CONVEX OPTIMIZATION

Practical session # 4

October 23, 2024

Exercise 1 (Ex. 2.3 of the last week)

Is the function $f(x_1, \ldots, x_n) = \sqrt[p]{x_1^p + \cdots + x_n^p}$ convex, concave or neither on dom $(f) = \mathbb{R}_{++}^n$? Here, p > 0 and $\mathbb{R}_{++} = \{x \in \mathbb{R} \mid x > 0\}.$

Exercise 2

For each of the following functions, determine whether it is quasiconvex or quasiconcave.

- 1. card: $\mathbb{R}^n_+ \to \mathbb{R}$, where, for a vector $\mathbf{x} \in \mathbb{R}^n$, card(\mathbf{x}) is the number of nonzero components of \mathbf{x} .
- 2. $g: \mathbb{R}^{n+1} \to \mathbb{R}$ such that $g(\mathbf{x}, t) = f(\mathbf{x}/t)$ with $\operatorname{dom}(g) = \{(\mathbf{x}, t) \mid \mathbf{x}/t \in \operatorname{dom}(f) \& t > 0\}$, where $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function.
- 3. rank: $\mathbb{S}^n_+ \to \mathbb{R}$ which assigns to a symmetric positive semidefinite matrix its rank.

Exercise 3

Show that every LP is equivalent to an LP of the form

minimize
$$\mathbf{c}^T \mathbf{y}$$
,
subject to $A\mathbf{y} = \mathbf{b}$,
 $\mathbf{y} \succeq 0$.

(Hint: try to prove it for a concrete example. Find suitable substitutions for the variables, such that in the resulting equivalent problem $\mathbf{y} \succeq 0$).

Exercise 4

Find an analytic solution for the quadratically constraint quadratic program (QCQP)

minimize
$$4x + 5y + 3z$$
,
subject to $x^2 + 2y^2 + z^2 \le 4$.

Can you similarly find an analytic solution for minimizing an affine function $\mathbf{c}^T \mathbf{x}$ over any ellipsoid given by $(\mathbf{x} - \mathbf{x}_c)^T A(\mathbf{x} - \mathbf{x}_c) \leq 1$? Here, $\mathbf{x}_c \in \mathbb{R}^n$ and $A \in \mathbb{S}^n_{++}$ is positive definite.

Exercise 5

Formulate the ℓ_4 -norm approximation problem

minimize $||A\mathbf{x} - \mathbf{b}||_4$

as a QCQP. The matrix $A \in \mathbb{R}^{m \times n}$ and the vector $\mathbf{b} \in \mathbb{R}^m$ are fixed.