Universal Algebra 2 - Exercises 6

Exercise 5.4. Recall the structure $\mathbb{A} = (\{0, 1\}; R_{000}, R_{001}, R_{011}, R_{111})$ and that $CSP(\mathbb{A}) = 3SAT$. Show that all polymorphisms of \mathbb{A} are projections. (Hint: what can you *pp*-define from the relations in \mathbb{A} ?)

Exercise 6.1. Let \mathbb{A} and \mathbb{B} be two homomorphically equivalent relational structures ($\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$). Show that there is a minion homomorphism $\operatorname{Pol}(\mathbb{A}) \xrightarrow{\min \operatorname{on}} \operatorname{Pol}(\mathbb{B})$.

Exercise 6.2. Let $\mathbb{A} = (\{0\}, =)$ and $\mathbb{B} = (\{0, 1\}, \leq)$. Show that \mathbb{A} and \mathbb{B} are homomorphically equivalent but that there is no clone homomorphism $\operatorname{Pol}(\mathbb{A}) \xrightarrow{\operatorname{clone}} \operatorname{Pol}(\mathbb{B})$. (Hint: show that $\operatorname{Pol}(\mathbb{B})$ does not contain a Maltsev term)

Exercise 6.3. Let $R \subseteq A^n$ be a relation compatible with a majority polymorphisms $m: A^3 \to A$.

$$m(x, x, y) \approx m(x, y, x) \approx m(y, x, x) \approx x$$

Denote by $\pi_{i,j}(R)$ the projections of R to the coordinates $i, i \ (1 \le i, j \le n)$.

$$\pi_{i,j} = \{ (a_i, a_j) \mid (a_1, \dots, a_n) \in R \}$$

Show that R is determined by these binary projections, i.e.

$$(a_1,\ldots,a_n) \in R \iff \forall i,j \quad (a_i,a_j) \in \pi_{i,j}(R)$$

Conclude that R is pp-definable from binary relations.

Exercise 6.4. Find a finite set of relations $\{R_1, \ldots, R_n\}$ on the set $\{0, 1\}$ such that $Pol(R_1, \ldots, R_n)$ is the clone generated by the unique majority operation on $\{0, 1\}$.