CONVEX OPTIMIZATION

Practical session # 12

December 18, 2024

Exercise 1

- Consider the function $f(x, y) = x^2 + y^2$ with domain dom $f = \{(x, y) \mid x > 1\}$.
- (a) What is p^* the optimal value for the problem of minimizing f?
- (b) Draw the sublevel set $S = \{(x, y) \mid f(x, y) \le f(2, 2)\}$. Is S closed? Is f strongly convex on S?
- (c) What happens if we apply the gradient method with backtracking line search, starting at (2,2)? Does $f(x^{(k)}, y^{(k)})$ converge to p^* ?

Exercise 2

Let $\Delta x_{nsd} = \operatorname{argmin}_{v} \{ \nabla f(x)^{T} v \mid ||v|| = 1 \}$ and $\Delta x_{sd} = ||\nabla f(x)||_{*} \Delta x_{nsd}$ be the normalized and unnormalized and malized steepest descent directions at x, for the norm $\|\cdot\|$. Prove the following identities. Here, $\|\cdot\|_*$ is the dual norm: $||z||_* = \sup\{z^T x \mid ||x|| \le 1\}.$

- (a) $\nabla f(x)^T \Delta x_{nsd} = -\|\nabla f(x)\|_*$ (b) $\nabla f(x)^T \Delta x_{sd} = -\|\nabla f(x)\|_*^2$
- (c) $\Delta x_{\rm sd} = \operatorname{argmin}_{v} (\nabla f(x)^T v + (1/2) ||v||^2)$

Exercise 3

Show that the Newton decrement $\lambda(x)$ satisfies

$$\lambda(x) = \sup_{v^T \nabla^2 f(x)v=1} \left(-v^T \nabla f(x) \right) = \sup_{v \neq 0} \frac{-v^T \nabla f(x)}{\left(v^T \nabla^2 f(x)v \right)^2}$$

Exercise 4

Newton's method with fixed step size t = 1 can diverge if the initial point is not close to x^* . In this problem we consider two examples.

- (a) $f(x) = \log(e^x + e^{-x})$ has a unique minimizer $x^* = 0$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 1$ and $x^{(0)} = 1.1$.
- (b) $f(x) = -\log x + x$ has a unique minimizer $x^* = 1$. Run Newton's method with fixed step size t = 1, starting at $x^{(0)} = 3$.

Plot f and f', and show the first few iterates.

Exercise 5

- (a) Show that f(x) = 1/x with domain (0, 8/9) is self-concordant.
- (b) Show that the function

$$f(x) = \alpha \sum_{i=1}^{m} \frac{1}{b_i - a_i^T x}$$

with dom $f = \{x \in \mathbb{R}^n \mid a_i^T x < b_i, i = 1, ..., m\}$ is self-concordant if dom f is bounded and

$$\alpha > \frac{9}{8} \max_{i=1,\dots,m} \sup_{x \in \text{dom } f} (b_i - a_i^T x).$$