
CSP lecture 24/25 – Problem Set 1

A = (A;R1, R2, . . . ) is called a relational structure if

• A is a set, called domain,

• R1, R2, . . . are relations on A, i.e. each Ri ∈ Γ is a subset of Ani for some ni,

CSP(A)

Given a list of constraints Ri(xi1 , . . . , xir ), Rj(xj1 , . . . , xjs), Rk(xk1
, . . . , xkt

), . . .

Decide whether they are satisfiable.

Consider the following relations on {0, 1}:

• Ci := {i}, for i ∈ {0, 1}

• R := {(0, 0), (1, 1)}

• N := {(0, 1), (1, 0)}

• Sij := {0, 1}2 \ {(i, j)}, for i, j ∈ {0, 1}

• H := {0, 1}3 \ {(1, 1, 0)}

• G1 := {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}, G2 := {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)}

Problem 1. Find a polynomial–time algorithm for CSP(A), where

1. A = ({0, 1};R)

2. A = ({0, 1};R,C0, C1)

3. A = ({0, 1};S10)

4. A = ({0, 1};S10, C0, C1)

5. A = ({0, 1};S01, S10, C0, C1)

6. A = ({0, 1};N)

7. A = ({0, 1};R,N,C0, C1)

8. A = ({0, 1};R,N,C0, C1, S00, S01, S10, S11)

9. A = ({0, 1}; all unary and binary relations)

Problem 2. Find a polynomial–time algorithm for CSP({0, 1};H,C0, C1).

Problem 3. Find a polynomial–time algorithm for CSP({0, 1};C0, C1, G1, G2).

Problem 4. Find a polynomial–time algorithm for CSP(Q;<).
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CSP lecture 24/25 – Problem Set 2

The type of a relational structure (A;R1, . . . , Rs) is the tuple (ar(R1), . . . , ar(Rs)), where ar(R)
is the arity of the relation R.
Suppose the type of A = (A;R1, . . . , Rt) and B = (A;S1, . . . , St) is (n1, . . . , nt). A mapping

ϕ : A→ B is called a homomorphism from A to B if (a1, . . . , ani) ∈ Ri ⇒ (ϕ(a1), . . . , ϕ(ani)) ∈ Si

for every i. If such a homomorphism exists we write A → B. A homomorphism A → A is an
endomorphism, a bijective endomorphism is an automorphism.

Hom(A)

Given a finite relational structure X of the same type as A.
Decide whether X → A.

Problem 1. Find a polynomial algorithm for Hom(A) where

1. A = ({0, 1};N) (notation is from the 1st problem set)

2. A = ({0, 1};N,C0, C1) (notation is from the 1st problem set)

3. A = ({0, 1};S00, S11) (notation is from the 1st problem set)

Recall that a decision problem P1 is polynomially reducible to P2 if there exists a polynomial-
time algorithm that transforms an input I of P1 to an input r(I) of P2 so that I is a Yes-instance
iff r(I) is a Yes-instance. In such a case, we write P1 ≤P P2. When P1 ≤P P2 ≤P P1, we write
CSP(A) ∼P CSP(B) and say that the two problems are polynomially equivalent.

Problem 2. A = ({0, 1, 2};N), where N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)}. Prove that CSP(A) is
polynomially equivalent to Hom(A).

Problem 3. A is a relational structure. Prove that CSP(A) is polynomially equivalent to Hom(A).

Observe that if CSP(A) ≤P CSP(B) and CSP(B) is in P (i.e., solvable in polynomial time),
then CSP(A) is in P. Similarly, if CSP(A) ≤P CSP(B) and CSP(A) is NP–complete, then CSP(B)
is NP–complete.

Problem 4. Prove that CSP(A) ∼P CSP(B), where

• A = ({0, 1, 2};C0, C1, Q), where

C0 = {0}, C1 = {1}, Q = {000, 110, 120, 210, 101, 102, 201, 202, 011, 012, 021}

(Q is a ternary relation, we omit the commas and parentheses, eg. 110 stands for (1,1,0).)

• B = ({0, 1};C0, C1, G1) (where the notation is from the 1st problem set).

Hint: use homomorphisms A → B and B → A.

Problem 5. Prove that for each finite relational structure A there exists a relational structure B
such that

• there exists a homomorphism A → B and a homomorphism B → A, and

• B is a core, that is, each endomorphism of B is an automorphism.

Problem 5.1. Deduce that we can WLOG concentrate on CSPs over cores.

Problem 5.2. Prove that such a core is unique up to isomorphism.

Problem 5.3. Find a relational structure A such that every structure B with homomorphisms
A → B and B → A is not a core. Hint: A can be taken to be a directed graph.
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Problem 6. Suppose

• A = (A;R1, R2, R4) is a relational structure, where each Ri is an i-ary relation.

• E is the equality relation, i.e. E = {(a, a) : a ∈ A}

• S is the ternary relation on A defined by

S(x, y, z) = R1(x) ∧R2(x, z) ∧R4(y, z, y, x)

• T is the binary relation defined by T (x, y) = (∃z ∈ A) S(x, y, z)

Prove that

1. CSP(A;R1, R2, R4, E) ≤P CSP(A)

2. CSP(A;R1, R2, R4, E, S) ≤P CSP(A)

3. CSP(A;R1, R2, R4, E, S, T ) ≤P CSP(A)

Problem 6.1. Try to formulate a general theorem covering these particular cases.

Problem 7. Prove that

1. CSP({0, 1, 2};C0, C1, N) ∼P CSP({0, 1, 2};C0, C1, C2, N)

2. CSP({0, 1, 2};N) ∼P CSP({0, 1, 2};N ′)

3. CSP({0, 1};C0, C1, R) ∼P CSP({0, 1};R′)

where

N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)} N ′ = {0, 1, 2}3 \ {(0, 0, 0), (1, 1, 1), (2, 2, 2)}
R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} R′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Hint: try to use the general theorem from Problem 6.1.

Problem 8. Prove that CSP(A),CSP(B) and CSP(C) are polynomially equivalent, where

A = ({0, 1, 2};C0, C1, C2, N), N = {0, 1, 2}2 \ {(0, 0), (1, 1), (2, 2)}
B = ({0, 1};S000, S001, S011, S111), Sijk = {0, 1}3 \ {(i, j, k)}
C = ({0, 1};C0, C1, R), R = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}

Problem 9. Prove that CSP(A) ∼P CSP({0, 1, 2};N), where A, N are from the previous problem.

Problem 10. For each finite relational structure A, find an input of CSP(A) whose solutions
precisely correspond to endomorphisms of A.

Problem 11. Let A be a finite core and let B be the relational structure formed from A by adding
all the unary relations Ca = {a}, a ∈ A. Prove that CSP(A) ∼P CSP(B).

Problem 12. Let A be a finite relational structure such that CSP(A) is in P. Prove that there is
a polynomial–time algorithm for finding a solution of CSP(A).
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CSP lecture 24/25 – Problem Set 3

An n-ary operation on a set A is a mapping An → A. The n-ary projection onto the i-th
coordinate (on a set A) is the operation πn

i defined by π
n
i (a1, . . . , an) = ai for any a1, . . . , an ∈ A.

An n-ary operation f : An → A preserves an m-ary relation R ⊆ Am if f(r1, . . . , rn) ∈ R
(operation is applied coordinate-wise) whenever r1, . . . , rn ∈ R. In other words, for any m × n
matrix whose columns are in R, f applied to the rows of this matrix gives a tuple in R. In such a
situation, we also say that R is compatible with f , or R is invariant under f , or f is a polymorphism
of R.
An operation An → A is a polymorphism of a relational structure A = (A; . . . ) if it preserves

all the relations in A. The set of all polymorphisms of A is denoted Pol(A).

Problem 1. Observe that

1. f : An → A is compatible with every singleton unary relation {a}, a ∈ A, iff f(a, . . . , a) = a
for all a ∈ A;

2. the constant unary operation ca : A→ A (defined by ca(x) = a for any x ∈ A) is compatible
with R ⊆ An iff R contains the tuple (a, a, . . . , a).

Problem 2. Let A be a set. Prove that f preserves every relation on A if and only if f is a
projection.

Problem 3. Let A = (A; . . . ) be a relational structure, f ∈ Pol(A) a binary polymorphism and
g ∈ Pol(A) a ternary polymorphism. Then the 4-ary operation h defined by

h(x1, x2, x3, x4) = g(x1, f(x3, g(x2, x2, x4)), x3)

is a polymorphism of A as well. Try to formulate a general statement.

Problem 4. Find all unary and binary polymorphisms of the structure A = ({0, 1};H,C0, C1)
from Problem Set 1 (Problem 2 – HORN-SAT).

Problem 5. Find all unary and binary polymorphisms of the structure

A = ({0, 1}; all unary and binary relations)

from Problem Set 1 (Problem 1 – 2-SAT). Find some nice nontrivial (= not a projection) poly-
morphism of A.

Problem 6. Find all unary, binary, and ternary polymorphisms of the structure A = ({0, 1};C0, C1, G1, G2)
from Problem Set 1 (Problem 3 – LIN-EQ(Z2)).

A relation R ⊆ Am is pp-definable from A = (A; . . . ) if it can be defined from relations
in A by a pp-formula, that is, a formula which only uses conjunction, equality, and existential
quantification. A relational structure B = (B; . . . ) is pp-definable from A if A = B and each
relation in B is pp-definable from A. We also say that A pp-defines B.

Problem 7. Prove that any relation pp-definable from A is invariant under every polymorphism
of A.

Problem 8. Find all polymorphisms of the structure B in Problem Set 2 (Problem 8 – 3-SAT).
Hint: only projections; possible approach: (1) pp-define the four-ary relations of the form Ra,b,c,d =
{0, 1}4 \ {(a, b, c, d)}, (2) pp-define all four-ary relations (3) similarly, pp-define every relation, (4)
use Problem 2.

Problem 9. Let A be a finite structure. Prove that a relation invariant under every polymorphism
of A is pp-definable from A. Proof strategy:
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(i) Denote R = {(c11, . . . , c1k), . . . , (cm1, . . . , cmk)}

(ii) Let a1, . . . ,an be a complete list of m-tuples of elements of A (i.e. n = |A|m)

(iii) Prove that the relation

S = {(f(a1), . . . , f(an)) : f is an m-ary polymorphism}

is pp-definable from A (no need to use existential quantification)

(iv) Existentially quantify over all coordinates but those corresponding to (c11, . . . , cm1), . . . ,
(c1k, . . . , cmk)

(v) Prove that the obtained relation contains R (because of projections) and is contained in R
(because of compatibility)

Problem 10. Let A = (Z× Z;R,U), where

R = {((x, y), (x′, y′)) | x = x′, |y′ − y| ∈ {1, 2}}, U = {(0, 0)}.

Prove that {(0, y) | y ∈ Z} is invariant under every polymorphism of A, but that this set is not
pp-definable from A.

Problem 11. Observe that, for finite structures A and B,

1. A pp-defines B iff Pol(A) ⊆ Pol(B) and in such a case CSP(B) ≤P CSP(A);

2. any CSP over a two–element structure is polynomially reducible to 3–SAT

3. if Pol(A) ⊆ Pol(B), then the proof of Problem 9 gives an explicit pp-formulas defining
relations in B from relations in A.

4. In particular, for B and C as in Problem Set 2, Problem 4, we get CSP(C) ≤ CSP(B). How
large are the explicit formulas defining relations in C from relations in B?
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CSP lecture 24/25 – Problem Set 4

A set of operations on a set A is a (function) clone on A if it contains all projections and
is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called
idempotent if for every operation f in it and every a ∈ A, f(a, a, . . . , a) = a. For a se

Problem 1. Recall that for any relational structure A, Pol(A) is a clone.

In this problem set, we focus on function clones on the set A = {0, 1}. We use the following
notation for some special operations on {0, 1}:

∧ the binary minimum operation

∨ the binary maximum operation

maj the ternary majority operation defined by maj(a, a, b) = maj(a, b, a) = maj(b, a, a) := a for
every a, b ∈ {0, 1}

min the ternary minority operation defined by min(a, a, b) = min(a, b, a) = min(b, a, a) := b for
every a, b ∈ {0, 1}

An operation f : An → A is called essentially unary if there exist i and a unary operation
α : A→ A such that f(x1, . . . , xn) = α(xi) for every x1, . . . , xn ∈ A.

Problem 2. Assume that A is an idempotent clone on A = {0, 1} that contains neither ∧ nor ∨.
Show that the only binary operations in A are the two projections.

Problem 3. Assume that A is an idempotent clone on A = {0, 1} that contains neither of
the operations ∧,∨,maj,min. Show that the only binary and ternary operations in A are the
projections.

Problem 4. Assume that A is an idempotent clone on A = {0, 1} that contains neither of the
operations ∧,∨,maj,min. Show that A contains only projections.
Hint: possible strategy

• Let f ∈ A be n-ary with n ≥ 4.

• Assume first f(1, 0, 0, . . . , 0) = 1. Use the binary operation g(x, y) := f(x, y, . . . , y) to show
that f(0, 1, . . . , 1) = 0. Use ternary operations of the form g(x, y, z) := f(w1, w2, . . . ) where
w1, w2, . . . ∈ {x, y, z} to show that f is the projection onto the first coordinate.

• Deduce that if f is not a projection, then f(x, . . . , x, y, x, . . . , x) = x for every x, y and every
position of y.

• Assuming this and using appropriate ternary operations (similar as above) show that f(x, . . . , x, y, y) =
x, . . . , etc, and derive a contradiction

Problem 5. Let A be a clone on A = {0, 1} with an operation which is not essentially unary.
Prove that A contains a constant unary operation, or at least one of the operations ∧,∨,maj,min.
Hint: try to reduce to the idempotent case
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CSP lecture 24/25 – Problem Set 5

A ternary operation m : A3 → A is called a majority operation if m(a, a, b) = m(a, b, a) =
m(b, a, a) = a for each a, b ∈ A (note that for |A| ≤ 2 there is a unique majority operation on A,
otherwise there are more of them).

Problem 1. Let R ⊆ An be a relation compatible with a majority operation on A. Denote πi,j(R)
the projection of R onto the coordinates i, j (1 ≤ i, j ≤ n), that is,

πi,j(R) = {(ai, aj) : (a1, . . . , an) ∈ R} .

Prove that R is determined by these binary projections, that is,

(a1, . . . , an) ∈ R if and only if (∀i, j, 1 ≤ i, j ≤ n) (ai, aj) ∈ πi,j(R)

Hint: start with n = 3

Problem 2. Let A = (A; . . . ) be a relational structure with a majority polymorphism. Show that
there exists a relational structure B = (A; . . . ) which contains only binary relations such that A
is pp-definable from B and B is pp-definable from A. For A = {0, 1}, conclude that CSP(A) ≤P

2–SAT (and thus CSP(A) is solvable in polynomial time).

Problem 2.1. Let A = (Z;R1, . . . , Rk), where all relations R1, . . . , Rk admit a quantifier-free
definition over the relations y < x+ c and y = x+ c, where c ∈ Z. E.g. R can be the 4-ary relation
that holds on (x, y, z, t) iff (x > y + 1 ∨ x > z − 6) ∧ (x = z ⇒ t = y + 1) holds. Suppose that the
ternary median operation is a polymorphism of A. Show that CSP(A) is solvable in polynomial
time.

Problem 3. Let A = ({0, 1}; . . . ) be a relational structure with polymorphism min (from Problem
Set 4). Show that each n-ary relation of A is an affine subspace of Zn

2 . Conclude that CSP(A) is
solvable in polynomial time.

Problem 4. Let A = ({0, 1};C0, C1, H) be as in Problem Set 1 (the corresponding CSP is HORN-
3-SAT). For every relation R ⊆ {0, 1}n compatible with ∧ find a pp–definition from A.

Problem 5. Prove that for each relational structure A = (A; . . . ) with A = {0, 1}, either CSP(A)
is solvable in polynomial time or CSP(A) is NP–complete (this is Schaefer’s dichotomy theorem
(1978)). Describe the two cases in terms of polymorphisms.
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CSP lecture 24/25 – Problem Set 6

An instance of CSP(A) with set of variables V is called 1-minimal if there exists a system of
subsets Px ⊆ A, x ∈ V such that for every constraint R(x1, . . . , xk), the projection of R onto the
j-th coordinate is equal to Pxj

. We say the instance is non-trivial if none of the sets Px is empty.
Two instances of the CSP are equivalent if they have the same set of solutions.

Problem 1. Devise a polynomial-time algorithm that transforms an instance of CSP(A) to an
equivalent 1-minimal instance of CSP(B), where B is pp-definable in A.

Recall that a semilattice operation onA is a binary operation s that is associative, commutative,
and idempotent: that is, for all a, b, c ∈ A, the following equalities hold:

s(s(a, b), c) = s(a, s(b, c))

s(a, b) = s(b, a)

s(a, a) = a

A totally symmetric operation on A of arity n is an operation t : An → A such that t(a1, . . . , an) =
t(b1, . . . , bn) whenever {a1, . . . , an} = {b1, . . . , bn}, i.e., the value of the operation only depends on
the set of its arguments.

Problem 2. Give examples of semilattice operations.

Problem 2.1. Prove that every clone that contains a semilattice operation contains for every
n ≥ 1 a totally symmetric operation of arity n.

Problem 2.2. Let A be finite. Prove that if Pol(A) contains totally symmetric operations of all
arities n ≥ 1, then it contains a family of totally symmetric operations s1, s2, . . . where sn has
arity n and sn+1(x1, x1, x2, . . . , xn) = sn(x1, . . . , xn) holds for all x1, . . . , xn ∈ A.

Problem 3. Suppose that A is a finite relational structure that has totally symmetric polymor-
phisms of all arities n ≥ 1. Show that every non-trivial 1-minimal instance of CSP(A) has a
solution. Conclude that CSP(A) is solvable in polynomial time.
Hint: apply the totally symmetric polymorphisms to the non-empty sets Px whose existence is
guaranteed by 1-minimality.

Problem 4. Show the converse: let A be finite and suppose that every non-trivial 1-minimal
instance of A has a solution. Prove that Pol(A) contains totally symmetric polymorphisms of all
arities n ≥ 1.
Hint: Build an instance of CSP(A) whose variables are non-empty subsets of A, and whose solutions
define totally symmetric polymorphisms of A. Show that an equivalent 1-minimal instance is non-
trivial.

An instance of a CSP with variables V = {x1, . . . , xn} over the set A is called simple (2, 3)-
minimal if it satisfies all the following conditions:

• For each 1 ≤ i ≤ n, there is a single unary constraint Pi(xi) where Pi ⊆ A,

• For each pair i, j ∈ {1, . . . , n} of distinct integers, there is a single binary constraint Pi,j(xi, xj),
where Pi,j ⊆ A2,

• Pi,j = P−1
j,i (i.e., Pi,j = {(b, a) | (a, b) ∈ Pj,i}),

• There are no other constraints except the ones mentioned above,

• The instance is 1-minimal: for all i, j, the restriction of Pi,j to its first coordinate equals Pi,

• For each triple i, j, k ∈ {1, . . . , n} of distinct integers and each (a, b) ∈ Pi,j , there exists a
c ∈ Pk such that (a, c) ∈ Pi,k and (b, c) ∈ Pj,k.
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Problem 5. Let us represent a simple (2, 3)-minimal instance as a multipartite graph as follows:
each variable xi corresponds to one set whose vertices are the elements of Pi, and for every
distinct i, j and (a, b) ∈ Pi,j , there is an edge between the corresponding vertices a ∈ Pi and
b ∈ Pj . Describe what the last two items in the definition of (2, 3)-minimality mean for this graph.

Problem 6. Let A be a finite structure and have only unary and binary relations. Devise a
polynomial-time algorithm that transforms any instance of CSP(A) into an equivalent simple
(2, 3)-minimal instance of CSP(B), where B is pp-definable in A.

Problem 7. Adapt the algorithm from the previous problem for the case where A has relations
of arbitrary arity but Pol(A) contains a majority operation.

Problem 8. Suppose that A has a majority polymorphism. Show that every non-trivial simple
(2, 3)-minimal instance of CSP(A) has a solution.
Hint: if V = {x1, . . . , xn} is the set of variables and h : {x1, . . . , xi} → A is an assignment

that satisfies all constraints involving only the variables from {x1, . . . , xi}, show that h can be
extended to an assignment h′ : {x1, . . . , xi, xi+1} → A that satisfies all the constraints involving
only the variables from {x1, . . . , xi, xi+1}. Conclude that CSP(A) is solvable in polynomial time.

Remark 1. It is also possible to characterize the property “Every non-trivial (2, 3)-minimal
instance of CSP(A) has a solution” in terms of Pol(A), although the proof is beyond the scope of
the course: the property is equivalent to Pol(A) containing for all n ≥ 3 an operation w of arity n
that satisfies

w(x, y, . . . , y) = w(y, x, y, . . . , y) = · · · = w(y, . . . , y, x).
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CSP lecture 24/25 – Problem Set 7

We assume throughout the sheet that every set is finite. A Maltsev operation is an operation
m : A3 → A that satisfies m(a, b, b) = m(b, b, a) = a for all a, b ∈ A.

Problem 1. A relation R ⊆ An is rectangular if for all i ∈ {1, . . . , n}, all a,b ∈ An, c, d ∈ A, whe-
never (a1, . . . , ai−1, c, ai+1, . . . , an), (b1, . . . , bi−1, c, bi+1, . . . , bn), (b1, . . . , bi−1, d, bi+1, . . . , bn) ∈ R,
then (a1, . . . , ai−1, d, ai+1, . . . , an) ∈ R. Show that every relation that is invariant under a Maltsev
operation is rectangular.

We say that t, t′ ∈ An witness (i, a, b) ∈ {1, . . . , n} × A2 if (t1, . . . , ti−1) = (t′1, . . . , t
′
i−1) and

ti = a, t′i = b. Let R ⊆ An. The signature of R is the set

SigR := {(i, a, b) ∈ [n]×A2 | ∃t, t′ ∈ R that witness (i, a, b)}.

We say that R′ ⊆ R is a representation of R if SigR′ = SigR, and that the representation is
compact if |R′| ≤ 2 · | SigR |.

Problem 2. Observe that every R has a compact representation. Describe a concrete compact
representation of An.

Given a subset R ⊆ An and an operation f : Am → A, the relation generated by R under
f , denoted by ⟨R⟩f , is the smallest relation S containing R and that is invariant under f . For
i1, . . . , im ∈ {1, . . . , n}, let πi1,...,im(R) := {(ai1 , . . . , aim) | (a1, . . . , an) ∈ R}.

Problem 3. Suppose that R is invariant under a Maltsev operation f and that R′ is a repre-
sentation of R. Show that ⟨R′⟩f = R.
Hint: Show that π1,...,i(⟨R′⟩f ) = π1,...,i(R), for all i ∈ {1, . . . , n}.

For the next exercises, we fix the following:

• R ⊆ An, S ⊆ Am are invariant under a Maltsev operation f ,

• R′ ⊆ R is a compact representation of R,

• i1, . . . , im ∈ {1, . . . , n},

• The relation T is defined by {(a1, . . . , an) ∈ R | (ai1 , . . . , aim) ∈ S}.

Problem 4. Give an algorithm that takes as input R′, (i1, . . . , im), S, and decides whether T is
non-empty, in which case the algorithm should also return an arbitrary tuple in T . The running
time should be polynomial in n and |π(i1,...,im)R| ≤ |A|m.
Hint: apply the Maltsev operation to R′ until the projection on the coordinates (i1, . . . , im) stabi-
lizes.

Problem 5. Give an algorithm that takes as input R′ and c, and outputs a compact represen-
tation of R|c := {(a1, . . . , an) ∈ R | a1 = c} in time polynomial in |R′| and n. Hint: given any
(i, a, b) ∈ SigR, use the algorithm from Problem 4 to decide whether (i, a, b) is in SigR|c .

Note that by iterating the algorithm, one can also compute a compact representation of

R|c1,...,cm = {(a1, . . . , an) ∈ R | a1 = c1, . . . , am = cm}.

Problem 6. Show that one can compute, in time polynomial in n, |R′| (and |A|m), a compact
representation of T .
Hint: simply describe the necessary and sufficient conditions for a given (i, a, b) ∈ SigR to be in
SigT , and use the previous two algorithms to check those conditions.

Problem 7. Prove that if A is a finite relational structure such that Pol(A) contains a Maltsev
polymorphism, then CSP(A) is solvable in polynomial time.
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CSP lecture 24/25 – Problem Set 8

Given an equivalence relation ∼ on a set V and v ∈ V , we denote by v/ ∼:= {w ∈ V | v ∼ w}
the equivalence class of v. Recall that given a relational structure G and an equivalence relation ∼
on the domain of G, the structure G/ ∼ is the structure with same signature as G, whose domain
is the set of ∼-equivalence classes, and where for every k-ary relation R in the signature, we have

(v1/ ∼, . . . , vk/ ∼) ∈ RG/∼ ⇔ ∃w1, . . . , wk s.t. w1 ∼ v1, . . . , wk ∼ vk and (w1, . . . , wk) ∈ RG

Definition. Let A,B be relational structure. We say that B has a pp-interpretation in A if B is
isomorphic to a structure of the form (S;R1, . . . , Rk) / ∼, where:

• S ⊆ An is pp-definable in A,

• ∼⊆ S2 is an equivalence relation that is pp-definable in A, as a relation of arity 2n: there
exists a pp-formula ϕ (x1, . . . , xn, y1, . . . , yn) such that for all (a1, . . . , an) , (b1, . . . , bn) ∈ S,

(a1, . . . , an) ∼ (b1, . . . , bn) ⇔ A |= ϕ (a1, . . . , an, b1, . . . , bn)

• Similarly, for everyRi ⊆ Sk of arity k, there is a pp-formula ψ (x1,1, . . . , x1,n, . . . , xk,1, . . . , xk,n)
with kn free variables such that

(a1, . . . ,ak) ∈ R⇔ A |= ψ (a1, . . . ,ak)

Problem 0. Observe that if B has a pp-interpretation in A, then CSP(B) reduces to CSP(A).
Hint: See Problems 3 and 4 from Exercise sheet 2.
Observe that if C has a pp-interpretation in B and B has a pp-interpretation in A, then C has a
pp-interpretation in A.

The goal of this sheet is to show the following:

Theorem. Let G = ({v1, . . . , vn} ;E) be an undirected graph without loops and containing a
triangle. Then K3 has a pp-interpretation in (G, {v1} , . . . , {vn}), the relational structure obtained
by expanding G by one unary relation for every vertex of G.

The proof goes by induction on n, where the base case is n = 3 for which the result is clearly
true. For the rest of the sheet, let G = ({v1, . . . , vn} ;E) be an undirected graph with vertices
V = {v1, . . . , vn}, without loops and containing a triangle.

Problem 1. Suppose that one of the conditions below is satisfied. Show that in every case,
(G, {v1} , . . . , {vn}) pp-interprets a proper subgraph H = (W ;F ) (i.e., with at least one of the
inclusions W ⊆ V, F ⊆ E being proper) that contains a triangle.

a) G contains a complete graph on 4 vertices,

b) Some vertex vi does not belong to a triangle,

c) Some edge of G does not belong to a triangle.

Conclude that if any of the conditions is true, thenK3 has a pp-interpretation in (G, {v1} , . . . , {vn}).

We assume from here on that conditions a-c are not true in G.

11



Problem 2. The diamond is the following graph:

Let x ∼ y be the relation that relates x and y iff they are connected by a chain of diamonds:

Show that ∼ is an equivalence relation that has a pp-definition in G.

Problem 3. Suppose that the following condition holds:

d) some edge of G belongs to two triangles.

In particular, G contains a diamond and ∼ from Problem 2 contains a pair (x, y) with x ̸= y.

• Show that if there is an edge (x, y) in G such that x ∼ y, then (G, {v1} , . . . , {vn}) pp-
interprets a proper subgraph containing a triangle, and conclude thatK3 has a pp-interpretation
in (G, {v1} , . . . , {vn}).

• On the other hand, suppose that for all x, y, if x ∼ y then (x, y) is not an edge. What
does this imply for (G, {v1} , . . . , {vn}) / ∼? Conclude that K3 has a pp-interpretation in
(G, {v1} , . . . , {vn}).

Hint: for the first part, consider the shortest chain of diamonds connecting an edge ( x, y ), and
depending on the parity of the length find a pp-definition of a proper subset of V containing a
triangle.

Thus, we assume from here on that condition d) also fails, i.e., every edge belongs to a unique
triangle. The next goal is to show that a power of K3 has a pp-interpretation in (G, {v1} , . . . , {vn}).
For k ≥ 1, let Pk := (K3)

k be the k-th power of K3, whose universe is {1, 2, 3}k and whose edges
are of the form (a,b) where for all i ∈ {1, . . . , k}, ai ̸= bi.

Problem 4. Let h : Pk → G be a homomorphism. Show that there is a set I ⊆ {1, . . . , k} such
that for all x,y ∈ {1, 2, 3}k

h(x) = h(y) ⇔ ∀i ∈ I, xi = yi.

Conclude that the subgraph of G induced by the range of h is isomorphic to Pm, wherem = |I|.
The following strategy can be used:

• Let I ⊆ {1, . . . , k} be maximal such that h(x) = h(y) implies xi = yi for all i ∈ I.

• Let j ∈ {1, . . . , k}\I. We show that if a,b agree on all coordinates except aj ̸= bj , then
h(a) = h(b).

• By maximality of I, there exist x,y such that h(x) = h(y) but xj ̸= yj .

• Show that the following graph is a (non-induced) subgraph of Pk (i.e., find witnesses for the
vertices t, u, v, w), and use this to conclude that h(a) = h(b):
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• Finally, conclude that if ai = bi for all i ∈ I, then h(a) = h(b).

Let k be maximal such that Pk is isomorphic to an induced subgraph of G(k ≥ 1 is well-defined
since G contains a triangle by assumption). By abuse of notation, we consider Pk itself to be an
induced subgraph of G.

Problem 5. Show that the vertex set of Pk is pp-definable in (G, {v1} , . . . , {vn}).
Hint: This is equivalent to showing that for every idempotent polymorphism f of G, the vertex
set of Pk is invariant under f . Observe that f induces a homomorphism Pnk → G, where n is the
arity of f .

Problem 6. To conclude the proof of the theorem, show that for all k ≥ 1, K3 has a ppinter-
pretation in the expansion of Pk by all unary constant relations.
Hint: show that the equivalence relation x ∼ y :⇔ x1 = y1 is pp-definable in the expansion of Pk by
all unary constant relations. There are two approaches, either by finding a concrete pp-definition,
or by showing that ∼ is preserved under every idempotent polymorphism of Pk.

Problem 7. Show the following corollary (Hell-Nešetřil, 1990): let G = (V ;E) be a finite
undirected graph without loops. Then CSP(G) is in P if G is bipartite, and CSP(G) is NP-
complete otherwise.
Hint: if G = (V ;E) is not bipartite, it has a cycle of length 2ℓ + 1 for some ℓ. Take ℓ minimal.
Consider the graph H on V where (x, y) is an edge iff there is (in G ) a walk of length 2ℓ − 1
between x and y. What can be said about H ?
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CSP lecture 24/25 – Problem Set 9

All sets here are assumed finite. Clones are idempotent. (These assumptions are sometimes not
necessary.)

A relation R ⊆ A2 is subdirect, written R ⊆sd A
2, if its projection to each of the two coordinates

is equal to A. A relation R ⊆ A2 is linked if it is subdirect and, for each a, a′, there is a “fence”
R(a = a0, b0), R(a1, b0), R(a1, b1), R(a2, b1), . . . , R(an = a′, bn−1) for some n, ai ∈ A, bi ∈ A.

Problem 1. Suppose that G = (V ;E) is a connected undirected graph. Show that E ⊆ V 2 is
linked iff G is non-bipartite.

Problem 2. Let R ⊆ A2. Show that there exists a largest B ⊆ A (w.r.t. inclusion) such that
R∩ (B×B) ⊆sd B

2 and show that this B is pp-definable from R. Let’s call this B the “subdirect
part” of R. Show that the subdirect part of R is nonempty iff R contains a directed cycle.

Let f : An → A and B ⊆ A. We say that B absorbs A with respect to f , and write B ◁f A, if
f(a1, . . . , an) ∈ B whenever all the ai but at most one are in B. For a clone A on A, we say that
B is an absorbing subuniverse of A, written B ◁f A, if B is invariant under A, f ∈ A, and B ◁f A.

Problem 3. Consider the important idempotent clones on {0, 1} (generated by the binary
minimum/maximum, majority, minority). What are the absorbing subuniverses?

Problem 4. Let A be a clone. Suppose that R ⊆sd A
2 is invariant under A and B,C ◁f A.

Show that B ∩ C ◁f A, that B + R := {c : ∃b (b, c) ∈ R} ◁f A, and that the “subdirect part” of
B ∩ (R × R) absorbs A with respect to f , as well. (Side note: if B ◁f A and C ◁g A, then there
exists a common h such that B,C ◁h A; hint: star composition defined below.)

Problem 5. Let A be a clone. Suppose that R ⊆sd A
2 is linked and invariant under A, B ◁f A,

and S := R ∩ (B ×B) ⊆sd B
2. Show that S is linked.

Problem 6. Let R ⊆ A2 be linked and invariant under A and let B ◁ A be nontrivial
(i.e., ∅ ̸= B ⊊ A). Show that there exists a nontrivial C ⊊ A invariant under A such that
S := R ∩ (C × C) ⊆sd C

2 and S is linked.
Hint: First find B′ such that R ∩ (B′ ×B′) has a nonempty subdirect part.

Let f : An → A and α : [n] → [m]. The operation fα : Am → A defined by fα(a1, . . . , am) =
f(aα(1), aα(2), . . . , aα(n)) is called a minor of f . For two clones A, B, an arity preserving mapping
ξ : A → B is a minion homomorphism if it preserves minors, i.e., ξ(fα) = [ξ(f)]α (for every n,
n-ary f ∈ A, and every α : [n] → [m]).
Remark: There exists a minion homomorphism Pol(A) → Pol(B) iff A pp-constructs B.

A clone is Taylor if it is idempotent and there exists no homomorphism from ξ to the clone of
projections (say, on a two-element set). By the remark, Pol(A) is not Taylor iff A pp-constructs
all finite structures.
A subset B ⊆ A is called a projective subuniverse of A if for every f ∈ A there exists a

coordinate i such that f(a1, . . . , an) ∈ B whenever ai ∈ B.

Problem 7. Let B be a projective subuniverse of A. Show that B ◁g A (where g can be taken
binary) or A is not Taylor.
Hint: Show that if for each f the coordinate i (from the definition of projective subuniverse)

is unique, then we get a minion homomorphism to projections. Otherwise, a binary minor of an
operation f with non-unique i gives binary absorption.

Problem 8. Suppose that A has no nontrivial projective subuniverses. Show that A contains
a transitive operation, i.e., f ∈ A such that for every coordinate i and every a, b ∈ A, there exists
(a1, . . . , an) ∈ An such that ai = a and t(a1, . . . , an) = b.
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Hint: try to make t(A,A, . . . , a, A,A, . . . ) as large as possible; use “star-composition” of operati-
ons, where for n-ary f andm-ary g, we define nm-ary f⋆g by f⋆g(a1, . . . , anm) = f(g(a1, . . . , am), g(am+1, . . . ), . . . , g(. . . , amn)).

The left center of R ⊆ A2 is the set {a : ∀b ∈ A (a, b) ∈ R}.

Problem 9. Suppose that R ⊆sd A
2 is compatible with a transitive operation f : An → A and

let B be the left center of R. Show that B ◁f A.

Problem 10. Suppose that R ⊆sd A
2 is linked. Show that R together with the singleton unary

relations {a} pp-defines a relation S ⊆sd A
2, S ̸= A2 with a nonempty left center.

Hint: For a natural number n denote Tn the relation such that Tn(a1, . . . , an) iff there exists b
with R(a1, b), R(a2, b), . . . , R(an, b). First adjust R so that it is still proper and T2 = A2. Fixing
appropriate values in an apropriate Tn gives us S.

Problem 11. Suppose that A is Taylor and R ⊆ A2 is linked and invariant under A. Show that
there exists a nontrivial B ◁A. (This is so called Absorption Theorem.)

Problem 12. Suppose that A is Taylor and R ⊆ A2 is linked and invariant under A. Show that
(a, a) ∈ R for some a ∈ A. (This is so called Loop Lemma.) Deduce the Hell–Nešetřil dichotomy
theorem for undirected graphs (Problem 7 in Problem Set 8)
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