CONVEX OPTIMIZATION

Practical session # 6

November 6, 2024

Exercise 1

Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$,

with variable $x \in \mathbb{R}$.

- 1. Give the feasible set, the optimal value, and the optimal solution.
- 2. Plot the objective $x^2 + 1$ versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ . Verify the lower bound property

$$p^* \ge \inf_{x \to \infty} L(x, \lambda), \quad \text{for } \lambda \ge 0$$

Derive and sketch the Lagrange dual function $g(\lambda)$.

- 3. State the dual problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* . Does strong duality hold?
- 4. Let $p^{\star}(u)$ denote the optimal value of the problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le u$,

as a function of the parameter u. Plot $p^{\star}(u)$. Verify that $(p^{\star})'(0) = -\lambda^{\star}$.

Exercise 2

Consider the inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x\\ \text{subject to} & Ax \leq b, \end{array}$$

and its dual

maximize
$$-b^T \lambda$$

subject to $A^T \lambda + c = 0,$
 $\lambda \succeq 0,$

with $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. If x is feasible for the LP, i.e., satisfies $Ax \leq b$, then it also satisfies the inequality

$$w^T A x \le w^T b$$

for all $w \in \mathbb{R}^m_+$. Geometrically, for every $w \succeq 0$, the halfspace $H_w = \{x \mid w^T A x \leq w^T b\}$ contains the feasible set for the LP. So, if we minimize the objective $c^T x$ over H_w , we get a lower bound on p^* .

1. Derive an expression for the minimum value of $c^T x$ over the halfspace H_w (which will depend on the choice of $w \succeq 0$).

- 2. Formulate the problem of finding the best such bound, by maximizing the lower bound over $w \succeq 0$.
- 3. Relate the results of 1. and 2. to the Lagrange dual problem.

Exercise 3

Recall from that the conjugate f^* of a function $f \colon \mathbb{R}^n \to \mathbb{R}$ is given by

$$f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))$$

1. Consider an optimization problem with linear constraints

minimize
$$f_0(x)$$

subject to $Ax \leq b$ (1)
 $Cx = d$

Show that $g(\lambda, \nu) = -b^T \lambda - d^T \nu - f_0^* (-A^T \lambda - C^T \nu).$

2. Consider the problem with variable $X \in \mathbb{S}_{++}^n$ that determines the minimum volume ellipsoid, centered at the origin, that includes the points $a_1, \ldots, a_m \in \mathbb{R}^n$.

minimize
$$f_0(X) = \log \det X^{-1}$$

subject to $a_i^T X a_i \le 1, \quad i = 1, \dots, m,$ (2)

where dom $f_0 = \mathbb{S}_{++}^n$. For $i \in \{1, \ldots, m\}$, fin a matrix A_i such that $\operatorname{tr}(A_i X) = a_i^T X a_i$, so that the constraints (2) can be rewritten in the form of constraints (1) from Ex 3.1.

- 3.* Show that $f_0^*(Y) = \log \det(-Y)^{-1} n$.
- 4. Apply this result in order to find the dual function $g(\lambda)$ for the problem from Ex. 3.2.

Exercise 4

For the minimum volume ellipsoid problem from Ex. 3.2, assume that the vectors a_1, \ldots, a_m span \mathbb{R}^n . This implies that the problem is bounded below.

1. Show that the matrix

$$X_{\rm sim} = \left(\sum_{k=1}^m a_k a_k^T\right)^{-1}$$

is a feasible point of the problem. *Hint:* Show that

$$\begin{pmatrix} \sum_{k=1}^{m} a_k a_k^T & a_i \\ a_i & 1 \end{pmatrix} \succeq 0,$$

and use Schur complements to prove that $a_i^T X a_i \leq 1$ for $i = 1, \ldots, m$.

2. Now we establish a bound on how suboptimal the feasible point $X_{\rm sim}$ is, via the dual problem

maximize
$$g(\lambda)$$

subject to $\lambda \succeq 0$,

with the implicit constraint $\sum_{i=1}^{m} \lambda_i a_i a_i^T \succ 0$. Consider λ 's of the form (t, t, \ldots, t) . Find (analytically) the optimal value of t, and evaluate the dual objective at this $\lambda(t)$. Use this to prove that the volume of the ellipsoid $\{u \mid u^T X_{\text{sim}} u \leq 1\}$ is no more than a factor $(m/n)^{n/2}$ more than the volume of the minimum volume ellipsoid. The volume, for a matrix X, is equal to $\exp(\frac{1}{2}\log \det(X))$.