CONVEX OPTIMIZATION

Practical session # 8

November 20, 2024

Exercise 1

Consider the QCQP

minimize $x_1^2 + x_2^2$ subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$ $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

with variable $x \in \mathbb{R}^2$.

(a) Sketch the feasible set and level sets of the objective. Find the optimal point x^* and optimal value p^* .

(b) Give the KKT conditions. Do there exist Lagrange multipliers λ_1^* and λ_2^* that prove that x^* is optimal?

(c) Derive and solve the Lagrange dual problem. Does strong duality hold?

Exercise 2

Solve the following problem using KKT:

 $\begin{array}{ll} \text{minimize} & 4x + 5y + 3z \\ \text{subject to} & x^2 + 2y^2 + z^2 \leq 4 \end{array}$

Exercise 3

Let $f_0, f_1, \ldots, f_m \colon \mathbb{R}^n \to \mathbb{R}$ be convex. Show that the optimal value for the perturbed problem $p^*(u, v)$ is convex as a function of u, v, where

$$p^{\star}(u,v) = \inf \{ f_0(x) \mid \exists x \in \mathbb{R}^n \text{ s.t. } f_i(x) \le u_i, i = 1, \dots, m, Ax - b = v \}$$

Exercise 4

Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be the log barrier penalty function with limit a > 0:

$$\phi(x) = \begin{cases} -a^2 \log\left(1 - \left(\frac{x}{a}\right)^2\right) & |u| < a \\ \infty & \text{otherwise} \end{cases}$$

Show that if $u \in \mathbb{R}^m$ satisfies $||u||_{\infty} < a$, then

$$||u||_{2}^{2} \leq \sum_{i=1}^{m} \phi(u_{i}) \leq \frac{\phi(||u||_{\infty})}{||u||_{\infty}^{2}} ||u||_{2}^{2}$$

This means that $\sum_{i=1}^{m} \phi(u_i)$ is well approximated by $||u||_2^2$ if $||u||_{\infty}$ is small compared to a. For example, if $||u||_{\infty}/a = 0.25$, then

$$||u||_2^2 \le \sum_{i=1}^m \phi(u_i) \le 1.033 \cdot ||u||_2^2$$