
Further motivation for SDP

Michael Kompatscher

25.10.2024

Let us consider the following optimization problem:

minimize vT
1 v1 − vT

1 v3 + 3vT
2 v3, (1)

subject to vT
1 v2 + vT

3 v3 ≤ 4. (2)

vT
2 v2 = 9, (3)

for optimization variables v1,v2,v3 ∈ R3. This problem, as stated is not a convex opti-
mization problem (for instance, the equality constraint vT

2 v2 = 9 is not affine). In fact, the
inner product (x,y) 7→ xTy is neither convex nor concave (for n = 1 we showed this in the
practicals).

Nevertheless, our example has a very nice structure, since all the objective and constraint
functions are linear combinations of inner products. We are going to show that this allows
us to find a semidefinite program (SDP) that is equivalent to the problem. To prove find it,
first recall following characterization of symmetric, positive semidefinite matrices:

Lemma 1. Let X ∈ Sn. Then, the following are equivalent:

(a) X ∈ Sn
+

(b) X = V TV , for some p ≥ 1 and V ∈ Rp×n

(c) X = V TV , for some V ∈ Rn×n (we can even assume V ∈ Sn
+)

Proof. (c)→(b) holds trivially, (b)→(a) holds since zTXz = zTV TV z = ∥V z∥2 ≥ 0 for all
z ∈ Rn. To see (a)→(c), recall that every symmetric matrix has a diagonal decomposition
UDUT , where D = diag(λ1, . . . , λn) contains the eigenvalues, and U is an orthogonal matrix.

Then, the square-root V = X1/2 = UTdiag(λ
1/2
1 , . . . , λ

1/2
n)U has the desired properties.

Note that, in the setting of Lemma 1 (3), if vi denote the columns of V , then xij = vT
i vj .

Thus the entries of the matrix X = (xij)
n
i,j=1 ∈ Sn

+ are exactly the inner products of columns
of V with each other. Thus our example is equivalent to the optimization problem with
optimization variable X ∈ S3, given by

minimize x11 − x13 + 3x23, (4)

subject to x12 + x33 ≤ 4. (5)

x22 = 9, (6)

X ⪰ 0 (7)

1

This is clearly an SDP. To describe it in normal form recall that for symmetric matrices
C,X we have tr(CX) =

∑
i,j ci,jxi,j . So the problem can be also written as:

minimize tr(CX) (8)

subject to tr(B1X) ≤ 4. (9)

tr(B2X) = 9, (10)

X ⪰ 0 (11)

with

C =

 1 0 −1/2
0 0 3/2

−1/2 3/2 0

 , B1 =

 0 1/2 0
1/2 0 0
0 0 1

 , B2 =

0 0 0
0 1 0
0 0 0

 ,

As shown in the lecture this can further be rewritten into the standard form SDP by
introducing slack variable for the ≤ constraint. (c.f. Chapter 4.6.2 in the book). Clearly this
example can be generalized to all optimization problems with objective/constraint functions
of the form

∑n
i,j=1 ai,jv

T
i vj , for optimization variables v1, . . . ,vn ∈ Rn.

1 The SDP-relaxation of Max-Cut

For a (finite) undirected graph G = (V,E), a cut is a partition of the vertex set into two
sets V = V−1∪̇V1. A cut of G is called maximal, if the number of edges between the two
partition sets is maximal. Then, Max-Cut is the computational problem to find a maximal
cut for a given input graph. There are no known polynomial time algorithms for Max-Cut,
and the corresponding decision problem (for given G,n ∈ N, is there a cut of size ≥ n?) is
NP-complete.

Figure 1: A maximum cut of the “house graph” (picture taken from Wikipedia)

If we identify every vertex of G with a (real valued) variable, then we can phraseMax-Cut
as the following optimization problem:

maximize
∑

(vi,vj)∈E

1− vivj
2

(12)

subject to v2i = 1 for all vi ∈ V. (13)

2

Note that, by the constraint v2i = 1, every variable vi is either assigned −1 or 1, giving us

a partition of V into two sets. Furthermore
1−vivj

2 is equal to 0 if vi = vj ∈ {1,−1} (i.e. the
corresponding vertices are in the same partition set), and equal to 1 if vi = −vi ∈ {1,−1}
(i.e. the corresponding vertices are in different partition set). Thus, the objective function∑

(vi,vj)∈E
1−vi,vj

2 outputs the total number of edges across the cut (respectively twice the

number, since we count the edges (vi, vj) and (vj , vi) separately).
Since the objective/constraint functions of Max-Cut only consist of products of variables

and their sums, we can try to phrase it as an SDP, similar to the example in the previous
section. We then obtain the so called SDP-relaxation of Max-Cut, which is defined as the
following SDP with optimization variable X ∈ S|V |:

maximize
∑

(vi,vj)∈E

1− xij
2

(14)

subject to xii = 1 for all vi ∈ V (15)

X ⪰ 0. (16)

SDPs are convex optimization problems (with generalized inequalities) and can thus be
solved efficiently. Without going into too much details now, this means that, for fixed ϵ, we
can approximate the solution of the SDP (up to an ϵ-mistake) in polynomial time. Thus, one
might think that we can solve Max-Cut by solving the above SDP (up to some ϵ < 1/2) and
then rounding the resulting value to a whole number. However, this would be a polynomial
time algorithm that solves an NP-hard problem - So, did we prove that P = NP?!

No! The important detail that we are missing here, is that Lemma 1 (3) only guarantees
that we can write the matrix X as the product V TV for matrices V of the same dimension
|V | × |V | (in general we can not get p < n in Lemma 1 (2)). Thus the SDP-relaxation of
Max-Cut is only equivalent to the problem:

maximize
∑

(vi,vj)∈E

1− vT
i vj

2
(17)

subject to vT
i vi = 1 for all vi ∈ V, (18)

for vectors vi ∈ R|V |. Nevertheless, in practise, solving this SDP often leads very good
approximation to solution of the actual Max-Cut problem. Since the feasibility set for the
SDP-relaxation is bigger than the feasibility set for Max-Cut, the optimal value of the SDP-
relaxation will always be an over-estimate of the optimal value of the Max-Cut problem. For
the house-graph you can obtain an optimal value ≈ 5.185486 (verify it yourself in CVXPY!).
This is a slight overestimate of the number for an actual max-cut: 5 (see Figure 1).

It is a common strategy in general to approximate (or sometimes even accurately solve)
discrete optimization problems by “relaxing” them to a convex optimization problems. An-
other important example is the LP-relaxation of {0, 1}-linear programs. The SDP relaxation
of Max-Cut was first described by Goemans and Williamson in 1995 (together with a round-
ing scheme to obtain actual cuts of G from the, in general, not integer-valued matrix solution
X). Their procedure achieves an expected approximation ratio of ≈ 0.87856. This is thought
to be optimal in some sense that we are not going to discuss here.

3

	The SDP-relaxation of Max-Cut

