e(0,1,1,1)
[h(0,1,0,0),e(1,1,2,0)]=-e(1,1,2,0)
[h(0,1,0,0),e(1,2,2,0)]=e(1,2,2,0)
[h(0,1,0,0),e(1,1,2,1)]=-e(1,1,2,1)
[h(0,1,0,0),e(1,2,2,1)]=e(1,2,2,1)
[h(0,1,0,0),e(1,1,2,2)]=-e(1,1,2,2)
[h(0,1,0,0),e(1,2,2,2)]=e(1,2,2,2)
[h(0,1,0,0),e(1,2,4,2)]=-e(1,2,4,2)
[h(0,1,0,0),e(1,3,4,2)]=e(1,3,4,2)
[h(0,1,0,0),e(-1,0,0,0)]=e(-1,0,0,0)
[h(0,1,0,0),e(0,-1,0,0)]=-2e(0,-1,0,0)
[h(0,1,0,0),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,1,0,0),e(-1,-1,0,0)]=-e(-1,-1,0,0)
[h(0,1,0,0),e(0,-1,-1,0)]=-e(0,-1,-1,0)
[h(0,1,0,0),e(0,0,-1,-1)]=e(0,0,-1,-1)
[h(0,1,0,0),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,1,0,0),e(-1,-1,-2,0)]=e(-1,-1,-2,0)
[h(0,1,0,0),e(-1,-2,-2,0)]=-e(-1,-2,-2,0)
[h(0,1,0,0),e(-1,-1,-2,-1)]=e(-1,-1,-2,-1)
[h(0,1,0,0),e(-1,-2,-2,-1)]=-e(-1,-2,-2,-1)
[h(0,1,0,0),e(-1,-1,-2,-2)]=e(-1,-1,-2,-2)

[h(0,1,0,0),e(-1,-2,-2,-2)]=-e(-1,-2,-2,-2)
[h(0,1,0,0),e(-1,-2,-4,-2)]=e(-1,-2,-4,-2)
[h(0,1,0,0),e(-1,-3,-4,-2)]=-e(-1,-3,-4,-2)
[h(0,0,1,0),e(0,1,0,0)]=-2e(0,1,0,0)
[h(0,0,1,0),e(0,0,1,0)]=2e(0,0,1,0)
[h(0,0,1,0),e(0,0,0,1)]=-e(0,0,0,1)
[h(0,0,1,0),e(1,1,0,0)]=-2e(1,1,0,0)
[h(0,0,1,0),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,1,0),e(0,1,2,0)]=2e(0,1,2,0)
[h(0,0,1,0),e(0,1,1,1)]=-e(0,1,1,1)
[h(0,0,1,0),e(1,1,2,0)]=2e(1,1,2,0)
[h(0,0,1,0),e(1,1,1,1)]=-e(1,1,1,1)
[h(0,0,1,0),e(0,1,2,1)]=e(0,1,2,1)
[h(0,0,1,0),e(1,1,2,1)]=e(1,1,2,1)
[h(0,0,1,0),e(1,2,2,1)]=-e(1,2,2,1)
[h(0,0,1,0),e(1,2,3,1)]=e(1,2,3,1)
[h(0,0,1,0),e(1,2,2,2)]=-2e(1,2,2,2)
[h(0,0,1,0),e(1,2,4,2)]=2e(1,2,4,2)
[h(0,0,1,0),e(0,-1,0,0)]=2e(0,-1,0,0)
[h(0,0,1,0),e(0,0,-1,0)]=-2e(0,0,-1,0)
[h(0,0,1,0),e(0,0,0,-1)]=e(0,0,0,-1)
[h(0,0,1,0),e(-1,-1,0,0)]=2e(-1,-1,0,0)
[h(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,-1,-1)
[h(0,0,1,0),e(0,-1,-2,0)]=-2e(0,-1,-2,0)
[h(0,0,1,0),e(0,-1,-1,-1)]=e(0,-1,-1,-1)
[h(0,0,1,0),e(-1,-1,-2,0)]=-2e(-1,-1,-2,0)
[h(0,0,1,0),e(-1,-1,-1,-1)]=e(-1,-1,-1,-1)
[h(0,0,1,0),e(0,-1,-2,-1)]=-e(0,-1,-2,-1)
[h(0,0,1,0),e(-1,-1,-2,-1)]=-e(-1,-1,-2,-1)
[h(0,0,1,0),e(-1,-2,-2,-1)]=e(-1,-2,-2,-1)
[h(0,0,1,0),e(-1,-2,-3,-1)]=-e(-1,-2,-3,-1)
[h(0,0,1,0),e(-1,-2,-2,-2)]=2e(-1,-2,-2,-2)
[h(0,0,1,0),e(-1,-2,-4,-2)]=-2e(-1,-2,-4,-2)
[h(0,0,0,1),e(0,0,1,0)]=-e(0,0,1,0)
[h(0,0,0,1),e(0,0,0,1)]=2e(0,0,0,1)
[h(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,0)
[h(0,0,0,1),e(0,0,1,1)]=e(0,0,1,1)
[h(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,0)
[h(0,0,0,1),e(0,1,2,0)]=-2e(0,1,2,0)
[h(0,0,0,1),e(0,1,1,1)]=e(0,1,1,1)
[h(0,0,0,1),e(1,1,2,0)]=-2e(1,1,2,0)
[h(0,0,0,1),e(1,1,1,1)]=e(1,1,1,1)
[h(0,0,0,1),e(1,2,2,0)]=-2e(1,2,2,0)
[h(0,0,0,1),e(0,1,2,2)]=2e(0,1,2,2)
[h(0,0,0,1),e(1,1,2,2)]=2e(1,1,2,2)
[h(0,0,0,1),e(1,2,3,1)]=-e(1,2,3,1)
[h(0,0,0,1),e(1,2,2,2)]=2e(1,2,2,2)
[h(0,0,0,1),e(1,2,3,2)]=e(1,2,3,2)
[h(0,0,0,1),e(0,0,-1,0)]=e(0,0,-1,0)
[h(0,0,0,1),e(0,0,0,-1)]=-2e(0,0,0,-1)
[h(0,0,0,1),e(0,-1,-1,0)]=e(0,-1,-1,0)
[h(0,0,0,1),e(0,0,-1,-1)]=-e(0,0,-1,-1)
[h(0,0,0,1),e(-1,-1,-1,0)]=e(-1,-1,-1,0)
[h(0,0,0,1),e(0,-1,-2,0)]=2e(0,-1,-2,0)
[h(0,0,0,1),e(0,-1,-1,-1)]=-e(0,-1,-1,-1)
[h(0,0,0,1),e(-1,-1,-2,0)]=2e(-1,-1,-2,0)
[h(0,0,0,1),e(-1,-1,-1,-1)]=-e(-1,-1,-1,-1)
[h(0,0,0,1),e(-1,-2,-2,0)]=2e(-1,-2,-2,0)
[h(0,0,0,1),e(0,-1,-2,-2)]=-2e(0,-1,-2,-2)
[h(0,0,0,1),e(-1,-1,-2,-2)]=-2e(-1,-1,-2,-2)
[h(0,0,0,1),e(-1,-2,-3,-1)]=e(-1,-2,-3,-1)
[h(0,0,0,1),e(-1,-2,-2,-2)]=-2e(-1,-2,-2,-2)
[h(0,0,0,1),e(-1,-2,-3,-2)]=-e(-1,-2,-3,-2)
[e(1,0,0,0),e(0,1,0,0)]=e(1,1,0,0)
[e(1,0,0,0),e(0,1,1,0)]=e(1,1,1,0)
[e(1,0,0,0),e(0,1,2,0)]=e(1,1,2,0)
[e(1,0,0,0),e(0,1,1,1)]=e(1,1,1,1)
[e(1,0,0,0),e(0,1,2,1)]=e(1,1,2,1)
[e(1,0,0,0),e(0,1,2,2)]=e(1,1,2,2)
[e(1,0,0,0),e(1,3,4,2)]=e(2,3,4,2)
[e(1,0,0,0),e(-1,0,0,0)]=h(1,0,0,0)
[e(1,0,0,0),e(-1,-1,0,0)]=-e(0,-1,0,0)
[e(1,0,0,0),e(-1,-1,-1,0)]=-e(0,-1,-1,0)
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[e(1,0,0,0),e(-1,-1,-2,0)]=-e(0,-1,-2,0)
[e(1,0,0,0),e(-1,-1,-1,-1)]=-e(0,-1,-1,-1)
[e(1,0,0,0),e(-1,-1,-2,-1)]=-e(0,-1,-2,-1)
[e(1,0,0,0),e(-1,-1,-2,-2)]=-e(0,-1,-2,-2)
[e(1,0,0,0),e(-2,-3,-4,-2)]=-e(-1,-3,-4,-2)
[e(0,1,0,0),e(0,0,1,0)]=e(0,1,1,0)
[e(0,1,0,0),e(0,0,1,1)]=e(0,1,1,1)
[e(0,1,0,0),e(1,1,2,0)]=e(1,2,2,0)
[e(0,1,0,0),e(1,1,2,1)]=e(1,2,2,1)
[e(0,1,0,0),e(1,1,2,2)]=e(1,2,2,2)
[e(0,1,0,0),e(1,2,4,2)]=e(1,3,4,2)
[e(0,1,0,0),e(0,-1,0,0)]=h(0,1,0,0)
[e(0,1,0,0),e(-1,-1,0,0)]=e(-1,0,0,0)
[e(0,1,0,0),e(0,-1,-1,0)]=-e(0,0,-1,0)
[e(0,1,0,0),e(0,-1,-1,-1)]=-e(0,0,-1,-1)
[e(0,1,0,0),e(-1,-2,-2,0)]=-e(-1,-1,-2,0)
[e(0,1,0,0),e(-1,-2,-2,-1)]=-e(-1,-1,-2,-1)
[e(0,1,0,0),e(-1,-2,-2,-2)]=-e(-1,-1,-2,-2)
[e(0,1,0,0),e(-1,-3,-4,-2)]=-e(-1,-2,-4,-2)
[e(0,0,1,0),e(0,0,0,1)]=e(0,0,1,1)
[e(0,0,1,0),e(1,1,0,0)]=-e(1,1,1,0)
[e(0,0,1,0),e(0,1,1,0)]=2e(0,1,2,0)
[e(0,0,1,0),e(1,1,1,0)]=2e(1,1,2,0)
[e(0,0,1,0),e(0,1,1,1)]=e(0,1,2,1)
[e(0,0,1,0),e(1,1,1,1)]=e(1,1,2,1)
[e(0,0,1,0),e(1,2,2,1)]=e(1,2,3,1)
[e(0,0,1,0),e(1,2,2,2)]=e(1,2,3,2)
[e(0,0,1,0),e(1,2,3,2)]=2e(1,2,4,2)
[e(0,0,1,0),e(0,0,-1,0)]=h(0,0,1,0)
[e(0,0,1,0),e(0,-1,-1,0)]=2e(0,-1,0,0)
[e(0,0,1,0),e(0,0,-1,-1)]=-e(0,0,0,-1)
[e(0,0,1,0),e(-1,-1,-1,0)]=2e(-1,-1,0,0)
[e(0,0,1,0),e(0,-1,-2,0)]=-e(0,-1,-1,0)
[e(0,0,1,0),e(-1,-1,-2,0)]=-e(-1,-1,-1,0)
[e(0,0,1,0),e(0,-1,-2,-1)]=-e(0,-1,-1,-1)
[e(0,0,1,0),e(-1,-1,-2,-1)]=-e(-1,-1,-1,-1)
[e(0,0,1,0),e(-1,-2,-3,-1)]=-e(-1,-2,-2,-1)
[e(0,0,1,0),e(-1,-2,-3,-2)]=-2e(-1,-2,-2,-2)
[e(0,0,1,0),e(-1,-2,-4,-2)]=-e(-1,-2,-3,-2)
[e(0,0,0,1),e(0,1,1,0)]=-e(0,1,1,1)
[e(0,0,0,1),e(1,1,1,0)]=-e(1,1,1,1)
[e(0,0,0,1),e(0,1,2,0)]=-e(0,1,2,1)
[e(0,0,0,1),e(1,1,2,0)]=-e(1,1,2,1)
[e(0,0,0,1),e(0,1,2,1)]=2e(0,1,2,2)
[e(0,0,0,1),e(1,2,2,0)]=-e(1,2,2,1)
[e(0,0,0,1),e(1,1,2,1)]=2e(1,1,2,2)
[e(0,0,0,1),e(1,2,2,1)]=2e(1,2,2,2)
[e(0,0,0,1),e(1,2,3,1)]=e(1,2,3,2)
[e(0,0,0,1),e(0,0,0,-1)]=h(0,0,0,1)
[e(0,0,0,1),e(0,0,-1,-1)]=e(0,0,-1,0)
[e(0,0,0,1),e(0,-1,-1,-1)]=e(0,-1,-1,0)
[e(0,0,0,1),e(-1,-1,-1,-1)]=e(-1,-1,-1,0)
[e(0,0,0,1),e(0,-1,-2,-1)]=2e(0,-1,-2,0)
[e(0,0,0,1),e(-1,-1,-2,-1)]=2e(-1,-1,-2,0)
[e(0,0,0,1),e(0,-1,-2,-2)]=-e(0,-1,-2,-1)
[e(0,0,0,1),e(-1,-2,-2,-1)]=2e(-1,-2,-2,0)
[e(0,0,0,1),e(-1,-1,-2,-2)]=-e(-1,-1,-2,-1)
[e(0,0,0,1),e(-1,-2,-2,-2)]=-e(-1,-2,-2,-1)
[e(0,0,0,1),e(-1,-2,-3,-2)]=-e(-1,-2,-3,-1)
[e(1,1,0,0),e(0,0,1,1)]=e(1,1,1,1)
[e(1,1,0,0),e(0,1,2,0)]=-e(1,2,2,0)
[e(1,1,0,0),e(0,1,2,1)]=-e(1,2,2,1)
[e(1,1,0,0),e(0,1,2,2)]=-e(1,2,2,2)
[e(1,1,0,0),e(1,2,4,2)]=e(2,3,4,2)
[e(1,1,0,0),e(-1,0,0,0)]=-e(0,1,0,0)
[e(1,1,0,0),e(0,-1,0,0)]=e(1,0,0,0)
[e(1,1,0,0),e(-1,-1,0,0)]=h(1,0,0,0)+h(0,1,0,0)
[e(1,1,0,0),e(-1,-1,-1,0)]=-e(0,0,-1,0)
[e(1,1,0,0),e(-1,-1,-1,-1)]=-e(0,0,-1,-1)
[e(1,1,0,0),e(-1,-2,-2,0)]=e(0,-1,-2,0)
[e(1,1,0,0),e(-1,-2,-2,-1)]=e(0,-1,-2,-1)
[e(1,1,0,0),e(-1,-2,-2,-2)]=e(0,-1,-2,-2)
[e(1,1,0,0),e(-2,-3,-4,-2)]=-e(-1,-2,-4,-2)

[e(0,1,1,0),e(0,0,1,1)]=-e(0,1,2,1)
[e(0,1,1,0),e(1,1,1,0)]=2e(1,2,2,0)
[e(0,1,1,0),e(1,1,1,1)]=e(1,2,2,1)
[e(0,1,1,0),e(1,1,2,1)]=-e(1,2,3,1)
[e(0,1,1,0),e(1,1,2,2)]=-e(1,2,3,2)
[e(0,1,1,0),e(1,2,3,2)]=2e(1,3,4,2)
[e(0,1,1,0),e(0,-1,0,0)]=-e(0,0,1,0)
[e(0,1,1,0),e(0,0,-1,0)]=2e(0,1,0,0)
[e(0,1,1,0),e(0,-1,-1,0)]=
=2h(0,1,0,0)+h(0,0,1,0)
[e(0,1,1,0),e(-1,-1,-1,0)]=2e(-1,0,0,0)
[e(0,1,1,0),e(0,-1,-2,0)]=e(0,0,-1,0)
[e(0,1,1,0),e(0,-1,-1,-1)]=-e(0,0,0,-1)
[e(0,1,1,0),e(0,-1,-2,-1)]=e(0,0,-1,-1)
[e(0,1,1,0),e(-1,-2,-2,0)]=-e(-1,-1,-1,0)
[e(0,1,1,0),e(-1,-2,-2,-1)]=-e(-1,-1,-1,-1)
[e(0,1,1,0),e(-1,-2,-3,-1)]=e(-1,-1,-2,-1)
[e(0,1,1,0),e(-1,-2,-3,-2)]=2e(-1,-1,-2,-2)
[e(0,1,1,0),e(-1,-3,-4,-2)]=-e(-1,-2,-3,-2)
[e(0,0,1,1),e(1,1,1,0)]=e(1,1,2,1)
[e(0,0,1,1),e(0,1,1,1)]=-2e(0,1,2,2)
[e(0,0,1,1),e(1,1,1,1)]=-2e(1,1,2,2)
[e(0,0,1,1),e(1,2,2,0)]=-e(1,2,3,1)
[e(0,0,1,1),e(1,2,2,1)]=e(1,2,3,2)
[e(0,0,1,1),e(1,2,3,1)]=2e(1,2,4,2)
[e(0,0,1,1),e(0,0,-1,0)]=-e(0,0,0,1)
[e(0,0,1,1),e(0,0,0,-1)]=e(0,0,1,0)
[e(0,0,1,1),e(0,0,-1,-1)]=h(0,0,1,0)+h(0,0,0,1)
[e(0,0,1,1),e(0,-1,-1,-1)]=2e(0,-1,0,0)
[e(0,0,1,1),e(-1,-1,-1,-1)]=2e(-1,-1,0,0)
[e(0,0,1,1),e(0,-1,-2,-1)]=-e(0,-1,-1,0)
[e(0,0,1,1),e(-1,-1,-2,-1)]=-e(-1,-1,-1,0)
[e(0,0,1,1),e(0,-1,-2,-2)]=e(0,-1,-1,-1)
[e(0,0,1,1),e(-1,-1,-2,-2)]=e(-1,-1,-1,-1)
[e(0,0,1,1),e(-1,-2,-3,-1)]=2e(-1,-2,-2,0)
[e(0,0,1,1),e(-1,-2,-3,-2)]=-e(-1,-2,-2,-1)
[e(0,0,1,1),e(-1,-2,-4,-2)]=-e(-1,-2,-3,-1)
[e(1,1,1,0),e(0,1,1,1)]=-e(1,2,2,1)
[e(1,1,1,0),e(0,1,2,1)]=e(1,2,3,1)
[e(1,1,1,0),e(0,1,2,2)]=e(1,2,3,2)
[e(1,1,1,0),e(1,2,3,2)]=2e(2,3,4,2)
[e(1,1,1,0),e(-1,0,0,0)]=-e(0,1,1,0)
[e(1,1,1,0),e(0,0,-1,0)]=2e(1,1,0,0)
[e(1,1,1,0),e(-1,-1,0,0)]=-e(0,0,1,0)
[e(1,1,1,0),e(0,-1,-1,0)]=2e(1,0,0,0)
[e(1,1,1,0),e(-1,-1,-1,0)]=
=2h(1,0,0,0)+2h(0,1,0,0)+h(0,0,1,0)
[e(1,1,1,0),e(-1,-1,-2,0)]=e(0,0,-1,0)
[e(1,1,1,0),e(-1,-1,-1,-1)]=-e(0,0,0,-1)
[e(1,1,1,0),e(-1,-2,-2,0)]=e(0,-1,-1,0)
[e(1,1,1,0),e(-1,-1,-2,-1)]=e(0,0,-1,-1)
[e(1,1,1,0),e(-1,-2,-2,-1)]=e(0,-1,-1,-1)
[e(1,1,1,0),e(-1,-2,-3,-1)]=-e(0,-1,-2,-1)
[e(1,1,1,0),e(-1,-2,-3,-2)]=-2e(0,-1,-2,-2)
[e(1,1,1,0),e(-2,-3,-4,-2)]=-e(-1,-2,-3,-2)
[e(0,1,2,0),e(1,1,1,1)]=e(1,2,3,1)
[e(0,1,2,0),e(1,1,2,2)]=-e(1,2,4,2)
[e(0,1,2,0),e(1,2,2,2)]=-e(1,3,4,2)
[e(0,1,2,0),e(0,0,-1,0)]=-e(0,1,1,0)
[e(0,1,2,0),e(0,-1,-1,0)]=e(0,0,1,0)
[e(0,1,2,0),e(0,-1,-2,0)]=h(0,1,0,0)+h(0,0,1,0)
[e(0,1,2,0),e(-1,-1,-2,0)]=e(-1,0,0,0)
[e(0,1,2,0),e(0,-1,-2,-1)]=-e(0,0,0,-1)
[e(0,1,2,0),e(-1,-2,-2,0)]=-e(-1,-1,0,0)
[e(0,1,2,0),e(-1,-2,-3,-1)]=-e(-1,-1,-1,-1)
[e(0,1,2,0),e(-1,-2,-4,-2)]=e(-1,-1,-2,-2)
[e(0,1,2,0),e(-1,-3,-4,-2)]=e(-1,-2,-2,-2)
[e(0,1,1,1),e(1,1,2,0)]=e(1,2,3,1)
[e(0,1,1,1),e(1,1,1,1)]=-2e(1,2,2,2)
[e(0,1,1,1),e(1,1,2,1)]=-e(1,2,3,2)
[e(0,1,1,1),e(1,2,3,1)]=2e(1,3,4,2)
[e(0,1,1,1),e(0,-1,0,0)]=-e(0,0,1,1)
[e(0,1,1,1),e(0,0,0,-1)]=e(0,1,1,0)
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[e(0,1,1,1),e(0,-1,-1,0)]=-e(0,0,0,1)
[e(0,1,1,1),e(0,0,-1,-1)]=2e(0,1,0,0)
[e(0,1,1,1),e(0,-1,-1,-1)]=
=2h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,1,1,1),e(-1,-1,-1,-1)]=2e(-1,0,0,0)
[e(0,1,1,1),e(0,-1,-2,-1)]=e(0,0,-1,0)
[e(0,1,1,1),e(0,-1,-2,-2)]=-e(0,0,-1,-1)
[e(0,1,1,1),e(-1,-2,-2,-1)]=-e(-1,-1,-1,0)
[e(0,1,1,1),e(-1,-2,-3,-1)]=-2e(-1,-1,-2,0)
[e(0,1,1,1),e(-1,-2,-2,-2)]=e(-1,-1,-1,-1)
[e(0,1,1,1),e(-1,-2,-3,-2)]=e(-1,-1,-2,-1)
[e(0,1,1,1),e(-1,-3,-4,-2)]=-e(-1,-2,-3,-1)
[e(1,1,2,0),e(0,1,2,2)]=e(1,2,4,2)
[e(1,1,2,0),e(1,2,2,2)]=-e(2,3,4,2)
[e(1,1,2,0),e(-1,0,0,0)]=-e(0,1,2,0)
[e(1,1,2,0),e(0,0,-1,0)]=-e(1,1,1,0)
[e(1,1,2,0),e(-1,-1,-1,0)]=e(0,0,1,0)
[e(1,1,2,0),e(0,-1,-2,0)]=e(1,0,0,0)
[e(1,1,2,0),e(-1,-1,-2,0)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)
[e(1,1,2,0),e(-1,-2,-2,0)]=e(0,-1,0,0)
[e(1,1,2,0),e(-1,-1,-2,-1)]=-e(0,0,0,-1)
[e(1,1,2,0),e(-1,-2,-3,-1)]=e(0,-1,-1,-1)
[e(1,1,2,0),e(-1,-2,-4,-2)]=-e(0,-1,-2,-2)
[e(1,1,2,0),e(-2,-3,-4,-2)]=e(-1,-2,-2,-2)
[e(1,1,1,1),e(0,1,2,1)]=e(1,2,3,2)
[e(1,1,1,1),e(1,2,3,1)]=2e(2,3,4,2)
[e(1,1,1,1),e(-1,0,0,0)]=-e(0,1,1,1)
[e(1,1,1,1),e(0,0,0,-1)]=e(1,1,1,0)
[e(1,1,1,1),e(-1,-1,0,0)]=-e(0,0,1,1)
[e(1,1,1,1),e(0,0,-1,-1)]=2e(1,1,0,0)
[e(1,1,1,1),e(-1,-1,-1,0)]=-e(0,0,0,1)
[e(1,1,1,1),e(0,-1,-1,-1)]=2e(1,0,0,0)
[e(1,1,1,1),e(-1,-1,-1,-1)]=
=2h(1,0,0,0)+2h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(1,1,1,1),e(-1,-1,-2,-1)]=e(0,0,-1,0)
[e(1,1,1,1),e(-1,-2,-2,-1)]=e(0,-1,-1,0)
[e(1,1,1,1),e(-1,-1,-2,-2)]=-e(0,0,-1,-1)
[e(1,1,1,1),e(-1,-2,-3,-1)]=2e(0,-1,-2,0)
[e(1,1,1,1),e(-1,-2,-2,-2)]=-e(0,-1,-1,-1)
[e(1,1,1,1),e(-1,-2,-3,-2)]=-e(0,-1,-2,-1)
[e(1,1,1,1),e(-2,-3,-4,-2)]=-e(-1,-2,-3,-1)
[e(0,1,2,1),e(1,1,2,1)]=-2e(1,2,4,2)
[e(0,1,2,1),e(1,2,2,1)]=-2e(1,3,4,2)
[e(0,1,2,1),e(0,0,-1,0)]=-e(0,1,1,1)
[e(0,1,2,1),e(0,0,0,-1)]=2e(0,1,2,0)
[e(0,1,2,1),e(0,-1,-1,0)]=e(0,0,1,1)
[e(0,1,2,1),e(0,0,-1,-1)]=-e(0,1,1,0)
[e(0,1,2,1),e(0,-1,-2,0)]=-e(0,0,0,1)
[e(0,1,2,1),e(0,-1,-1,-1)]=e(0,0,1,0)
[e(0,1,2,1),e(0,-1,-2,-1)]=
=2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(0,1,2,1),e(-1,-1,-2,-1)]=2e(-1,0,0,0)
[e(0,1,2,1),e(0,-1,-2,-2)]=e(0,0,0,-1)
[e(0,1,2,1),e(-1,-2,-2,-1)]=-2e(-1,-1,0,0)
[e(0,1,2,1),e(-1,-2,-3,-1)]=e(-1,-1,-1,0)
[e(0,1,2,1),e(-1,-2,-3,-2)]=e(-1,-1,-1,-1)
[e(0,1,2,1),e(-1,-2,-4,-2)]=e(-1,-1,-2,-1)
[e(0,1,2,1),e(-1,-3,-4,-2)]=e(-1,-2,-2,-1)
[e(1,2,2,0),e(0,1,2,2)]=e(1,3,4,2)
[e(1,2,2,0),e(1,1,2,2)]=e(2,3,4,2)
[e(1,2,2,0),e(0,-1,0,0)]=-e(1,1,2,0)
[e(1,2,2,0),e(-1,-1,0,0)]=e(0,1,2,0)
[e(1,2,2,0),e(0,-1,-1,0)]=-e(1,1,1,0)
[e(1,2,2,0),e(-1,-1,-1,0)]=e(0,1,1,0)
[e(1,2,2,0),e(0,-1,-2,0)]=-e(1,1,0,0)
[e(1,2,2,0),e(-1,-1,-2,0)]=e(0,1,0,0)
[e(1,2,2,0),e(-1,-2,-2,0)]=
=h(1,0,0,0)+2h(0,1,0,0)+h(0,0,1,0)
[e(1,2,2,0),e(-1,-2,-2,-1)]=-e(0,0,0,-1)
[e(1,2,2,0),e(-1,-2,-3,-1)]=-e(0,0,-1,-1)
[e(1,2,2,0),e(-1,-3,-4,-2)]=-e(0,-1,-2,-2)
[e(1,2,2,0),e(-2,-3,-4,-2)]=-e(-1,-1,-2,-2)

[e(1,1,2,1),e(1,2,2,1)]=-2e(2,3,4,2)
[e(1,1,2,1),e(-1,0,0,0)]=-e(0,1,2,1)
[e(1,1,2,1),e(0,0,-1,0)]=-e(1,1,1,1)
[e(1,1,2,1),e(0,0,0,-1)]=2e(1,1,2,0)
[e(1,1,2,1),e(0,0,-1,-1)]=-e(1,1,1,0)
[e(1,1,2,1),e(-1,-1,-1,0)]=e(0,0,1,1)
[e(1,1,2,1),e(-1,-1,-2,0)]=-e(0,0,0,1)
[e(1,1,2,1),e(-1,-1,-1,-1)]=e(0,0,1,0)
[e(1,1,2,1),e(0,-1,-2,-1)]=2e(1,0,0,0)
[e(1,1,2,1),e(-1,-1,-2,-1)]=
=2h(1,0,0,0)+2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,1,2,1),e(-1,-2,-2,-1)]=2e(0,-1,0,0)
[e(1,1,2,1),e(-1,-1,-2,-2)]=e(0,0,0,-1)
[e(1,1,2,1),e(-1,-2,-3,-1)]=-e(0,-1,-1,0)
[e(1,1,2,1),e(-1,-2,-3,-2)]=-e(0,-1,-1,-1)
[e(1,1,2,1),e(-1,-2,-4,-2)]=-e(0,-1,-2,-1)
[e(1,1,2,1),e(-2,-3,-4,-2)]=e(-1,-2,-2,-1)
[e(0,1,2,2),e(0,0,0,-1)]=-e(0,1,2,1)
[e(0,1,2,2),e(0,0,-1,-1)]=e(0,1,1,1)
[e(0,1,2,2),e(0,-1,-1,-1)]=-e(0,0,1,1)
[e(0,1,2,2),e(0,-1,-2,-1)]=e(0,0,0,1)
[e(0,1,2,2),e(0,-1,-2,-2)]=
=h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(0,1,2,2),e(-1,-1,-2,-2)]=e(-1,0,0,0)
[e(0,1,2,2),e(-1,-2,-2,-2)]=-e(-1,-1,0,0)
[e(0,1,2,2),e(-1,-2,-3,-2)]=e(-1,-1,-1,0)
[e(0,1,2,2),e(-1,-2,-4,-2)]=e(-1,-1,-2,0)
[e(0,1,2,2),e(-1,-3,-4,-2)]=e(-1,-2,-2,0)
[e(1,2,2,1),e(0,-1,0,0)]=-e(1,1,2,1)
[e(1,2,2,1),e(0,0,0,-1)]=2e(1,2,2,0)
[e(1,2,2,1),e(-1,-1,0,0)]=e(0,1,2,1)
[e(1,2,2,1),e(0,-1,-1,0)]=-e(1,1,1,1)
[e(1,2,2,1),e(-1,-1,-1,0)]=e(0,1,1,1)
[e(1,2,2,1),e(0,-1,-1,-1)]=-e(1,1,1,0)
[e(1,2,2,1),e(-1,-1,-1,-1)]=e(0,1,1,0)
[e(1,2,2,1),e(0,-1,-2,-1)]=-2e(1,1,0,0)
[e(1,2,2,1),e(-1,-2,-2,0)]=-e(0,0,0,1)
[e(1,2,2,1),e(-1,-1,-2,-1)]=2e(0,1,0,0)
[e(1,2,2,1),e(-1,-2,-2,-1)]=
=2h(1,0,0,0)+4h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,2,2,1),e(-1,-2,-3,-1)]=e(0,0,-1,0)
[e(1,2,2,1),e(-1,-2,-2,-2)]=e(0,0,0,-1)
[e(1,2,2,1),e(-1,-2,-3,-2)]=e(0,0,-1,-1)
[e(1,2,2,1),e(-1,-3,-4,-2)]=-e(0,-1,-2,-1)
[e(1,2,2,1),e(-2,-3,-4,-2)]=-e(-1,-1,-2,-1)
[e(1,1,2,2),e(-1,0,0,0)]=-e(0,1,2,2)
[e(1,1,2,2),e(0,0,0,-1)]=-e(1,1,2,1)
[e(1,1,2,2),e(0,0,-1,-1)]=e(1,1,1,1)
[e(1,1,2,2),e(-1,-1,-1,-1)]=-e(0,0,1,1)
[e(1,1,2,2),e(-1,-1,-2,-1)]=e(0,0,0,1)
[e(1,1,2,2),e(0,-1,-2,-2)]=e(1,0,0,0)
[e(1,1,2,2),e(-1,-1,-2,-2)]=
=h(1,0,0,0)+h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(1,1,2,2),e(-1,-2,-2,-2)]=e(0,-1,0,0)
[e(1,1,2,2),e(-1,-2,-3,-2)]=-e(0,-1,-1,0)
[e(1,1,2,2),e(-1,-2,-4,-2)]=-e(0,-1,-2,0)
[e(1,1,2,2),e(-2,-3,-4,-2)]=e(-1,-2,-2,0)
[e(1,2,3,1),e(0,0,-1,0)]=-e(1,2,2,1)
[e(1,2,3,1),e(0,-1,-1,0)]=e(1,1,2,1)
[e(1,2,3,1),e(0,0,-1,-1)]=2e(1,2,2,0)
[e(1,2,3,1),e(-1,-1,-1,0)]=-e(0,1,2,1)
[e(1,2,3,1),e(0,-1,-2,0)]=-e(1,1,1,1)
[e(1,2,3,1),e(0,-1,-1,-1)]=-2e(1,1,2,0)
[e(1,2,3,1),e(-1,-1,-2,0)]=e(0,1,1,1)
[e(1,2,3,1),e(-1,-1,-1,-1)]=2e(0,1,2,0)
[e(1,2,3,1),e(0,-1,-2,-1)]=e(1,1,1,0)
[e(1,2,3,1),e(-1,-2,-2,0)]=-e(0,0,1,1)
[e(1,2,3,1),e(-1,-1,-2,-1)]=-e(0,1,1,0)
[e(1,2,3,1),e(-1,-2,-2,-1)]=e(0,0,1,0)
[e(1,2,3,1),e(-1,-2,-3,-1)]=
=2h(1,0,0,0)+4h(0,1,0,0)+3h(0,0,1,0)+h(0,0,0,1)
[e(1,2,3,1),e(-1,-2,-3,-2)]=e(0,0,0,-1)
[e(1,2,3,1),e(-1,-2,-4,-2)]=e(0,0,-1,-1)
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[e(1,2,3,1),e(-1,-3,-4,-2)]=e(0,-1,-1,-1)
[e(1,2,3,1),e(-2,-3,-4,-2)]=e(-1,-1,-1,-1)
[e(1,2,2,2),e(0,-1,0,0)]=-e(1,1,2,2)
[e(1,2,2,2),e(0,0,0,-1)]=-e(1,2,2,1)
[e(1,2,2,2),e(-1,-1,0,0)]=e(0,1,2,2)
[e(1,2,2,2),e(0,-1,-1,-1)]=e(1,1,1,1)
[e(1,2,2,2),e(-1,-1,-1,-1)]=-e(0,1,1,1)
[e(1,2,2,2),e(0,-1,-2,-2)]=-e(1,1,0,0)
[e(1,2,2,2),e(-1,-2,-2,-1)]=e(0,0,0,1)
[e(1,2,2,2),e(-1,-1,-2,-2)]=e(0,1,0,0)
[e(1,2,2,2),e(-1,-2,-2,-2)]=
=h(1,0,0,0)+2h(0,1,0,0)+h(0,0,1,0)+h(0,0,0,1)
[e(1,2,2,2),e(-1,-2,-3,-2)]=e(0,0,-1,0)
[e(1,2,2,2),e(-1,-3,-4,-2)]=-e(0,-1,-2,0)
[e(1,2,2,2),e(-2,-3,-4,-2)]=-e(-1,-1,-2,0)
[e(1,2,3,2),e(0,0,-1,0)]=-2e(1,2,2,2)
[e(1,2,3,2),e(0,0,0,-1)]=-e(1,2,3,1)
[e(1,2,3,2),e(0,-1,-1,0)]=2e(1,1,2,2)
[e(1,2,3,2),e(0,0,-1,-1)]=-e(1,2,2,1)
[e(1,2,3,2),e(-1,-1,-1,0)]=-2e(0,1,2,2)
[e(1,2,3,2),e(0,-1,-1,-1)]=e(1,1,2,1)
[e(1,2,3,2),e(-1,-1,-1,-1)]=-e(0,1,2,1)
[e(1,2,3,2),e(0,-1,-2,-1)]=e(1,1,1,1)
[e(1,2,3,2),e(-1,-1,-2,-1)]=-e(0,1,1,1)
[e(1,2,3,2),e(0,-1,-2,-2)]=e(1,1,1,0)
[e(1,2,3,2),e(-1,-2,-2,-1)]=e(0,0,1,1)
[e(1,2,3,2),e(-1,-1,-2,-2)]=-e(0,1,1,0)
[e(1,2,3,2),e(-1,-2,-3,-1)]=e(0,0,0,1)
[e(1,2,3,2),e(-1,-2,-2,-2)]=e(0,0,1,0)
[e(1,2,3,2),e(-1,-2,-3,-2)]=2h(1,0,0,0)+
+4h(0,1,0,0)+3h(0,0,1,0)+2h(0,0,0,1)
[e(1,2,3,2),e(-1,-2,-4,-2)]=e(0,0,-1,0)
[e(1,2,3,2),e(-1,-3,-4,-2)]=e(0,-1,-1,0)
[e(1,2,3,2),e(-2,-3,-4,-2)]=e(-1,-1,-1,0)
[e(1,2,4,2),e(0,0,-1,0)]=-e(1,2,3,2)
[e(1,2,4,2),e(0,0,-1,-1)]=-e(1,2,3,1)
[e(1,2,4,2),e(0,-1,-2,0)]=e(1,1,2,2)
[e(1,2,4,2),e(-1,-1,-2,0)]=-e(0,1,2,2)
[e(1,2,4,2),e(0,-1,-2,-1)]=e(1,1,2,1)
[e(1,2,4,2),e(-1,-1,-2,-1)]=-e(0,1,2,1)
[e(1,2,4,2),e(0,-1,-2,-2)]=e(1,1,2,0)
[e(1,2,4,2),e(-1,-1,-2,-2)]=-e(0,1,2,0)
[e(1,2,4,2),e(-1,-2,-3,-1)]=e(0,0,1,1)
[e(1,2,4,2),e(-1,-2,-3,-2)]=e(0,0,1,0)
[e(1,2,4,2),e(-1,-2,-4,-2)]=
=h(1,0,0,0)+2h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,2,4,2),e(-1,-3,-4,-2)]=e(0,-1,0,0)
[e(1,2,4,2),e(-2,-3,-4,-2)]=e(-1,-1,0,0)
[e(1,3,4,2),e(0,-1,0,0)]=-e(1,2,4,2)
[e(1,3,4,2),e(0,-1,-1,0)]=-e(1,2,3,2)
[e(1,3,4,2),e(0,-1,-2,0)]=e(1,2,2,2)
[e(1,3,4,2),e(0,-1,-1,-1)]=-e(1,2,3,1)
[e(1,3,4,2),e(0,-1,-2,-1)]=e(1,2,2,1)
[e(1,3,4,2),e(-1,-2,-2,0)]=-e(0,1,2,2)
[e(1,3,4,2),e(0,-1,-2,-2)]=e(1,2,2,0)
[e(1,3,4,2),e(-1,-2,-2,-1)]=-e(0,1,2,1)
[e(1,3,4,2),e(-1,-2,-3,-1)]=e(0,1,1,1)
[e(1,3,4,2),e(-1,-2,-2,-2)]=-e(0,1,2,0)
[e(1,3,4,2),e(-1,-2,-3,-2)]=e(0,1,1,0)
[e(1,3,4,2),e(-1,-2,-4,-2)]=e(0,1,0,0)
[e(1,3,4,2),e(-1,-3,-4,-2)]=
=h(1,0,0,0)+3h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(1,3,4,2),e(-2,-3,-4,-2)]=e(-1,0,0,0)
[e(2,3,4,2),e(-1,0,0,0)]=-e(1,3,4,2)
[e(2,3,4,2),e(-1,-1,0,0)]=-e(1,2,4,2)
[e(2,3,4,2),e(-1,-1,-1,0)]=-e(1,2,3,2)
[e(2,3,4,2),e(-1,-1,-2,0)]=e(1,2,2,2)
[e(2,3,4,2),e(-1,-1,-1,-1)]=-e(1,2,3,1)
[e(2,3,4,2),e(-1,-2,-2,0)]=-e(1,1,2,2)
[e(2,3,4,2),e(-1,-1,-2,-1)]=e(1,2,2,1)
[e(2,3,4,2),e(-1,-2,-2,-1)]=-e(1,1,2,1)
[e(2,3,4,2),e(-1,-1,-2,-2)]=e(1,2,2,0)
[e(2,3,4,2),e(-1,-2,-3,-1)]=e(1,1,1,1)
[e(2,3,4,2),e(-1,-2,-2,-2)]=-e(1,1,2,0)

[e(2,3,4,2),e(-1,-2,-3,-2)]=e(1,1,1,0)
[e(2,3,4,2),e(-1,-2,-4,-2)]=e(1,1,0,0)
[e(2,3,4,2),e(-1,-3,-4,-2)]=e(1,0,0,0)
[e(2,3,4,2),e(-2,-3,-4,-2)]=
=2h(1,0,0,0)+3h(0,1,0,0)+2h(0,0,1,0)+h(0,0,0,1)
[e(-1,0,0,0),e(0,-1,0,0)]=-e(-1,-1,0,0)
[e(-1,0,0,0),e(0,-1,-1,0)]=-e(-1,-1,-1,0)
[e(-1,0,0,0),e(0,-1,-2,0)]=-e(-1,-1,-2,0)
[e(-1,0,0,0),e(0,-1,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,0,0,0),e(0,-1,-2,-1)]=-e(-1,-1,-2,-1)
[e(-1,0,0,0),e(0,-1,-2,-2)]=-e(-1,-1,-2,-2)
[e(-1,0,0,0),e(-1,-3,-4,-2)]=-e(-2,-3,-4,-2)
[e(0,-1,0,0),e(0,0,-1,0)]=-e(0,-1,-1,0)
[e(0,-1,0,0),e(0,0,-1,-1)]=-e(0,-1,-1,-1)
[e(0,-1,0,0),e(-1,-1,-2,0)]=-e(-1,-2,-2,0)
[e(0,-1,0,0),e(-1,-1,-2,-1)]=-e(-1,-2,-2,-1)
[e(0,-1,0,0),e(-1,-1,-2,-2)]=-e(-1,-2,-2,-2)
[e(0,-1,0,0),e(-1,-2,-4,-2)]=-e(-1,-3,-4,-2)
[e(0,0,-1,0),e(0,0,0,-1)]=-e(0,0,-1,-1)
[e(0,0,-1,0),e(-1,-1,0,0)]=e(-1,-1,-1,0)
[e(0,0,-1,0),e(0,-1,-1,0)]=-2e(0,-1,-2,0)
[e(0,0,-1,0),e(-1,-1,-1,0)]=-2e(-1,-1,-2,0)
[e(0,0,-1,0),e(0,-1,-1,-1)]=-e(0,-1,-2,-1)
[e(0,0,-1,0),e(-1,-1,-1,-1)]=-e(-1,-1,-2,-1)
[e(0,0,-1,0),e(-1,-2,-2,-1)]=-e(-1,-2,-3,-1)
[e(0,0,-1,0),e(-1,-2,-2,-2)]=-e(-1,-2,-3,-2)
[e(0,0,-1,0),e(-1,-2,-3,-2)]=-2e(-1,-2,-4,-2)
[e(0,0,0,-1),e(0,-1,-1,0)]=e(0,-1,-1,-1)
[e(0,0,0,-1),e(-1,-1,-1,0)]=e(-1,-1,-1,-1)
[e(0,0,0,-1),e(0,-1,-2,0)]=e(0,-1,-2,-1)
[e(0,0,0,-1),e(-1,-1,-2,0)]=e(-1,-1,-2,-1)
[e(0,0,0,-1),e(0,-1,-2,-1)]=-2e(0,-1,-2,-2)
[e(0,0,0,-1),e(-1,-2,-2,0)]=e(-1,-2,-2,-1)
[e(0,0,0,-1),e(-1,-1,-2,-1)]=-2e(-1,-1,-2,-2)
[e(0,0,0,-1),e(-1,-2,-2,-1)]=-2e(-1,-2,-2,-2)
[e(0,0,0,-1),e(-1,-2,-3,-1)]=-e(-1,-2,-3,-2)
[e(-1,-1,0,0),e(0,0,-1,-1)]=-e(-1,-1,-1,-1)
[e(-1,-1,0,0),e(0,-1,-2,0)]=e(-1,-2,-2,0)
[e(-1,-1,0,0),e(0,-1,-2,-1)]=e(-1,-2,-2,-1)
[e(-1,-1,0,0),e(0,-1,-2,-2)]=e(-1,-2,-2,-2)
[e(-1,-1,0,0),e(-1,-2,-4,-2)]=-e(-2,-3,-4,-2)
[e(0,-1,-1,0),e(0,0,-1,-1)]=e(0,-1,-2,-1)
[e(0,-1,-1,0),e(-1,-1,-1,0)]=-2e(-1,-2,-2,0)
[e(0,-1,-1,0),e(-1,-1,-1,-1)]=-e(-1,-2,-2,-1)
[e(0,-1,-1,0),e(-1,-1,-2,-1)]=e(-1,-2,-3,-1)
[e(0,-1,-1,0),e(-1,-1,-2,-2)]=e(-1,-2,-3,-2)
[e(0,-1,-1,0),e(-1,-2,-3,-2)]=-2e(-1,-3,-4,-2)
[e(0,0,-1,-1),e(-1,-1,-1,0)]=-e(-1,-1,-2,-1)
[e(0,0,-1,-1),e(0,-1,-1,-1)]=2e(0,-1,-2,-2)
[e(0,0,-1,-1),e(-1,-1,-1,-1)]=2e(-1,-1,-2,-2)
[e(0,0,-1,-1),e(-1,-2,-2,0)]=e(-1,-2,-3,-1)
[e(0,0,-1,-1),e(-1,-2,-2,-1)]=-e(-1,-2,-3,-2)
[e(0,0,-1,-1),e(-1,-2,-3,-1)]=-2e(-1,-2,-4,-2)
[e(-1,-1,-1,0),e(0,-1,-1,-1)]=e(-1,-2,-2,-1)
[e(-1,-1,-1,0),e(0,-1,-2,-1)]=-e(-1,-2,-3,-1)
[e(-1,-1,-1,0),e(0,-1,-2,-2)]=-e(-1,-2,-3,-2)
[e(-1,-1,-1,0),e(-1,-2,-3,-2)]=-2e(-2,-3,-4,-2)
[e(0,-1,-2,0),e(-1,-1,-1,-1)]=-e(-1,-2,-3,-1)
[e(0,-1,-2,0),e(-1,-1,-2,-2)]=e(-1,-2,-4,-2)
[e(0,-1,-2,0),e(-1,-2,-2,-2)]=e(-1,-3,-4,-2)
[e(0,-1,-1,-1),e(-1,-1,-2,0)]=-e(-1,-2,-3,-1)
[e(0,-1,-1,-1),e(-1,-1,-1,-1)]=2e(-1,-2,-2,-2)
[e(0,-1,-1,-1),e(-1,-1,-2,-1)]=e(-1,-2,-3,-2)
[e(0,-1,-1,-1),e(-1,-2,-3,-1)]=-2e(-1,-3,-4,-2)
[e(-1,-1,-2,0),e(0,-1,-2,-2)]=-e(-1,-2,-4,-2)
[e(-1,-1,-2,0),e(-1,-2,-2,-2)]=e(-2,-3,-4,-2)
[e(-1,-1,-1,-1),e(0,-1,-2,-1)]=-e(-1,-2,-3,-2)
[e(-1,-1,-1,-1),e(-1,-2,-3,-1)]=
=-2e(-2,-3,-4,-2)
[e(0,-1,-2,-1),e(-1,-1,-2,-1)]=2e(-1,-2,-4,-2)
[e(0,-1,-2,-1),e(-1,-2,-2,-1)]=2e(-1,-3,-4,-2)
[e(-1,-2,-2,0),e(0,-1,-2,-2)]=-e(-1,-3,-4,-2)
[e(-1,-2,-2,0),e(-1,-1,-2,-2)]=-e(-2,-3,-4,-2)
[e(-1,-1,-2,-1),e(-1,-2,-2,-1)]=2e(-2,-3,-4,-2)
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