CONVEX OPTIMIZATION

Practical session # 9

November 27, 2024

Exercise 1 Show that following optimization problems that approximately solve $Ax \approx b$ (for $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$) are equivalent to some "nice" convex problem (LP, QP, SOCP, SDP,...)

(a) deadzone-linear penalty approximation

minimize
$$\sum_{i=1}^{m} \phi(a_i^T x - b_i)$$
, for $\phi(u) = \begin{cases} 0 & \text{if } |u| < d \\ |u| - d & \text{if } |u| \ge d \end{cases}$

(b) largest k residuals

minimize $\sum_{i=1}^{k} |r|_{[i]}$; subject to r = Ax - b, where $|r|_{[1]} \ge |r|_{[2]} \ge \ldots \ge |r|_{[m]}$ stand for the residuals $|r_1|, |r_2|, \ldots, |r_m|$ sorted in decreasing order.

(c) Log-Chebyshev approximation

minimize $\max_{i=1,\dots,m} |\log(a_i^T x) - \log(b_i)|$ (assuming $b \succ 0$).

Exercise 2 (Minmax rational function fitting)

We are given some datapoints $(t_i, u_i) \in \mathbb{R}^2$ for i = 1, ..., k with $t_i \in [\alpha, \beta]$ and want to fit a rational function f(t) = p(t)/q(t) to them, where $p(t) = a_0 + a_1t + ... + a_mt^m$, $q(t) = 1 + b_1t + ... + b_nt^n$ (with fixed n, m and q(t) > 0 on $[\alpha, \beta]$). Define the corresponding $\|\cdot\|_{\infty}$ -approximation problem and show that it is quasiconvex.

Exercise 3 (*Fitting a concave quadratic function*)

(a) We are given the datapoints $x_1, \ldots, x_N \in \mathbb{R}^n$, $y_1, \ldots, y_N \in \mathbb{R}$, and wish to find a *concave* quadratic function of the form

$$f(x) = (1/2)x^T P x + q^T x + r_s$$

with $f(x_i) \approx y_i$. Describe this as a (constrained) norm approximation problem.

- (b) For the $\|\cdot\|_2$ -norm, show that this problem is equivalent to an SDP.
- (c*) Let $B = \{x \mid l \leq x \leq u\}$ for some fixed $l \prec u$, and let us assume $x_i \in B$ for all *i*. Formulate a convex optimization problem under the additional constraints that *f* is *non-negative* and *increasing* on the box B (i.e. $0 \leq f(z) \leq f(z')$ for all $z, z' \in B$ with $z \leq z'$). Try to simplify it as much as possible.

Exercise 4 (*Fitting a convex function*)

(a) Given some datapoints $x_1, \ldots, x_N \in \mathbb{R}^n, y_1, \ldots, y_N \in \mathbb{R}$, show that there is a convex function $f \colon \mathbb{R}^n \to \mathbb{R}$ with $f(x_i) = y_i$, if and only if there are vectors $g_1, \ldots, g_N \in \mathbb{R}^n$ with

$$y_i + g_i^T(x_j - x_i) \le y_j$$
 for all $i, j = 1, \dots, N$.

(Hint: supporting hyperplanes of epi(f)).

(b) use (a) to construct a convex optimization problem (QP) that finds the optimal $\|\cdot\|_2$ approximation of a dataset by a convex function.