$\mathbb{A} = (A; R_1, R_2, \dots)$ is called a relational structure if

- A is a set, called *domain*,
- R_1, R_2, \ldots are relations on A, i.e. each $R_i \in \Gamma$ is a subset of A^{n_i} for some n_i ,

$CSP(\mathbb{A})$

Given a list of constraints $R_i(x_{i_1}, \ldots, x_{i_r})$, $R_j(x_{j_1}, \ldots, x_{j_s})$, $R_k(x_{k_1}, \ldots, x_{k_t})$, ... **Decide** whether they are satisfiable.

Consider the following relations on $\{0, 1\}$:

• $C_i := \{i\}, \text{ for } i \in \{0, 1\}$

•
$$R := \{(0,0), (1,1)\}$$

•
$$N := \{(0,1), (1,0)\}$$

- $S_{ij} := \{0, 1\}^2 \setminus \{(i, j)\}, \text{ for } i, j \in \{0, 1\}$
- $H := \{0,1\}^3 \setminus \{(1,1,0)\}$
- $G_1 := \{(0,0,0), (0,1,1), (1,0,1), (1,1,0)\}, G_2 := \{(0,0,1), (0,1,0), (1,0,0), (1,1,1)\}$

Problem 1. Find a polynomial–time algorithm for $CSP(\mathbb{A})$, where

- 1. $\mathbb{A} = (\{0, 1\}; R)$
- 2. $\mathbb{A} = (\{0,1\}; R, C_0, C_1)$
- 3. $\mathbb{A} = (\{0, 1\}; S_{10})$
- 4. $\mathbb{A} = (\{0, 1\}; S_{10}, C_0, C_1)$
- 5. $\mathbb{A} = (\{0, 1\}; S_{01}, S_{10}, C_0, C_1)$
- 6. $\mathbb{A} = (\{0, 1\}; N)$
- 7. $\mathbb{A} = (\{0, 1\}; R, N, C_0, C_1)$
- 8. $\mathbb{A} = (\{0,1\}; R, N, C_0, C_1, S_{00}, S_{01}, S_{10}, S_{11})$
- 9. $\mathbb{A} = (\{0, 1\}; \text{all unary and binary relations})$

Problem 2. Find a polynomial-time algorithm for $CSP(\{0,1\}; H, C_0, C_1)$.

Problem 3. Find a polynomial-time algorithm for $CSP(\{0,1\}; C_0, C_1, G_1, G_2)$.

Problem 4. Find a polynomial-time algorithm for $CSP(\mathbb{Q}; <)$.

The type of a relational structure $(A; R_1, \ldots, R_s)$ is the tuple $(ar(R_1), \ldots, ar(R_s))$, where ar(R) is the arity of the relation R.

Suppose the type of $\mathbb{A} = (A; R_1, \dots, R_t)$ and $\mathbb{B} = (A; S_1, \dots, S_t)$ is (n_1, \dots, n_t) . A mapping $\phi : A \to B$ is called a homomorphism from \mathbb{A} to \mathbb{B} if $(a_1, \dots, a_{n_i}) \in R_i \Rightarrow (\phi(a_1), \dots, \phi(a_{n_i})) \in S_i$ for every *i*. If such a homomorphism exists we write $\mathbb{A} \to \mathbb{B}$. A homomorphism $\mathbb{A} \to \mathbb{A}$ is an endomorphism, a bijective endomorphism is an automorphism.

$$\operatorname{Hom}(\mathbb{A})$$

Given a finite relational structure **X** of the same type as \mathbb{A} . **Decide** whether $\mathbb{X} \to \mathbb{A}$.

Problem 1. Find a polynomial algorithm for $Hom(\mathbb{A})$ where

- 1. $\mathbb{A} = (\{0, 1\}; N)$ (notation is from the 1st problem set)
- 2. $\mathbb{A} = (\{0, 1\}; N, C_0, C_1)$ (notation is from the 1st problem set)
- 3. $\mathbb{A} = (\{0, 1\}; S_{00}, S_{11})$ (notation is from the 1st problem set)

Recall that a decision problem \mathcal{P}_1 is *polynomially reducible* to \mathcal{P}_2 if there exists a polynomialtime algorithm that transforms an input I of \mathcal{P}_1 to an input r(I) of \mathcal{P}_2 so that I is a Yes-instance iff r(I) is a Yes-instance. In such a case, we write $\mathcal{P}_1 \leq_P \mathcal{P}_2$. When $\mathcal{P}_1 \leq_P \mathcal{P}_2 \leq_P \mathcal{P}_1$, we write $\operatorname{CSP}(\mathbb{A}) \sim_P \operatorname{CSP}(\mathbb{B})$ and say that the two problems are *polynomially equivalent*.

Problem 2. $\mathbb{A} = (\{0, 1, 2\}; N)$, where $N = \{0, 1, 2\}^2 \setminus \{(0, 0), (1, 1), (2, 2)\}$. Prove that CSP(\mathbb{A}) is polynomially equivalent to Hom(\mathbb{A}).

Problem 3. A is a relational structure. Prove that $CSP(\mathbb{A})$ is polynomially equivalent to $Hom(\mathbb{A})$.

Observe that if $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B})$ and $CSP(\mathbb{B})$ is in P (i.e., solvable in polynomial time), then $CSP(\mathbb{A})$ is in P. Similarly, if $CSP(\mathbb{A}) \leq_P CSP(\mathbb{B})$ and $CSP(\mathbb{A})$ is NP–complete, then $CSP(\mathbb{B})$ is NP–complete.

Problem 4. Prove that $CSP(\mathbb{A}) \sim_P CSP(\mathbb{B})$, where

• $\mathbb{A} = (\{0, 1, 2\}; C_0, C_1, Q),$ where

 $C_0 = \{0\}, C_1 = \{1\}, Q = \{000, 110, 120, 210, 101, 102, 201, 202, 011, 012, 021\}$

 $(Q \text{ is a ternary relation, we omit the commas and parentheses, eg. 110 stands for <math>(1,1,0)$.)

• $\mathbb{B} = (\{0,1\}; C_0, C_1, G_1)$ (where the notation is from the 1st problem set).

Hint: use homomorphisms $\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$.

Problem 5. Prove that for each finite relational structure \mathbb{A} there exists a relational structure \mathbb{B} such that

- there exists a homomorphism $\mathbb{A} \to \mathbb{B}$ and a homomorphism $\mathbb{B} \to \mathbb{A}$, and
- \mathbb{B} is a *core*, that is, each endomorphism of \mathbb{B} is an automorphism.

Problem 5.1. Deduce that we can WLOG concentrate on CSPs over cores.

Problem 5.2. Prove that such a core is unique up to isomorphism.

Problem 5.3. Find a relational structure \mathbb{A} such that every structure \mathbb{B} with homomorphisms $\mathbb{A} \to \mathbb{B}$ and $\mathbb{B} \to \mathbb{A}$ is *not* a core. Hint: A can be taken to be a directed graph.

Problem 6. Suppose

- $\mathbb{A} = (A; R_1, R_2, R_4)$ is a relational structure, where each R_i is an *i*-ary relation.
- E is the equality relation, i.e. $E = \{(a, a) : a \in A\}$
- S is the ternary relation on A defined by

$$S(x, y, z) = R_1(x) \wedge R_2(x, z) \wedge R_4(y, z, y, x)$$

• T is the binary relation defined by $T(x, y) = (\exists z \in A) \ S(x, y, z)$

Prove that

- 1. $\operatorname{CSP}(A; R_1, R_2, R_4, E) \leq_P \operatorname{CSP}(\mathbb{A})$
- 2. $\operatorname{CSP}(A; R_1, R_2, R_4, E, S) \leq_P \operatorname{CSP}(\mathbb{A})$
- 3. $\operatorname{CSP}(A; R_1, R_2, R_4, E, S, T) \leq_P \operatorname{CSP}(\mathbb{A})$

Problem 6.1. Try to formulate a general theorem covering these particular cases.

Problem 7. Prove that

- 1. $CSP(\{0,1,2\}; C_0, C_1, N) \sim_P CSP(\{0,1,2\}; C_0, C_1, C_2, N)$
- 2. $\operatorname{CSP}(\{0, 1, 2\}; N) \sim_P \operatorname{CSP}(\{0, 1, 2\}; N')$
- 3. $CSP(\{0,1\}; C_0, C_1, R) \sim_P CSP(\{0,1\}; R')$

where

$$N = \{0, 1, 2\}^2 \setminus \{(0, 0), (1, 1), (2, 2)\}$$

$$N' = \{0, 1, 2\}^3 \setminus \{(0, 0, 0), (1, 1, 1), (2, 2, 2)\}$$

$$R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\}$$

$$R' = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$$

Hint: try to use the general theorem from Problem 6.1.

Problem 8. Prove that $CSP(\mathbb{A}), CSP(\mathbb{B})$ and $CSP(\mathbb{C})$ are polynomially equivalent, where

$$\begin{split} &\mathbb{A} = (\{0, 1, 2\}; C_0, C_1, C_2, N), \quad N = \{0, 1, 2\}^2 \setminus \{(0, 0), (1, 1), (2, 2)\} \\ &\mathbb{B} = (\{0, 1\}; S_{000}, S_{001}, S_{011}, S_{111}), \quad S_{ijk} = \{0, 1\}^3 \setminus \{(i, j, k)\} \\ &\mathbb{C} = (\{0, 1\}; C_0, C_1, R), \quad R = \{0, 1\}^3 \setminus \{(0, 0, 0), (1, 1, 1)\} \end{split}$$

Problem 9. Prove that $CSP(\mathbb{A}) \sim_P CSP(\{0, 1, 2\}; N)$, where \mathbb{A}, N are from the previous problem.

Problem 10. For each finite relational structure \mathbb{A} , find an input of $CSP(\mathbb{A})$ whose solutions precisely correspond to endomorphisms of \mathbb{A} .

Problem 11. Let \mathbb{A} be a finite *core* and let \mathbb{B} be the relational structure formed from \mathbb{A} by adding all the unary relations $C_a = \{a\}, a \in A$. Prove that $\text{CSP}(\mathbb{A}) \sim_P \text{CSP}(\mathbb{B})$.

Problem 12. Let \mathbb{A} be a finite relational structure such that $CSP(\mathbb{A})$ is in P. Prove that there is a polynomial-time algorithm for finding a solution of $CSP(\mathbb{A})$.

An *n*-ary operation on a set A is a mapping $A^n \to A$. The *n*-ary projection onto the *i*-th coordinate (on a set A) is the operation π_i^n defined by $\pi_i^n(a_1, \ldots, a_n) = a_i$ for any $a_1, \ldots, a_n \in A$.

An *n*-ary operation $f : A^n \to A$ preserves an *m*-ary relation $R \subseteq A^m$ if $f(\mathbf{r}_1, \ldots, \mathbf{r}_n) \in R$ (operation is applied coordinate-wise) whenever $\mathbf{r}_1, \ldots, \mathbf{r}_n \in R$. In other words, for any $m \times n$ matrix whose columns are in R, f applied to the rows of this matrix gives a tuple in R. In such a situation, we also say that R is compatible with f, or R is *invariant under* f, or f is a *polymorphism* of R.

An operation $A^n \to A$ is a *polymorphism* of a relational structure $\mathbb{A} = (A; ...)$ if it preserves all the relations in \mathbb{A} . The set of all polymorphisms of \mathbb{A} is denoted $\text{Pol}(\mathbb{A})$.

Problem 1. Observe that

- 1. $f: A^n \to A$ is compatible with every singleton unary relation $\{a\}, a \in A$, iff $f(a, \ldots, a) = a$ for all $a \in A$;
- 2. the constant unary operation $c_a : A \to A$ (defined by $c_a(x) = a$ for any $x \in A$) is compatible with $R \subseteq A^n$ iff R contains the tuple (a, a, \ldots, a) .

Problem 2. Let A be a set. Prove that f preserves every relation on A if and only if f is a projection.

Problem 3. Let $\mathbb{A} = (A; ...)$ be a relational structure, $f \in Pol(\mathbb{A})$ a binary polymorphism and $g \in Pol(\mathbb{A})$ a ternary polymorphism. Then the 4-ary operation h defined by

$$h(x_1, x_2, x_3, x_4) = g(x_1, f(x_3, g(x_2, x_2, x_4)), x_3)$$

is a polymorphism of \mathbb{A} as well. Try to formulate a general statement.

Problem 4. Find all unary and binary polymorphisms of the structure $\mathbb{A} = (\{0, 1\}; H, C_0, C_1)$ from Problem Set 1 (Problem 2 – HORN-SAT).

Problem 5. Find all unary and binary polymorphisms of the structure

 $\mathbb{A} = (\{0, 1\}; \text{all unary and binary relations})$

from Problem Set 1 (Problem 1 – 2-SAT). Find some nice nontrivial (= not a projection) polymorphism of \mathbb{A} .

Problem 6. Find all unary, binary, and ternary polymorphisms of the structure $\mathbb{A} = (\{0, 1\}; C_0, C_1, G_1, G_2)$ from Problem Set 1 (Problem 3 – LIN-EQ(\mathbb{Z}_2)).

A relation $R \subseteq A^m$ is *pp-definable* from $\mathbb{A} = (A; ...)$ if it can be defined from relations in \mathbb{A} by a pp-formula, that is, a formula which only uses conjunction, equality, and existential quantification. A relational structure $\mathbb{B} = (B; ...)$ is pp-definable from \mathbb{A} if A = B and each relation in \mathbb{B} is pp-definable from \mathbb{A} . We also say that \mathbb{A} pp-defines \mathbb{B} .

Problem 7. Prove that any relation pp-definable from \mathbb{A} is invariant under every polymorphism of \mathbb{A} .

Problem 8. Find all polymorphisms of the structure \mathbb{B} in Problem Set 2 (Problem 8 – 3-SAT). Hint: only projections; possible approach: (1) pp-define the four-ary relations of the form $R_{a,b,c,d} = \{0,1\}^4 \setminus \{(a,b,c,d)\}, (2)$ pp-define all four-ary relations (3) similarly, pp-define every relation, (4) use Problem 2.

Problem 9. Let \mathbb{A} be a finite structure. Prove that a relation invariant under every polymorphism of \mathbb{A} is pp-definable from \mathbb{A} . Proof strategy:

- (i) Denote $R = \{(c_{11}, \dots, c_{1k}), \dots, (c_{m1}, \dots, c_{mk})\}$
- (ii) Let $\mathbf{a}_1, \ldots, \mathbf{a}_n$ be a complete list of *m*-tuples of elements of *A* (i.e. $n = |A|^m$)
- (iii) Prove that the relation

 $S = \{(f(\mathbf{a}_1), \dots, f(\mathbf{a}_n)) : f \text{ is an } m \text{-ary polymorphism}\}\$

is pp-definable from \mathbb{A} (no need to use existential quantification)

- (iv) Existentially quantify over all coordinates but those corresponding to $(c_{11}, \ldots, c_{m1}), \ldots, (c_{1k}, \ldots, c_{mk})$
- (v) Prove that the obtained relation contains R (because of projections) and is contained in R (because of compatibility)

Problem 10. Let $\mathbb{A} = (\mathbb{Z} \times \mathbb{Z}; R, U)$, where

$$R = \{ ((x, y), (x', y')) \mid x = x', |y' - y| \in \{1, 2\} \}, \quad U = \{ (0, 0) \}.$$

Prove that $\{(0, y) \mid y \in \mathbb{Z}\}$ is invariant under every polymorphism of \mathbb{A} , but that this set is not pp-definable from \mathbb{A} .

Problem 11. Observe that, for finite structures \mathbb{A} and \mathbb{B} ,

- 1. A pp-defines \mathbb{B} iff $\operatorname{Pol}(\mathbb{A}) \subseteq \operatorname{Pol}(\mathbb{B})$ and in such a case $\operatorname{CSP}(\mathbb{B}) \leq_P \operatorname{CSP}(\mathbb{A})$;
- 2. any CSP over a two-element structure is polynomially reducible to 3-SAT
- 3. if $Pol(\mathbb{A}) \subseteq Pol(\mathbb{B})$, then the proof of Problem 9 gives an explicit pp-formulas defining relations in \mathbb{B} from relations in \mathbb{A} .
- 4. In particular, for \mathbb{B} and \mathbb{C} as in Problem Set 2, Problem 4, we get $\text{CSP}(\mathbb{C}) \leq \text{CSP}(\mathbb{B})$. How large are the explicit formulas defining relations in \mathbb{C} from relations in \mathbb{B} ?

A set of operations on a set A is a *(function) clone* on A if it contains all projections and is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called *idempotent* if for every operation f in it and every $a \in A$, f(a, a, ..., a) = a. For a se

Problem 1. Recall that for any relational structure \mathbb{A} , $Pol(\mathbb{A})$ is a clone.

In this problem set, we focus on function clones on the set $A = \{0, 1\}$. We use the following notation for some special operations on $\{0, 1\}$:

- \wedge the binary minimum operation
- \lor the binary maximum operation
- maj the ternary majority operation defined by maj(a, a, b) = maj(a, b, a) = maj(b, a, a) := a for every $a, b \in \{0, 1\}$
- min the ternary minority operation defined by min(a, a, b) = min(a, b, a) = min(b, a, a) := b for every $a, b \in \{0, 1\}$

An operation $f : A^n \to A$ is called *essentially unary* if there exist *i* and a unary operation $\alpha : A \to A$ such that $f(x_1, \ldots, x_n) = \alpha(x_i)$ for every $x_1, \ldots, x_n \in A$.

Problem 2. Assume that \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither \wedge nor \vee . Show that the only binary operations in \mathcal{A} are the two projections.

Problem 3. Assume that \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that the only binary and ternary operations in \mathcal{A} are the projections.

Problem 4. Assume that \mathcal{A} is an idempotent clone on $A = \{0, 1\}$ that contains neither of the operations \wedge, \vee, maj, min . Show that \mathcal{A} contains only projections.

Hint: possible strategy

- Let $f \in \mathcal{A}$ be *n*-ary with $n \geq 4$.
- Assume first f(1, 0, 0, ..., 0) = 1. Use the binary operation g(x, y) := f(x, y, ..., y) to show that f(0, 1, ..., 1) = 0. Use ternary operations of the form $g(x, y, z) := f(w_1, w_2, ...)$ where $w_1, w_2, ... \in \{x, y, z\}$ to show that f is the projection onto the first coordinate.
- Deduce that if f is not a projection, then $f(x, \ldots, x, y, x, \ldots, x) = x$ for every x, y and every position of y.
- Assuming this and using appropriate ternary operations (similar as above) show that $f(x, \ldots, x, y, y) = x, \ldots$, etc, and derive a contradiction

Problem 5. Let \mathcal{A} be a clone on $A = \{0, 1\}$ with an operation which is not essentially unary. Prove that \mathcal{A} contains a constant unary operation, or at least one of the operations \land, \lor, maj, min . Hint: try to reduce to the idempotent case

A ternary operation $m : A^3 \to A$ is called a *majority operation* if m(a, a, b) = m(a, b, a) = m(b, a, a) = a for each $a, b \in A$ (note that for $|A| \leq 2$ there is a unique majority operation on A, otherwise there are more of them).

Problem 1. Let $R \subseteq A^n$ be a relation compatible with a majority operation on A. Denote $\pi_{i,j}(R)$ the projection of R onto the coordinates $i, j \ (1 \le i, j \le n)$, that is,

$$\pi_{i,j}(R) = \{(a_i, a_j) : (a_1, \dots, a_n) \in R\}$$

Prove that R is determined by these binary projections, that is,

$$(a_1,\ldots,a_n) \in R$$
 if and only if $(\forall i,j,1 \leq i,j \leq n)$ $(a_i,a_j) \in \pi_{i,j}(R)$

Hint: start with n = 3

Problem 2. Let $\mathbb{A} = (A; ...)$ be a relational structure with a majority polymorphism. Show that there exists a relational structure $\mathbb{B} = (A; ...)$ which contains only binary relations such that \mathbb{A} is pp-definable from \mathbb{B} and \mathbb{B} is pp-definable from \mathbb{A} . For $A = \{0, 1\}$, conclude that $CSP(\mathbb{A}) \leq_P 2$ -SAT (and thus $CSP(\mathbb{A})$ is solvable in polynomial time).

Problem 2.1. Let $\mathbb{A} = (\mathbb{Z}; R_1, \ldots, R_k)$, where all relations R_1, \ldots, R_k admit a quantifier-free definition over the relations y < x + c and y = x + c, where $c \in \mathbb{Z}$. E.g. R can be the 4-ary relation that holds on (x, y, z, t) iff $(x > y + 1 \lor x > z - 6) \land (x = z \Rightarrow t = y + 1)$ holds. Suppose that the ternary median operation is a polymorphism of \mathbb{A} . Show that $\text{CSP}(\mathbb{A})$ is solvable in polynomial time.

Problem 3. Let $\mathbb{A} = (\{0, 1\}; ...)$ be a relational structure with polymorphism min (from Problem Set 4). Show that each *n*-ary relation of \mathbb{A} is an affine subspace of \mathbb{Z}_2^n . Conclude that $CSP(\mathbb{A})$ is solvable in polynomial time.

Problem 4. Let $\mathbb{A} = (\{0, 1\}; C_0, C_1, H)$ be as in Problem Set 1 (the corresponding CSP is HORN-3-SAT). For every relation $R \subseteq \{0, 1\}^n$ compatible with \wedge find a pp-definition from \mathbb{A} .

Problem 5. Prove that for each relational structure $\mathbb{A} = \{A, ...\}$ with $A = \{0, 1\}$, either $CSP(\mathbb{A})$ is solvable in polynomial time or $CSP(\mathbb{A})$ is NP-complete (this is *Schaefer's dichotomy theorem* (1978)). Describe the two cases in terms of polymorphisms.

An instance of $\text{CSP}(\mathbb{A})$ with set of variables V is called 1-minimal if there exists a system of subsets $P_x \subseteq A, x \in V$ such that for every constraint $R(x_1, \ldots, x_k)$, the projection of R onto the *j*-th coordinate is equal to P_{x_j} . We say the instance is non-trivial if none of the sets P_x is empty. Two instances of the CSP are equivalent if they have the same set of solutions.

Problem 1. Devise a polynomial-time algorithm that transforms an instance of $CSP(\mathbb{A})$ to an

equivalent 1-minimal instance of $CSP(\mathbb{B})$, where \mathbb{B} is pp-definable in \mathbb{A} .

Recall that a *semilattice operation* on A is a binary operation s that is associative, commutative, and idempotent: that is, for all $a, b, c \in A$, the following equalities hold:

$$s(s(a,b),c) = s(a,s(b,c))$$
$$s(a,b) = s(b,a)$$
$$s(a,a) = a$$

A totally symmetric operation on A of arity n is an operation $t: A^n \to A$ such that $t(a_1, \ldots, a_n) = t(b_1, \ldots, b_n)$ whenever $\{a_1, \ldots, a_n\} = \{b_1, \ldots, b_n\}$, i.e., the value of the operation only depends on the set of its arguments.

Problem 2. Give examples of semilattice operations.

Problem 2.1. Prove that every clone that contains a semilattice operation contains for every $n \ge 1$ a totally symmetric operation of arity n.

Problem 2.2. Let \mathbb{A} be finite. Prove that if $Pol(\mathbb{A})$ contains totally symmetric operations of all arities $n \geq 1$, then it contains a family of totally symmetric operations s_1, s_2, \ldots where s_n has arity n and $s_{n+1}(x_1, x_1, x_2, \ldots, x_n) = s_n(x_1, \ldots, x_n)$ holds for all $x_1, \ldots, x_n \in A$.

Problem 3. Suppose that \mathbb{A} is a finite relational structure that has totally symmetric polymorphisms of all arities $n \geq 1$. Show that every non-trivial 1-minimal instance of $CSP(\mathbb{A})$ has a solution. Conclude that $CSP(\mathbb{A})$ is solvable in polynomial time.

Hint: apply the totally symmetric polymorphisms to the non-empty sets P_x whose existence is guaranteed by 1-minimality.

Problem 4. Show the converse: let \mathbb{A} be finite and suppose that every non-trivial 1-minimal instance of \mathbb{A} has a solution. Prove that $Pol(\mathbb{A})$ contains totally symmetric polymorphisms of all arities $n \geq 1$.

Hint: Build an instance of $CSP(\mathbb{A})$ whose variables are non-empty subsets of \mathbb{A} , and whose solutions define totally symmetric polymorphisms of \mathbb{A} . Show that an equivalent 1-minimal instance is non-trivial.

An instance of a CSP with variables $V = \{x_1, \ldots, x_n\}$ over the set A is called *simple* (2,3)-*minimal* if it satisfies all the following conditions:

- For each $1 \leq i \leq n$, there is a single unary constraint $P_i(x_i)$ where $P_i \subseteq A$,
- For each pair $i, j \in \{1, ..., n\}$ of distinct integers, there is a single binary constraint $P_{i,j}(x_i, x_j)$, where $P_{i,j} \subseteq A^2$,
- $P_{i,j} = P_{j,i}^{-1}$ (i.e., $P_{i,j} = \{(b,a) \mid (a,b) \in P_{j,i}\}$),
- There are no other constraints except the ones mentioned above,
- The instance is 1-minimal: for all i, j, the restriction of $P_{i,j}$ to its first coordinate equals P_i ,
- For each triple $i, j, k \in \{1, ..., n\}$ of distinct integers and each $(a, b) \in P_{i,j}$, there exists a $c \in P_k$ such that $(a, c) \in P_{i,k}$ and $(b, c) \in P_{j,k}$.

Problem 5. Let us represent a simple (2, 3)-minimal instance as a multipartite graph as follows: each variable x_i corresponds to one set whose vertices are the elements of P_i , and for every distinct i, j and $(a, b) \in P_{i,j}$, there is an edge between the corresponding vertices $a \in P_i$ and $b \in P_j$. Describe what the last two items in the definition of (2, 3)-minimality mean for this graph.

Problem 6. Let \mathbb{A} be a finite structure and have only unary and binary relations. Devise a polynomial-time algorithm that transforms any instance of $CSP(\mathbb{A})$ into an equivalent simple (2,3)-minimal instance of $CSP(\mathbb{B})$, where \mathbb{B} is pp-definable in \mathbb{A} .

Problem 7. Adapt the algorithm from the previous problem for the case where A has relations of arbitrary arity but Pol(A) contains a majority operation.

Problem 8. Suppose that \mathbb{A} has a majority polymorphism. Show that every non-trivial simple (2,3)-minimal instance of $CSP(\mathbb{A})$ has a solution.

Hint: if $V = \{x_1, \ldots, x_n\}$ is the set of variables and $h: \{x_1, \ldots, x_i\} \to A$ is an assignment that satisfies all constraints involving only the variables from $\{x_1, \ldots, x_i\}$, show that h can be extended to an assignment $h': \{x_1, \ldots, x_i, x_{i+1}\} \to A$ that satisfies all the constraints involving only the variables from $\{x_1, \ldots, x_i, x_{i+1}\}$. Conclude that $CSP(\mathbb{A})$ is solvable in polynomial time.

Remark 1. It is also possible to characterize the property "Every non-trivial (2,3)-minimal instance of $CSP(\mathbb{A})$ has a solution" in terms of $Pol(\mathbb{A})$, although the proof is beyond the scope of the course: the property is equivalent to $Pol(\mathbb{A})$ containing for all $n \geq 3$ an operation w of arity n that satisfies

 $w(x, y, \dots, y) = w(y, x, y, \dots, y) = \dots = w(y, \dots, y, x).$

We assume throughout the sheet that every set is finite. A Maltsev operation is an operation $m: A^3 \to A$ that satisfies m(a, b, b) = m(b, b, a) = a for all $a, b \in A$.

Problem 1. A relation $R \subseteq A^n$ is *rectangular* if for all $i \in \{1, \ldots, n\}$, all $\mathbf{a}, \mathbf{b} \in A^n, c, d \in A$, whenever $(a_1, \ldots, a_{i-1}, c, a_{i+1}, \ldots, a_n), (b_1, \ldots, b_{i-1}, c, b_{i+1}, \ldots, b_n), (b_1, \ldots, b_{i-1}, d, b_{i+1}, \ldots, b_n) \in R$, then $(a_1, \ldots, a_{i-1}, d, a_{i+1}, \ldots, a_n) \in R$. Show that every relation that is invariant under a Maltsev operation is rectangular.

We say that $t, t' \in A^n$ witness $(i, a, b) \in \{1, \ldots, n\} \times A^2$ if $(t_1, \ldots, t_{i-1}) = (t'_1, \ldots, t'_{i-1})$ and $t_i = a, t'_i = b$. Let $R \subseteq A^n$. The signature of R is the set

$$\operatorname{Sig}_{R} := \{(i, a, b) \in [n] \times A^{2} \mid \exists \mathbf{t}, \mathbf{t}' \in R \text{ that witness } (i, a, b)\}.$$

We say that $R' \subseteq R$ is a representation of R if $\operatorname{Sig}_{R'} = \operatorname{Sig}_R$, and that the representation is compact if $|R'| \leq 2 \cdot |\operatorname{Sig}_R|$.

Problem 2. Observe that every R has a compact representation. Describe a concrete compact representation of A^n .

Given a subset $R \subseteq A^n$ and an operation $f: A^m \to A$, the relation generated by R under f, denoted by $\langle R \rangle_f$, is the smallest relation S containing R and that is invariant under f. For $i_1, \ldots, i_m \in \{1, \ldots, n\}$, let $\pi_{i_1, \ldots, i_m}(R) := \{(a_{i_1}, \ldots, a_{i_m}) \mid (a_1, \ldots, a_n) \in R\}$.

Problem 3. Suppose that R is invariant under a Maltsev operation f and that R' is a representation of R. Show that $\langle R' \rangle_f = R$.

Hint: Show that $\pi_{1,\ldots,i}(\langle R' \rangle_f) = \pi_{1,\ldots,i}(R)$, for all $i \in \{1,\ldots,n\}$.

For the next exercises, we fix the following:

- $R \subseteq A^n, S \subseteq A^m$ are invariant under a Maltsev operation f,
- $R' \subseteq R$ is a compact representation of R,
- $i_1, \ldots, i_m \in \{1, \ldots, n\},\$
- The relation T is defined by $\{(a_1, \ldots, a_n) \in R \mid (a_{i_1}, \ldots, a_{i_m}) \in S\}$.

Problem 4. Give an algorithm that takes as input $R', (i_1, \ldots, i_m), S$, and decides whether T is non-empty, in which case the algorithm should also return an arbitrary tuple in T. The running time should be polynomial in n and $|\pi_{(i_1,\ldots,i_m)}R| \leq |A|^m$.

Hint: apply the Maltsev operation to R' until the projection on the coordinates (i_1, \ldots, i_m) stabilizes.

Problem 5. Give an algorithm that takes as input R' and c, and outputs a compact representation of $R|_c := \{(a_1, \ldots, a_n) \in R \mid a_1 = c\}$ in time polynomial in |R'| and n. Hint: given any $(i, a, b) \in \operatorname{Sig}_R$, use the algorithm from Problem 4 to decide whether (i, a, b) is in $\operatorname{Sig}_{R|_c}$.

Note that by iterating the algorithm, one can also compute a compact representation of

$$R|_{c_1,\ldots,c_m} = \{(a_1,\ldots,a_n) \in R \mid a_1 = c_1,\ldots,a_m = c_m\}$$

Problem 6. Show that one can compute, in time polynomial in n, |R'| (and $|A|^m$), a compact representation of T.

Hint: simply describe the necessary and sufficient conditions for a given $(i, a, b) \in \text{Sig}_R$ to be in Sig_T , and use the previous two algorithms to check those conditions.

Problem 7. Prove that if \mathbb{A} is a finite relational structure such that $Pol(\mathbb{A})$ contains a Maltsev polymorphism, then $CSP(\mathbb{A})$ is solvable in polynomial time.

Given an equivalence relation \sim on a set V and $v \in V$, we denote by $v/ \sim := \{w \in V \mid v \sim w\}$ the equivalence class of v. Recall that given a relational structure \mathbb{G} and an equivalence relation \sim on the domain of \mathbb{G} , the structure \mathbb{G}/\sim is the structure with same signature as \mathbb{G} , whose domain is the set of \sim -equivalence classes, and where for every k-ary relation R in the signature, we have

$$(v_1/\sim,\ldots,v_k/\sim) \in R^{\mathbb{G}/\sim} \Leftrightarrow \exists w_1,\ldots,w_k \text{ s.t. } w_1 \sim v_1,\ldots,w_k \sim v_k \text{ and } (w_1,\ldots,w_k) \in R^{\mathbb{G}}$$

Definition. Let \mathbb{A}, \mathbb{B} be relational structure. We say that \mathbb{B} has a pp-interpretation in \mathbb{A} if \mathbb{B} is isomorphic to a structure of the form $(S; R_1, \ldots, R_k) / \sim$, where:

- $S \subseteq A^n$ is pp-definable in \mathbb{A} ,
- $\sim \subseteq S^2$ is an equivalence relation that is pp-definable in \mathbb{A} , as a relation of arity 2n: there exists a pp-formula $\phi(x_1, \ldots, x_n, y_1, \ldots, y_n)$ such that for all $(a_1, \ldots, a_n), (b_1, \ldots, b_n) \in S$,

$$(a_1,\ldots,a_n) \sim (b_1,\ldots,b_n) \Leftrightarrow \mathbb{A} \models \phi(a_1,\ldots,a_n,b_1,\ldots,b_n)$$

• Similarly, for every $R_i \subseteq S^k$ of arity k, there is a pp-formula $\psi(x_{1,1}, \ldots, x_{1,n}, \ldots, x_{k,1}, \ldots, x_{k,n})$ with kn free variables such that

$$(\mathbf{a}_1,\ldots,\mathbf{a}_k) \in R \Leftrightarrow \mathbb{A} \models \psi(\mathbf{a}_1,\ldots,\mathbf{a}_k)$$

Problem 0. Observe that if \mathbb{B} has a pp-interpretation in \mathbb{A} , then $CSP(\mathbb{B})$ reduces to $CSP(\mathbb{A})$. Hint: See Problems 3 and 4 from Exercise sheet 2.

Observe that if \mathbb{C} has a pp-interpretation in \mathbb{B} and \mathbb{B} has a pp-interpretation in \mathbb{A} , then \mathbb{C} has a pp-interpretation in \mathbb{A} .

The goal of this sheet is to show the following:

Theorem. Let $\mathbb{G} = (\{v_1, \ldots, v_n\}; E)$ be an undirected graph without loops and containing a triangle. Then \mathbb{K}_3 has a pp-interpretation in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$, the relational structure obtained by expanding \mathbb{G} by one unary relation for every vertex of \mathbb{G} .

The proof goes by induction on n, where the base case is n = 3 for which the result is clearly true. For the rest of the sheet, let $\mathbb{G} = (\{v_1, \ldots, v_n\}; E)$ be an undirected graph with vertices $V = \{v_1, \ldots, v_n\}$, without loops and containing a triangle.

Problem 1. Suppose that one of the conditions below is satisfied. Show that in every case, $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$ pp-interprets a proper subgraph $\mathbb{H} = (W; F)$ (i.e., with at least one of the inclusions $W \subseteq V, F \subseteq E$ being proper) that contains a triangle.

- a) G contains a complete graph on 4 vertices,
- b) Some vertex v_i does not belong to a triangle,
- c) Some edge of G does not belong to a triangle.

Conclude that if any of the conditions is true, then \mathbb{K}_3 has a pp-interpretation in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$.

We assume from here on that conditions a-c are not true in \mathbb{G} .

Problem 2. The diamond is the following graph:

Let $x \sim y$ be the relation that relates x and y iff they are connected by a chain of diamonds:

Show that \sim is an equivalence relation that has a pp-definition in \mathbb{G} .

Problem 3. Suppose that the following condition holds:

d) some edge of G belongs to two triangles.

In particular, G contains a diamond and ~ from Problem 2 contains a pair (x, y) with $x \neq y$.

- Show that if there is an edge (x, y) in \mathbb{G} such that $x \sim y$, then $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$ ppinterprets a proper subgraph containing a triangle, and conclude that \mathbb{K}_3 has a pp-interpretation in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$.
- On the other hand, suppose that for all x, y, if $x \sim y$ then (x, y) is not an edge. What does this imply for $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\}) / \sim$? Conclude that \mathbb{K}_3 has a pp-interpretation in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$.

Hint: for the first part, consider the shortest chain of diamonds connecting an edge (x, y), and depending on the parity of the length find a pp-definition of a proper subset of V containing a triangle.

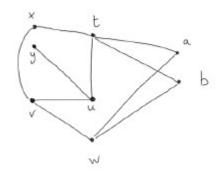
Thus, we assume from here on that condition d) also fails, i.e., every edge belongs to a unique triangle. The next goal is to show that a power of \mathbb{K}_3 has a pp-interpretation in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$. For $k \geq 1$, let $\mathbb{P}_k := (\mathbb{K}_3)^k$ be the k-th power of \mathbb{K}_3 , whose universe is $\{1, 2, 3\}^k$ and whose edges are of the form (\mathbf{a}, \mathbf{b}) where for all $i \in \{1, \ldots, k\}, a_i \neq b_i$.

Problem 4. Let $h : \mathbb{P}_k \to \mathbb{G}$ be a homomorphism. Show that there is a set $I \subseteq \{1, \ldots, k\}$ such that for all $\mathbf{x}, \mathbf{y} \in \{1, 2, 3\}^k$

$$h(\mathbf{x}) = h(\mathbf{y}) \Leftrightarrow \forall i \in I, x_i = y_i.$$

Conclude that the subgraph of \mathbb{G} induced by the range of h is isomorphic to \mathbb{P}_m , where m = |I|. The following strategy can be used:

- Let $I \subseteq \{1, \ldots, k\}$ be maximal such that $h(\mathbf{x}) = h(\mathbf{y})$ implies $x_i = y_i$ for all $i \in I$.
- Let $j \in \{1, ..., k\} \setminus I$. We show that if \mathbf{a}, \mathbf{b} agree on all coordinates except $a_j \neq b_j$, then $h(\mathbf{a}) = h(\mathbf{b})$.
- By maximality of I, there exist \mathbf{x}, \mathbf{y} such that $h(\mathbf{x}) = h(\mathbf{y})$ but $x_j \neq y_j$.
- Show that the following graph is a (non-induced) subgraph of \mathbb{P}_k (i.e., find witnesses for the vertices t, u, v, w), and use this to conclude that $h(\mathbf{a}) = h(\mathbf{b})$:



• Finally, conclude that if $a_i = b_i$ for all $i \in I$, then $h(\mathbf{a}) = h(\mathbf{b})$.

Let k be maximal such that \mathbb{P}_k is isomorphic to an induced subgraph of $\mathbb{G}(k \ge 1$ is well-defined since \mathbb{G} contains a triangle by assumption). By abuse of notation, we consider \mathbb{P}_k itself to be an induced subgraph of \mathbb{G} .

Problem 5. Show that the vertex set of \mathbb{P}_k is pp-definable in $(\mathbb{G}, \{v_1\}, \ldots, \{v_n\})$.

Hint: This is equivalent to showing that for every idempotent polymorphism f of \mathbb{G} , the vertex set of \mathbb{P}_k is invariant under f. Observe that f induces a homomorphism $\mathbb{P}_{nk} \to \mathbb{G}$, where n is the arity of f.

Problem 6. To conclude the proof of the theorem, show that for all $k \ge 1$, \mathbb{K}_3 has a ppinterpretation in the expansion of \mathbb{P}_k by all unary constant relations.

Hint: show that the equivalence relation $\mathbf{x} \sim \mathbf{y} :\Leftrightarrow x_1 = y_1$ is pp-definable in the expansion of \mathbb{P}_k by all unary constant relations. There are two approaches, either by finding a concrete pp-definition, or by showing that \sim is preserved under every idempotent polymorphism of \mathbb{P}_k .

Problem 7. Show the following corollary (Hell-Nešetřil, 1990): let $\mathbb{G} = (V; E)$ be a finite undirected graph without loops. Then $\text{CSP}(\mathbb{G})$ is in P if \mathbb{G} is bipartite, and $\text{CSP}(\mathbb{G})$ is NP-complete otherwise.

Hint: if $\mathbb{G} = (V; E)$ is not bipartite, it has a cycle of length $2\ell + 1$ for some ℓ . Take ℓ minimal. Consider the graph \mathbb{H} on V where (x, y) is an edge iff there is (in \mathbb{G}) a walk of length $2\ell - 1$ between x and y. What can be said about \mathbb{H} ?

All sets here are assumed finite. Clones are idempotent. (These assumptions are sometimes not necessary.)

A relation $R \subseteq A^2$ is subdirect, written $R \subseteq_{sd} A^2$, if its projection to each of the two coordinates is equal to A. A relation $R \subseteq A^2$ is *linked* if it is subdirect and, for each a, a', there is a "fence" $R(a = a_0, b_0), R(a_1, b_0), R(a_1, b_1), R(a_2, b_1), \ldots, R(a_n = a', b_{n-1})$ for some $n, a_i \in A, b_i \in A$.

Problem 1. Suppose that $\mathbb{G} = (V; E)$ is a connected undirected graph. Show that $E \subseteq V^2$ is linked iff \mathbb{G} is non-bipartite.

Problem 2. Let $R \subseteq A^2$. Show that there exists a largest $B \subseteq A$ (w.r.t. inclusion) such that $R \cap (B \times B) \subseteq_{sd} B^2$ and show that this B is pp-definable from R. Let's call this B the "subdirect part" of R. Show that the subdirect part of R is nonempty iff R contains a directed cycle.

Let $f: A^n \to A$ and $B \subseteq A$. We say that *B* absorbs *A* with respect to *f*, and write $B \triangleleft_f A$, if $f(a_1, \ldots, a_n) \in B$ whenever all the a_i but at most one are in *B*. For a clone \mathcal{A} on *A*, we say that *B* is an absorbing subuniverse of \mathcal{A} , written $B \triangleleft_f \mathcal{A}$, if *B* is invariant under \mathcal{A} , $f \in \mathcal{A}$, and $B \triangleleft_f A$.

Problem 3. Consider the important idempotent clones on $\{0, 1\}$ (generated by the binary minimum/maximum, majority, minority). What are the absorbing subuniverses?

Problem 4. Let \mathcal{A} be a clone. Suppose that $R \subseteq_{\mathrm{sd}} A^2$ is invariant under \mathcal{A} and $B, C \triangleleft_f \mathcal{A}$. Show that $B \cap C \triangleleft_f \mathcal{A}$, that $B + R := \{c : \exists b \ (b, c) \in R\} \triangleleft_f \mathcal{A}$, and that the "subdirect part" of $B \cap (R \times R)$ absorbs \mathcal{A} with respect to f, as well. (Side note: if $B \triangleleft_f \mathcal{A}$ and $C \triangleleft_g \mathcal{A}$, then there exists a common h such that $B, C \triangleleft_h \mathcal{A}$; hint: star composition defined below.)

Problem 5. Let \mathcal{A} be a clone. Suppose that $R \subseteq_{\mathrm{sd}} A^2$ is linked and invariant under \mathcal{A} , $B \triangleleft_f \mathcal{A}$, and $S := R \cap (B \times B) \subseteq_{\mathrm{sd}} B^2$. Show that S is linked.

Problem 6. Let $R \subseteq A^2$ be linked and invariant under \mathcal{A} and let $B \triangleleft \mathcal{A}$ be nontrivial (i.e., $\emptyset \neq B \subsetneq A$). Show that there exists a nontrivial $C \subsetneq A$ invariant under \mathcal{A} such that $S := R \cap (C \times C) \subseteq_{\mathrm{sd}} C^2$ and S is linked.

Hint: First find B' such that $R \cap (B' \times B')$ has a nonempty subdirect part.

Let $f: A^n \to A$ and $\alpha: [n] \to [m]$. The operation $f^{\alpha}: A^m \to A$ defined by $f^{\alpha}(a_1, \ldots, a_m) = f(a_{\alpha(1)}, a_{\alpha(2)}, \ldots, a_{\alpha(n)})$ is called a minor of f. For two clones \mathcal{A}, \mathcal{B} , an arity preserving mapping $\xi: \mathcal{A} \to \mathcal{B}$ is a minion homomorphism if it preserves minors, i.e., $\xi(f^{\alpha}) = [\xi(f)]^{\alpha}$ (for every n, n-ary $f \in \mathcal{A}$, and every $\alpha: [n] \to [m]$).

Remark: There exists a minion homomorphism $\operatorname{Pol}(\mathbb{A}) \to \operatorname{Pol}(\mathbb{B})$ iff \mathbb{A} pp-constructs \mathbb{B} .

A clone is *Taylor* if it is idempotent and there exists no homomorphism from ξ to the clone of projections (say, on a two-element set). By the remark, $Pol(\mathbb{A})$ is not Taylor iff \mathbb{A} pp-constructs all finite structures.

A subset $B \subseteq A$ is called a *projective subuniverse* of \mathcal{A} if for every $f \in \mathcal{A}$ there exists a coordinate *i* such that $f(a_1, \ldots, a_n) \in B$ whenever $a_i \in B$.

Problem 7. Let *B* be a projective subuniverse of *A*. Show that $B \triangleleft_g A$ (where *g* can be taken binary) or *A* is not Taylor.

Hint: Show that if for each f the coordinate i (from the definition of projective subuniverse) is unique, then we get a minion homomorphism to projections. Otherwise, a binary minor of an operation f with non-unique i gives binary absorption.

Problem 8. Suppose that \mathcal{A} has no nontrivial projective subuniverses. Show that \mathcal{A} contains a *transitive operation*, i.e., $f \in \mathcal{A}$ such that for every coordinate i and every $a, b \in \mathcal{A}$, there exists $(a_1, \ldots, a_n) \in \mathcal{A}^n$ such that $a_i = a$ and $t(a_1, \ldots, a_n) = b$.

Hint: try to make $t(A, A, \ldots, a, A, A, \ldots)$ as large as possible; use "star-composition" of operations, where for *n*-ary *f* and *m*-ary *g*, we define *nm*-ary $f \star g$ by $f \star g(a_1, \ldots, a_{nm}) = f(g(a_1, \ldots, a_m), g(a_{m+1}, \ldots), \ldots, g(\ldots, a_{mm}))$

The *left center* of $R \subseteq A^2$ is the set $\{a : \forall b \in A \ (a, b) \in R\}$.

Problem 9. Suppose that $R \subseteq_{sd} A^2$ is compatible with a transitive operation $f : A^n \to A$ and let B be the left center of R. Show that $B \triangleleft_f A$.

Problem 10. Suppose that $R \subseteq_{sd} A^2$ is linked. Show that R together with the singleton unary relations $\{a\}$ pp-defines a relation $S \subseteq_{sd} A^2$, $S \neq A^2$ with a nonempty left center.

Hint: For a natural number n denote T_n the relation such that $T_n(a_1, \ldots, a_n)$ iff there exists b with $R(a_1, b), R(a_2, b), \ldots, R(a_n, b)$. First adjust R so that it is still proper and $T_2 = A^2$. Fixing appropriate values in an appropriate T_n gives us S.

Problem 11. Suppose that \mathcal{A} is Taylor and $R \subseteq A^2$ is linked and invariant under \mathcal{A} . Show that there exists a nontrivial $B \triangleleft \mathcal{A}$. (This is so called Absorption Theorem.)

Problem 12. Suppose that \mathcal{A} is Taylor and $R \subseteq A^2$ is linked and invariant under \mathcal{A} . Show that $(a, a) \in R$ for some $a \in \mathcal{A}$. (This is so called Loop Lemma.) Deduce the Hell–Nešetřil dichotomy theorem for undirected graphs (Problem 7 in Problem Set 8)