Universal Algebra 2 - Exercises 5

Exercise 4.2. Let \mathbb{A} and \mathbb{B} be two algebras of finite type on the same domain with $\operatorname{Clo}(\mathbb{A}) = \operatorname{Clo}(\mathbb{B})$. Show that \mathbb{A} is finitely based if and only if \mathbb{B} is finitely based. Is this still true if we do not assume finite type?

Exercise 5.1. Let \mathbb{A} be a relational structure in signature τ . Show that the following decision problem is equivalent to $CSP(\mathbb{A})$:

- INPUT: a τ structure $\mathbb X$
- QUESTION: is there a homomorphism $\mathbb{X} \to \mathbb{A}$?

Conclude that if there are homomorphisms $\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$, then the CSPs of \mathbb{A} and \mathbb{B} are the same.

Exercise 5.2. Consider the computational problem nCOLOR, of coloring a given graph with n many colors.

- Find a relational structure \mathbb{A} such that $n \text{COLOR} = \text{CSP}(\mathbb{A})$.
- Find a polynomial time reduction of 3COLOR to *n*COLOR and conclude that *n*COLOR is NP-hard.

Exercise 5.3. Let A be a finite set. Show that a function $f : A^n \to A$ preserves all relations on A if and only if it is a projection.

Exercise 5.4. Recall the structure $\mathbb{A} = (\{0, 1\}; R_{000}, R_{001}, R_{011}, R_{111})$ and that $CSP(\mathbb{A}) = 3SAT$. Show that all polymorphisms of \mathbb{A} are projections. (Hint: what can you *pp*-define from the relations in \mathbb{A} ?)