CONVEX OPTIMIZATION

Practical session # 13

January 8, 2025

Exercise 1 Do you agree with the following statements?

(a) The ℓ_1 -norm of a vector can be expressed as

$$\|x\|_{1} = \frac{1}{2} \inf_{y \succ 0} \left(\sum_{i=1}^{m} \frac{x_{i}^{2}}{y_{i}} + y_{i} \right)$$

- (b) Therefore the $\|\cdot\|_1$ -approximation problem (minimize $\sum_{i=1}^m |a_i^T x b_i|$) is equivalent to the problem minimize $f(x, y) = \sum_{i=1}^m (a_i^T x b_i)^2 / y_i + y_i$, with dom $(f) = \{(x, y) \mid y \succ 0\}$.
- (c) The objective function f is twice differentiable and convex. Hence we can solve the $\|\cdot\|_1$ -approximation problem by using Newton descent on f.

Recall other approaches we discussed to solve the $\|\cdot\|_1$ -approximation problem.

Exercise 2 Try to solve the LP

minimize
$$x_2$$

subject to $x_1 \le x_2$
 $0 \le x_2$,

using the (log-)barrier method, i.e. try to compute the central path $x^*(t)$. What seems to be the problem?

Exercise 3

(a) Prove that for any general (strictly feasible, twice differentiable,...) convex problem

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ for $i = 1, ..., m$

we obtain a well-defined central path after adding the additional constraint $x^T x \leq R$ for a big enough radius R. Hint: show that $tf_0(x) + \phi(x)$ is strongly convex, where $\phi(x)$ is the barrier function of the modified problem.

(b) Does this resolves the problem in Exercise 2?

Exercise 4 We based the log barrier method on approximating the indicator function $I_{-}(u)$ by $-(1/t)\log(-u)$ for $t \to \infty$. We now discuss how this can also be achieved for different choices of barrier function.

For this let $h: \mathbf{R} \to \mathbf{R}$ twice differentiable, closed, increasing, convex, dom $(h) = -\mathbf{R}_{++}$ (for example h(u) = -1/u). For a problem like in Exercise (3b) let us define the *h*-barrier function

$$\phi_h(x) = \sum_{i=1}^m h(f_i(x)).$$

- (a) Explain why $tf_0(x) + \phi_h(x)$ is convex in x for every t > 0.
- (b) Show how to construct a feasible solution λ from the central path $x^*(t)$, and discuss the corresponding duality gap (recall the proof for $h(u) = -\log(-u)$).
- (c) For which functions h does this gap only depend on t and m, i.e. only the problem data?