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Exercise 1 Do you agree with the following statements?

(a) The ℓ1-norm of a vector can be expressed as

∥x∥1 =
1

2
inf
y≻0

(
m∑
i=1

x2i
yi

+ yi

)

(b) Therefore the ∥ · ∥1-approximation problem (minimize
∑m

i=1 |aTi x− bi|) is equivalent to the problem
minimize f(x, y) =

∑m
i=1(a

T
i x− bi)

2/yi + yi, with dom(f) = {(x, y) | y ≻ 0}.
(c) The objective function f is twice differentiable and convex. Hence we can solve the ∥ · ∥1-approximation

problem by using Newton descent on f .

Recall other approaches we discussed to solve the ∥ · ∥1-approximation problem.

Exercise 2 Try to solve the LP

minimize x2

subject to x1 ≤ x2

0 ≤ x2,

using the (log-)barrier method, i.e. try to compute the central path x∗(t). What seems to be the problem?

Exercise 3
(a) Prove that for any general (strictly feasible, twice differentiable,...) convex problem

minimize f0(x)

subject to fi(x) ≤ 0 for i = 1, . . . ,m

we obtain a well-defined central path after adding the additional constraint xTx ≤ R for a big enough
radius R. Hint: show that tf0(x) + ϕ(x) is strongly convex, where ϕ(x) is the barrier function of the
modified problem.

(b) Does this resolves the problem in Exercise 2?

Exercise 4We based the log barrier method on approximating the indicator function I−(u) by−(1/t) log(−u)
for t → ∞. We now discuss how this can also be achieved for different choices of barrier function.

For this let h : R → R twice differentiable, closed, increasing, convex, dom(h) = −R++ (for example
h(u) = −1/u). For a problem like in Exercise (3b) let us define the h-barrier function

ϕh(x) =

m∑
i=1

h(fi(x)).

(a) Explain why tf0(x) + ϕh(x) is convex in x for every t > 0.
(b) Show how to construct a feasible solution λ from the central path x∗(t), and discuss the corresponding

duality gap (recall the proof for h(u) = − log(−u)).
(c) For which functions h does this gap only depend on t and m, i.e. only the problem data?
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