Universal Algebra Exercises - Homework 1

Exercise 1.1. It is a well-known fact in logic, that every propositional formula $\phi(x_1, ..., x_n)$ using the symbols $\land, \lor, \neg, 0$ and 1 can be rewritten into a conjunctive normal form (CNF), i.e. a formula $C_1 \land C_2 \land \cdots \land C_k$, with $C_i = l_{i,1} \lor l_{i,2} \lor \cdots \lor l_{i,j_i}$, where every $l_{i,j}$ is either a variable or negation of a variable. Describe a term rewriting system E that rewrites every formula to a CNF. What is the variety Mod(E)? You are allowed to be informal.

Exercise 1.2. Prove that a loop $(L, \cdot, /, \setminus, 1)$ is abelian if and only if \cdot is a commutative group operation.

Exercise 1.3. Consider an algebra \mathbb{A} and the congruence $\alpha := [1_{\mathbb{A}}, 1_{\mathbb{A}}]$.

- Show that α is the smallest congruence such that \mathbb{A}/α is abelian.
- Conclude that for any abelian algebra B (in the same signature as A) there is a natural¹ bijection between the following sets of homomorphisms.

$$\hom(\mathbb{A}/\alpha,\mathbb{B})\cong\hom(\mathbb{A},\mathbb{B})$$

• (Bonus) Assume that \mathbb{C} is an abelian algebra such that for any abelian algebra \mathbb{B} there is a natural bijection hom $(\mathbb{C}, \mathbb{B}) \cong \text{hom}(\mathbb{A}, \mathbb{B})$. Show that $\mathbb{C} \cong \mathbb{A}/\alpha$.