CONVEX OPTIMIZATION

Homework # 5

Instructions

Please, submit your homeworks to alexey.barsukov@matfyz.cuni.cz not later than January, 10, 23:59 local time. The subject of your email should be of the following form: Convex Optimization HW *#ofHW* *yourSurname* *yourName*, for example: Convex Optimization HW 5 Einstein Albert

Exercise 1 (25 points)

Show that the following function is convex:

- (a) $f(x,y) = x^{1/3}y^{2/3}$ on \mathbb{R}^2_{++} , (b) $f(x,t) = \frac{|x_1|^3 + \dots + |x_n|^3}{t^2} = \frac{||x||_3^3}{t^2}$, on dom $f = \{(x,t) \mid t > 0\}$, (c) $f(x,t) = -(t^3 ||x||_3^3)^{1/3}$ on dom $f = \{(x,t) \mid t > ||x||_3\}$,

- (d) $f(x,y) = -\sqrt{xy}$ on \mathbb{R}^2_{++} , (e) $f(x,y) = -\sqrt{xy z^2}$ on dom $f = \{(x,y,z) \mid xy \ge z^2, x, y > 0\}$.

Exercise 2 (20 points)

Suppose $A: \mathbb{R}^n \to \mathbb{S}^m$ is affine, i.e.,

$$A(x) = A_0 + x_1 A_1 + \dots + x_n A_n$$

where $A_i \in \mathbb{S}^m$ are symmetric $m \times m$ matrices. Let $\lambda_1(x) \ge \lambda_2(x) \ge \cdots \ge \lambda_m(x)$ denote the eigenvalues of A(x). Show how to pose the following problems as SDPs.

- (a) Minimize the maximum eigenvalue $\lambda_1(x)$.
- (b) Minimize the spread of eigenvalues $\lambda_1(x) \lambda_m(x)$.
- (c) Minimize the sum of the absolute values of the eigenvalues $|\lambda_1(x)| + \cdots + |\lambda_m(x)|$. *Hint.* Express A(x) as $A(x) = A_+ - A_-$, where $A_+ \succeq 0$ and $A_- \succeq 0$.

Exercise 3 (20 points)

Use cvxpy in order to solve the optimization problems (a), (b), and (c) from Exercise 2 for the following mapping A(x):

$$A(x) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} + x_1 \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} + x_2 \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix} + x_3 \begin{pmatrix} 3 & 1 \\ 1 & -1 \end{pmatrix}$$

Exercise 4 (15 points)

Prove (without using any linear programming code) that the optimal solution of the LP

minimize
$$47x_1 + 93x_2 + 17x_3 - 93x_4$$

subject to $\begin{pmatrix} -1 & -6 & 1 & 3\\ -1 & -2 & 7 & 1\\ 0 & 3 & -10 & -1\\ -6 & -11 & -2 & 12\\ 1 & 6 & -1 & -3 \end{pmatrix} \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4 \end{pmatrix} \preceq \begin{pmatrix} -3\\ 5\\ -8\\ -7\\ 4 \end{pmatrix}$

is unique and given by $x^* = (1, 1, 1, 1)$.

Exercise 5 (20 points)

Let $C = \operatorname{conv}\{0, e_1, \dots, e_n\}$ be the simplex, i.e., for $i = 1, \dots, n$, $(e_i)_i = 1$ and $(e_i)_j = 0$ for all $i \neq j$. We want to find the Löwner-John ellipsoid \mathcal{E}_{lj} of C. By symmetry, the center of \mathcal{E}_{lj} lies on the direction $\mathbf{1} = (1, \dots, 1)^T$ and the intersection of \mathcal{E}_{lj} with every hyperplane orthogonal to $\mathbf{1}$ is a ball. Therefore, we can describe \mathcal{E}_{lj} by a quadratic inequality

$$(x - \alpha \mathbf{1})^T (I + \beta \mathbf{1} \mathbf{1}^T) (x - \alpha \mathbf{1}) \le \gamma,$$

where $\alpha, \beta, \gamma \in \mathbb{R}$ are three parameters.

- (a) Knowing that $0, e_1, \ldots, e_n$ must lie on the boundary of \mathcal{E}_{lj} , represent α and γ as functions of β . (b) The volume of \mathcal{E}_{lj} is proportional to $\gamma^n \det(I + \beta \mathbf{11})^{-1} = \frac{\gamma^n}{1 + \beta n}$. Find the values for α, β , and γ , in which the derivative of the logarithm of the volume equals 0, and find the inequality describing \mathcal{E}_{lj} .
- (c) The simplex C is defined as the intersection of halfspaces

$$\left(\bigcap_{i=1}^{n} \{x \mid x_i \ge 0\}\right) \cap \{x \mid \mathbf{1}^T x \le 1\}$$

For each hyperplane, find a point which belongs both to it and to the boundary of the shrunk ellipsoid:

$$(x - \alpha \mathbf{1})^T (I + \beta \mathbf{1} \mathbf{1}^T) (x - \alpha \mathbf{1}) = \frac{\gamma}{n^2}$$

This implies that \mathcal{E}_{lj} must be shrunk by a factor 1/n to fit inside the simplex.