CONVEX OPTIMIZATION

Practical session # 11

December 11, 2024

Exercise 1

Show that if $C \subseteq \mathbb{R}^n$ is nonempty, closed and convex, and the norm $\|\cdot\|$ is strictly convex, then for every x_0 there is exactly one $x \in C$ closest to x_0 . In other words the projection of x_0 on C is unique.

Exercise 2

Let C, D be convex sets.

- 1. Show that dist(C, x + D) is a convex function of x.
- 2. Show that dist(tC, x + tD) is a convex function of (x, t) for t > 0.

Exercise 3

A set $C \subseteq \mathbb{R}^n$ is called a *Chebyshev set* if for every $x_0 \in \mathbb{R}^n$, there is a unique point in C closest (in Euclidean norm) to x_0 . From the result in exercise 1, every nonempty, closed, convex set is a Chebyshev set. In this problem we show the converse, which is known as *Motzkin's theorem*. Let $C \subseteq \mathbb{R}^n$ be a Chebyshev set.

- (a) Show that C is nonempty and closed.
- (b) Show that P_C , the Euclidean projection on C, is continuous.
- (c) Suppose $x_0 \notin C$. Show that $P_C(x) = P_C(x_0)$ for all $x = \theta x_0 + (1 \theta) P_C(x_0)$ with $0 \le \theta \le 1$.
- (d) Suppose $x_0 \notin C$. Show that $P_C(x) = P_C(x_0)$ for all $x = \theta x_0 + (1 \theta)P_C(x_0)$ with $\theta \ge 1$. *Hint:* Use the fact (following from Brower's fixed point theorem) that, for every continuous $g: \mathbb{R}^n \to \mathbb{R}^n$ such that $g(x) \neq 0$ for all $||x||_2 = 1$, there exists an x with $||x||_2 = 1$ and $g(x)/||g(x)||_2 = x$.
- (e) Combining parts (c) and (d), we can conclude that all points on the ray with base $P_C(x_0)$ and direction $x_0 P_C(x_0)$ have projection $P_C(x_0)$. Show that this implies that C is convex.

Exercise 4

Let $C = \operatorname{conv}\{0, e_1, \ldots, e_n\}$ be the simplex, i.e., for $i = 1, \ldots, n$, $(e_i)_i = 1$ and $(e_i)_j = 0$ for all $i \neq j$. We want to find the Löwner-John ellipsoid \mathcal{E}_{lj} of C. By symmetry, the center of \mathcal{E}_{lj} lies on the direction $\mathbf{1} = (1, \ldots, 1)^T$ and the intersection of \mathcal{E}_{lj} with every hyperplane orthogonal to $\mathbf{1}$ is a ball. Therefore, we can describe \mathcal{E}_{lj} by a quadratic inequality

$$(x - \alpha \mathbf{1})^T (I + \beta \mathbf{1} \mathbf{1}^T) (x - \alpha \mathbf{1}) \le \gamma_s$$

where $\alpha, \beta, \gamma \in \mathbb{R}$ are three parameters.

- (a) Knowing that $0, e_1, \ldots, e_n$ must lie on the boundary of \mathcal{E}_{lj} , represent α and γ as functions of β .
- (b) The volume of \mathcal{E}_{lj} is proportional to $\gamma^n \det(I + \beta \mathbf{11})^{-1} = \frac{\gamma^n}{1+\beta n}$. Find the values for α, β , and γ , in which the derivative of the logarithm of the volume equals 0, and find the inequality describing \mathcal{E}_{lj} .
- (c) The simplex C is defined as the intersection of halfspaces

$$\left(\bigcap_{i=1}^{n} \{x \mid x_i \ge 0\}\right) \cap \{x \mid \mathbf{1}^T x \le 1\}$$

For each hyperplane, find a point which belongs both to it and to the boundary of the shrunk ellipsoid:

$$(x - \alpha \mathbf{1})^T (I + \beta \mathbf{1} \mathbf{1}^T) (x - \alpha \mathbf{1}) = \frac{\gamma}{n^2}$$

This implies that \mathcal{E}_{lj} must be shrunk by a factor 1/n to fit inside the simplex.