Convex Optimization 2025/26

Practical session # 7

November 13, 2025

1. Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$.

- Find the optimal solution x^* and optimal value p^*
- Determine the Lagrangian $L(x,\lambda)$ and the Lagrange dual function $g(\lambda)$
- Solve the dual problem

maximize
$$g(\lambda)$$
 subject to $\lambda \geq 0$

Compare its optimal value d^* with p^* . What do you observe?

2. Take the vector-optimization problem

minimize
$$(x^2, y^2 + 1)$$

- Determine its (Pareto) optimal solutions. Discuss the scalarizations: In particular, what happens if we allow parameters $\lambda \succeq 0$ instead of just $\lambda \succ 0$?
- Conversely, find a (convex) vector-optimization problem there exists a Pareto-optimal solution that is not a solution of any scalarization.
- 3. Consider the problem

minimize
$$||x||_2$$
 subject to $Ax = b$,

for $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m$, and determine its dual function.

(Hint:
$$\inf_x(||x||_2 - c^T x) = 0$$
 if $||c||_2 \le 1$, and $-\infty$ else).

Compare the result with the dual we obtained for the objective function $||x||_2^2 = x^T x$ (last lecture).

- 4. For any function $f: \mathbf{R}^n \to \mathbf{R}$, the function $f^*: \mathbf{R}^n \to \mathbf{R} \cup \{\infty\}$ defined by $f^*(y) = \sup_{x \in \text{dom}(f)} (y^T x f(x))$ is called the *conjugate* of f. Note that f^* is convex.
 - Determine the conjugate for $f(x) = a^T x + b$, $f(x) = -\log(x)$ and $f(x) = e^x$.
 - Describe the dual problem of

minimize
$$c^T x$$

subject to $f(x) \le 0$,

in terms of f^* .