CSP lecture 24/25 — Problem Set 1

A = (A; Ry, Ry, ...) is called a relational structure if

e A is a set, called domain,

e Ry, R,,... are relations on A, i.e. each R; € I is a subset of A™ for some n;,
CSP(A)
Given a list of constraints R;(zi,,...,2:.), Rj(xj,,...,x;,), Re(Tk,, ..., Tx,), .-
Decide whether they are satisfiable.

Consider the following relations on {0,1}:

o C;:={i}, fori € {0,1}

e R:={(0,0),(1,1)}

e N:={(0,1),(1,0)}

e S :={0,1}?\ {(4,5)}, for i,j € {0,1}
o H:={0,1}3\{(1,1,0)}

G :={(0,0,0),(0,1,1),(1,0,1),(1,1,0)}, G2 := {(0,0,1),(0,1,0),(1,0,0),(1,1,1)}

Problem 1. Find a polynomial-time algorithm for CSP(A), where

1. A=({0,1}; R)

2. A=({0,1}; R,Cy, Cy)

3. A= ({0,1}; 510)

4. A = ({0,1}; S10, Co, C1)

5. A = ({0,1}; So1, S10,Co, C1)

6. A= ({0,1}; N)

7. A=({0,1}; R, N,Cy,C4)

8. A= ({0,1}; R, N, Cy, C1, S0, So1, S10, S11)
9. A = ({0,1}; all unary and binary relations)

Problem 2. Find a polynomial-time algorithm for CSP({0,1}; H, Cy, Cy).
Problem 3. Find a polynomial-time algorithm for CSP({0, 1}; Co, Cy, G1, Ga).

Problem 4. Find a polynomial-time algorithm for CSP(Q; <).



CSP lecture 24/25 — Problem Set 2

The type of a relational structure (4; Ry, ..., R;) is the tuple (ar(R1),...,ar(R;)), where ar(R)
is the arity of the relation R.

Suppose the type of A = (A; Ry,...,Ry) and B = (A4;S51,...,5¢) is (n1,...,n¢). A mapping
¢ : A — Bis called a homomorphism from A to B if (a1,...,an,) € R; = (¢(a1),...,d(an,)) € S;
for every i. If such a homomorphism exists we write A — B. A homomorphism A — A is an
endomorphism, a bijective endomorphism is an automorphism.

Hom(A)

Given a finite relational structure X of the same type as A.
Decide whether X — A.

Problem 1. Find a polynomial algorithm for Hom(A) where
1. A= ({0,1}; N) (notation is from the 1st problem set)
2. A=({0,1}; N,Cy,C1) (notation is from the 1st problem set)
3. A= ({0,1};S00,511) (notation is from the 1st problem set)

Recall that a decision problem P; is polynomially reducible to P if there exists a polynomial-
time algorithm that transforms an input I of P; to an input r(I) of Ps so that I is a Yes-instance
iff 7(I) is a Yes-instance. In such a case, we write P; <p P2. When P; <p Py <p P1, we write
CSP(A) ~p CSP(B) and say that the two problems are polynomially equivalent.

Problem 2. A = ({0,1,2}; N), where N = {0,1,2}%\ {(0,0), (1,1), (2,2)}. Prove that CSP(A) is
polynomially equivalent to Hom(A).

Problem 3. A is a relational structure. Prove that CSP(A) is polynomially equivalent to Hom(A).

Observe that if CSP(A) <p CSP(B) and CSP(B) is in P (i.e., solvable in polynomial time),
then CSP(A) is in P. Similarly, if CSP(A) <p CSP(B) and CSP(A) is NP—complete, then CSP(B)
is NP—complete.

Problem 4. Prove that CSP(A) ~p CSP(B), where
e A=({0,1,2}; Cy, C1,Q), where
Co = {0},C, = {1},Q = {000, 110, 120, 210, 101, 102, 201, 202, 011, 012, 021}
(Q is a ternary relation, we omit the commas and parentheses, eg. 110 stands for (1,1,0).)

e B = ({0,1}; Cy, C1,G1) (where the notation is from the 1st problem set).

Problem 5. Prove that for each finite relational structure A there exists a relational structure B
such that

e there exists a homomorphism A — B and a homomorphism B — A, and

e B is a core, that is, each endomorphism of B is an automorphism.
Problem 5.1. Deduce that we can WLOG concentrate on CSPs over cores.
Problem 5.2. Prove that such a core is unique up to isomorphism.

Problem 5.3. Find a relational structure A such that every structure B with homomorphisms
A — B and B — A is not a core.



Problem 6. Suppose
e A =(A;Ry, Ry, Ry) is a relational structure, where each R; is an i-ary relation.
e F is the equality relation, i.e. E = {(a,a):a € A}
e S is the ternary relation on A defined by

S($7y7z) = Rl(x) A RQ(J:WZ) A R4(y727y7x)

e T is the binary relation defined by T'(z,y) = (3z € A) S(x,y, 2)
Prove that

1. CSP(A; Ry, R2, Ry, E) <p CSP(A)

2. CSP(A; Ry, Ra, Ry, B, S) <p CSP(A)

3. CSP(A; Ry, Ry, Ry, E,S,T) <p CSP(A)
Problem 6.1. Try to formulate a general theorem covering these particular cases.
Problem 7. Prove that

1. CSP({0,1,2};Cy,Cy, N) ~p CSP({0, 1, 2}; Cy, C1,C2, N)

2. CSP({0,1,2}; N) ~p CSP({0,1,2}; N')

3. CSP({0,1};Cy,C1,R) ~p CSP({0,1}; R')
where

N ={0,1,2}%\ {(0,0), (1,1),(2,2)} N’ =1{0,1,2}3\ {(0,0,0),(1,1,1),(2,2,2)}
R=1{0,1}*\ {(0,0,0),(1,1,1)} R ={(1,0,0),(0,1,0),(0,0,1)}

Problem 8. Prove that CSP(A), CSP(B) and CSP(C) are polynomially equivalent, where

A= ({07 17 2}7 007 Cla OQv N)7 N = {Oa 17 2}2 \ {(07 O)a (17 1)v (25 2)}
B = ({0, 1}; S000, Soo1, So11, S111),  Sijre = {0, 1} \ {(i, 4, k)}
C= ({07 1}; Co, C1, R)7 R= {Oa 1}3 \ {(0707 O)a (17 1, 1)}
Problem 9. Prove that CSP(A) ~p CSP({0, 1,2}; N), where A, N are from the previous problem.

Problem 10. For each finite relational structure A, find an input of CSP(A) whose solutions
precisely correspond to endomorphisms of A.

Problem 11. Let A be a finite core and let B be the relational structure formed from A by adding
all the unary relations C, = {a}, a € A. Prove that CSP(A) ~p CSP(B).

Problem 12. Let A be a finite relational structure such that CSP(A) is in P. Prove that there is
a polynomial-time algorithm for finding a solution of CSP(A).



CSP lecture 24/25 — Problem Set 3

An n-ary operation on a set A is a mapping A™ — A. The n-ary projection onto the i-th

coordinate (on a set A) is the operation 7} defined by 7% (as,...,a,) = a; for any ay,...,a, € A.
An n-ary operation f : A" — A preserves an m-ary relation R C A™ if f(ry,...,r,) € R
(operation is applied coordinate-wise) whenever ry,...,r, € R. In other words, for any m x n

matrix whose columns are in R, f applied to the rows of this matrix gives a tuple in R. In such a
situation, we also say that R is compatible with f, or R is invariant under f,or f is a polymorphism
of R.

An operation A™ — A is a polymorphism of a relational structure A = (A;...) if it preserves
all the relations in A. The set of all polymorphisms of A is denoted Pol(A).

Problem 1. Observe that

1. f: A" = A is compatible with every singleton unary relation {a}, a € A, iff f(a,...,a) =a
for all a € A;

2. the constant unary operation ¢, : A — A (defined by ¢,(x) = a for any = € A) is compatible
with R C A™ iff R contains the tuple (a,a,...,a).

Problem 2. Let A be a set. Prove that f preserves every relation on A if and only if f is a
projection.

Problem 3. Let A = (A;...) be a relational structure, f € Pol(A) a binary polymorphism and
g € Pol(A) a ternary polymorphism. Then the 4-ary operation h defined by

h(x1, v2, 73, 74) = g(21, f (23, 9(T2, T2, T4)), T3)
is a polymorphism of A as well. Try to formulate a general statement.

Problem 4. Find all unary and binary polymorphisms of the structure A = ({0,1}; H, Cy, C1)
from Problem Set 1 (Problem 2 — HORN-SAT).

Problem 5. Find all unary and binary polymorphisms of the structure
A = ({0,1}; all unary and binary relations)

from Problem Set 1 (Problem 1 — 2-SAT). Find some nice nontrivial (= not a projection) poly-
morphism of A.

Problem 6. Find all unary, binary, and ternary polymorphisms of the structure A = ({0, 1}; Co, C1, G1, G2)
from Problem Set 1 (Problem 3 — LIN-EQ(Z5)).

A relation R C A™ is pp-definable from A = (A;...) if it can be defined from relations
in A by a pp-formula, that is, a formula which only uses conjunction, equality, and existential
quantification. A relational structure B = (B;...) is pp-definable from A if A = B and each
relation in B is pp-definable from A. We also say that A pp-defines B.

Problem 7. Prove that any relation pp-definable from A is invariant under every polymorphism
of A.

Problem 8. Find all polymorphisms of the structure B in Problem Set 2 (Problem 8 — 3-SAT).

Problem 9. Let A be a finite structure. Prove that a relation invariant under every polymorphism
of A is pp-definable from A. Proof strategy:



(1) Denote R = {(6117 e ,Clk), ceey (le, . ,ka)}

(ii) Let aj,...,a, be a complete list of m-tuples of elements of A (i.e. n = |A|™)

(iii) Prove that the relation

S={(f(a1),..., f(an)) : f is an m-ary polymorphism}

is pp-definable from A (no need to use existential quantification)

(iv) Existentially quantify over all coordinates but those corresponding to (ci1,...,Cm1)y -«

(Clka ey ka)

(v) Prove that the obtained relation contains R (because of projections) and is contained in R

(because of compatibility)

Problem 10. Let A = (Z x Z; R,U), where

R = {((xay)v (x/ay/)) | T = $/7 |yl - y| € {1a2}}7 U= {(070)}

Prove that {(0,y) | y € Z} is invariant under every polymorphism of A, but that this set is not
pp-definable from A.

Problem 11. Observe that, for finite structures A and B,

1.
2.
3.

A pp-defines B iff Pol(A) C Pol(B) and in such a case CSP(B) <p CSP(A);
any CSP over a two—element structure is polynomially reducible to 3-SAT

if Pol(A) C Pol(B), then the proof of Problem 9 gives an explicit pp-formulas defining
relations in B from relations in A.

In particular, for B and C as in Problem Set 2, Problem 4, we get CSP(C) < CSP(B). How
large are the explicit formulas defining relations in C from relations in B?



CSP lecture 24/25 — Problem Set 4

A set of operations on a set A is a (function) clone on A if it contains all projections and
is closed under composition (as in Problem 3, Problem Set 3). A function clone on A is called
idempotent if for every operation f in it and every a € A, f(a,a,...,a) = a. For a se

Problem 1. Recall that for any relational structure A, Pol(A) is a clone.

In this problem set, we focus on function clones on the set A = {0,1}. We use the following
notation for some special operations on {0, 1}:

A the binary minimum operation
V the binary maximum operation

maj the ternary majority operation defined by maj(a,a,b) = maj(a,b,a) = maj(b,a,a) := a for
every a,b € {0,1}

min the ternary minority operation defined by min(a,a,b) = min(a,b,a) = min(b,a,a) := b for
every a,b € {0,1}

An operation f : A" — A is called essentially unary if there exist ¢ and a unary operation
a: A — Asuch that f(xq,...,2,) = afa;) for every zq,...,2, € A.

Problem 2. Assume that A is an idempotent clone on A = {0,1} that contains neither A nor V.
Show that the only binary operations in A are the two projections.

Problem 3. Assume that 4 is an idempotent clone on A = {0,1} that contains neither of
the operations A,V,maj, min. Show that the only binary and ternary operations in A are the
projections.

Problem 4. Assume that A is an idempotent clone on A = {0, 1} that contains neither of the
operations A, V,maj, min. Show that 4 contains only projections.

Problem 5. Let A be a clone on A = {0,1} with an operation which is not essentially unary.
Prove that A contains a constant unary operation, or at least one of the operations A, V, maj, min.



CSP lecture 24/25 — Problem Set 5

A ternary operation m : A% — A is called a magjority operation if m(a,a,b) = m(a,b,a) =
m(b,a,a) = a for each a,b € A (note that for |A| < 2 there is a unique majority operation on A,
otherwise there are more of them).

Problem 1. Let R C A™ be a relation compatible with a majority operation on A. Denote m; ;(R)
the projection of R onto the coordinates i, (1 < i,j < n), that is,

i (R) ={(ai,a;) : (a1,...,an) € R} .
Prove that R is determined by these binary projections, that is,

(a1,...,an) € Rif and only if (Vi,7, 1 <4,5 <n) (a;,a;) € m ;(R)

Problem 2. Let A = (A;...) be a relational structure with a majority polymorphism. Show that
there exists a relational structure B = (A;...) which contains only binary relations such that A
is pp-definable from B and B is pp-definable from A. For A = {0,1}, conclude that CSP(A) <p
2-SAT (and thus CSP(A) is solvable in polynomial time).

Problem 2.1. Let A = (Z; Ry, ..., Ry), where all relations Ry,..., R; admit a quantifier-free
definition over the relations y < x +c and y = z + ¢, where ¢ € Z. E.g. R can be the 4-ary relation
that holds on (z,y,z,¢) iff (xt >y+1Vae>2z—6)A(zx=2=t=y+1) holds. Suppose that the
ternary median operation is a polymorphism of A. Show that CSP(A) is solvable in polynomial
time.

Problem 3. Let A = ({0,1};...) be a relational structure with polymorphism min (from Problem
Set 4). Show that each n-ary relation of A is an affine subspace of Z%. Conclude that CSP(A) is
solvable in polynomial time.

Problem 4. Let A = ({0,1}; Cy, Cy, H) be as in Problem Set 1 (the corresponding CSP is HORN-
3-SAT). For every relation R C {0,1}"™ compatible with A find a pp—definition from A.

Problem 5. Prove that for each relational structure A = (4;...) with A = {0, 1}, either CSP(A)
is solvable in polynomial time or CSP(A) is NP—complete (this is Schaefer’s dichotomy theorem
(1978)). Describe the two cases in terms of polymorphisms.
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An instance of CSP(A) with set of variables V' is called I-minimal if there exists a system of
subsets P, C A, x € V such that for every constraint R(z1,...,xx), the projection of R onto the
J-th coordinate is equal to P,,. We say the instance is non-trivial if none of the sets P, is empty.

Two instances of the CSP are equivalent if they have the same set of solutions.

Problem 1. Devise a polynomial-time algorithm that transforms an instance of CSP(A) to an
equivalent 1-minimal instance of CSP(B), where B is pp-definable in A.

Recall that a semilattice operation on A is a binary operation s that is associative, commutative,
and idempotent: that is, for all a, b, c € A, the following equalities hold:

s(s(a,b),c) = s(a,s(b,c))
s(a,b) = s(b,a)

s(a,a) =a
A totally symmetric operation on A of arity n is an operation ¢t: A™ — A such that t(aq,...,a,) =
t(b1,...,b,) whenever {ay,...,a,} = {b1,...,bn}, i.e., the value of the operation only depends on

the set of its arguments.
Problem 2. Give examples of semilattice operations.

Problem 2.1. Prove that every clone that contains a semilattice operation contains for every
n > 1 a totally symmetric operation of arity n.

Problem 2.2. Let A be finite. Prove that if Pol(A) contains totally symmetric operations of all
arities n > 1, then it contains a family of totally symmetric operations si, So,... where s, has
arity n and $p41(21,21,T2,...,2n) = $p(21,...,2,) holds for all xy,...,z, € A.

Problem 3. Suppose that A is a finite relational structure that has totally symmetric polymor-
phisms of all arities n > 1. Show that every non-trivial 1-minimal instance of CSP(A) has a
solution. Conclude that CSP(A) is solvable in polynomial time.

Problem 4. Show the converse: let A be finite and suppose that every non-trivial 1-minimal
instance of A has a solution. Prove that Pol(A) contains totally symmetric polymorphisms of all
arities n > 1.

An instance of a CSP with variables V = {xz1,...,2,} over the set A is called simple (2, 3)-
minimal if it satisfies all the following conditions:

e For each 1 < ¢ < n, there is a single unary constraint P;(z;) where P; C A,

e For eachpairi,j € {1,...,n} of distinct integers, there is a single binary constraint P; ;(x;, x;),
where P; ; C A?,

e Pj=P (ie, Pij ={(ba) | (a,b) € P;;}),
e There are no other constraints except the ones mentioned above,

e The instance is 1-minimal: for all 7, j, the restriction of F; ; to its first coordinate equals F;,

e For each triple ¢,j,k € {1,...,n} of distinct integers and each (a,b) € P, ;, there exists a

¢ € Py, such that (a,c) € Py, and (b, c) € Pj .

A



Problem 5. Let us represent a simple (2, 3)-minimal instance as a multipartite graph as follows:
each variable z; corresponds to one set whose vertices are the elements of P;, and for every
distinct 4,5 and (a,b) € P, j, there is an edge between the corresponding vertices ¢ € P; and
b € P;. Describe what the last two items in the definition of (2, 3)-minimality mean for this graph.

Problem 6. Let A be a finite structure and have only unary and binary relations. Devise a
polynomial-time algorithm that transforms any instance of CSP(A) into an equivalent simple
(2,3)-minimal instance of CSP(B), where B is pp-definable in A.

Problem 7. Adapt the algorithm from the previous problem for the case where A has relations
of arbitrary arity but Pol(A) contains a majority operation.

Problem 8. Suppose that A has a majority polymorphism. Show that every non-trivial simple
(2,3)-minimal instance of CSP(A) has a solution.

Remark 1. It is also possible to characterize the property “Every non-trivial (2,3)-minimal
instance of CSP(A) has a solution” in terms of Pol(A), although the proof is beyond the scope of
the course: the property is equivalent to Pol(A) containing for all n > 3 an operation w of arity n
that satisfies

w(xayv“-ay) :UJ(ya%y,---ay):"':w(y7~-~»y7$)~
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We assume throughout the sheet that every set is finite. A Maltsev operation is an operation
m: A3 — A that satisfies m(a,b,b) = m(b,b,a) = a for all a,b € A.

Problem 1. A relation R C A™ is rectangular if for alli € {1,...,n},alla,b € A" ¢,d € A, whe-
never (al, ey Ai—1,C Q447 - ,an), (blv [N ,bifl, C, bi+1, N ,bn), (bl, ey bi*lv d, bi+1, ey bn) € R,
then (a1,...,a;-1,d,a;41,...,a,) € R. Show that every relation that is invariant under a Maltsev
operation is rectangular.

We say that t,t' € A" witness (i,a,b) € {1,...,n} x A2 if (t1,...,t;i_1) = (t,...,t;_;) and
t; =a,t; =b. Let R C A™. The signature of R is the set
Sigp := {(i,a,b) € [n] x A* | 3t,t' € R that witness (i,a,b)}.
We say that R' C R is a representation of R if Sigp = Sigp, and that the representation is
compact if |R'| <2-|Sigp |-

Problem 2. Observe that every R has a compact representation. Describe a concrete compact
representation of A™.

Given a subset R C A™ and an operation f: A™ — A, the relation generated by R under
f, denoted by (R)y, is the smallest relation S containing R and that is invariant under f. For
i, im €41, ..o n} let 0 (R) = {(asy, .-+, ai,) | (@1,...,an) € R}.

Problem 3. Suppose that R is invariant under a Maltsev operation f and that R’ is a repre-
sentation of R. Show that (R'); = R.

For the next exercises, we fix the following:
e RC A" S C A™ are invariant under a Maltsev operation f,
e R’ C R is a compact representation of R,

° il,...,imE{l,...,n},

e The relation 7T is defined by {(a1,...,an) € R| (ai,,-..,a:,) € S}.

Problem 4. Give an algorithm that takes as input R/, (i1,...,%m), S, and decides whether T is
non-empty, in which case the algorithm should also return an arbitrary tuple in 7. The running
time should be polynomial in » and |m(;, YRl < |A™.

yeestm

Problem 5. Give an algorithm that takes as input R’ and ¢, and outputs a compact represen-
tation of R|. := {(a1,...,a,) € R | a1 = ¢} in time polynomial in |R’| and n.

Note that by iterating the algorithm, one can also compute a compact representation of
Rlcl,.“,cm - {(ala B an) eER | ay =Cr1y...,Qm = C'm}-
Problem 6. Show that one can compute, in time polynomial in n, |R’| (and |A|™), a compact

representation of 7T'.

Problem 7. Prove that if A is a finite relational structure such that Pol(A) contains a Maltsev
polymorphism, then CSP(A) is solvable in polynomial time.

10
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Given an equivalence relation ~ on a set V and v € V, we denote by v/ ~:={w eV | v ~ w}
the equivalence class of v. Recall that given a relational structure G and an equivalence relation ~
on the domain of G, the structure G/ ~ is the structure with same signature as G, whose domain
is the set of ~-equivalence classes, and where for every k-ary relation R in the signature, we have

(V1) ~y .. 05/ ~) € R®/~ & Juwy, ..., wy s.t. wy ~v1,..., w5 ~ v and (w1, ..., w) e R®

Definition. Let A, B be relational structure. We say that B has a pp-interpretation in A if B is
isomorphic to a structure of the form (S; Ry,..., Ry)/ ~, where:

e S C A" is pp-definable in A,

e ~C S? is an equivalence relation that is pp-definable in A, as a relation of arity 2n: there
exists a pp-formula ¢ (21,...,Zpn,y1,...,Ys) such that for all (ay,...,a,),(b1,...,b,) €S,

(ala"'aan)N(bla"'abn)@A):qb(alv"'aanablw";bn)

e Similarly, for every R; C S* of arity k, there is a pp-formula ) (1.1, ..., ¥1.ny -+, Th1s- -+ Thon)
with kn free variables such that

(ar,....ar) ER & A ¢ (a,...,a5)

Problem 0. Observe that if B has a pp-interpretation in A, then CSP(B) reduces to CSP(A).

Observe that if C has a pp-interpretation in B and B has a pp-interpretation in A, then C has a
pp-interpretation in A.

The goal of this sheet is to show the following:

Theorem. Let G = ({v1,...,v,};E) be an undirected graph without loops and containing a
triangle. Then K3 has a pp-interpretation in (G, {vi},...,{v,}), the relational structure obtained
by expanding G by one unary relation for every vertex of G.

The proof goes by induction on n, where the base case is n = 3 for which the result is clearly
true. For the rest of the sheet, let G = ({v1,...,v,}; E) be an undirected graph with vertices
V ={v1,...,v,}, without loops and containing a triangle.

Problem 1. Suppose that one of the conditions below is satisfied. Show that in every case,
(G,{v1},...,{vn}) pp-interprets a proper subgraph H = (W;F) (i.e., with at least one of the
inclusions W C V| F C F being proper) that contains a triangle.

a) G contains a complete graph on 4 vertices,
b) Some vertex v; does not belong to a triangle,
c¢) Some edge of G does not belong to a triangle.

Conclude that if any of the conditions is true, then K3 has a pp-interpretation in (G, {v1 },...,{vp}).

We assume from here on that conditions a-c are not true in G.

11



Problem 2. The diamond is the following graph:

Let z ~ y be the relation that relates x and y iff they are connected by a chain of diamonds:

Show that ~ is an equivalence relation that has a pp-definition in G.

Problem 3. Suppose that the following condition holds:
d) some edge of G belongs to two triangles.
In particular, G contains a diamond and ~ from Problem 2 contains a pair (z,y) with = # y.

e Show that if there is an edge (z,y) in G such that © ~ y, then (G,{v1},...,{vn}) DPP-
interprets a proper subgraph containing a triangle, and conclude that K3 has a pp-interpretation

in (G,{v1},...,{vn}).

e On the other hand, suppose that for all z,y, if © ~ y then (z,y) is not an edge. What
does this imply for (G, {vi},...,{vn})/ ~? Conclude that K3 has a pp-interpretation in

(G, {v1}, ..., {vn}).

Thus, we assume from here on that condition d) also fails, i.e., every edge belongs to a unique
triangle. The next goal is to show that a power of K3 has a pp-interpretation in (G, {v1},...,{v,}).

For k > 1, let Py, := (Kg)k be the k-th power of K3, whose universe is {1,2,3}* and whose edges
are of the form (a,b) where for all i € {1,...,k},a; # b;.

Problem 4. Let h:P;, — G be a homomorphism. Show that there is a set I C {1,...,k} such
that for all x,y € {1,2,3}*
h(x)=h(y) eViel,z, =y.

Conclude that the subgraph of G induced by the range of h is isomorphic to P,,,, where m = |I|.
The following strategy can be used:

e Let I C {1,...,k} be maximal such that h(x) = h(y) implies x; = y; for all i € I.

o Let j € {1,...,k}\I. We show that if a,b agree on all coordinates except a; # b;, then
h(a) = h(b).

e By maximality of I, there exist x,y such that h(x) = h(y) but z; # y,.

e Show that the following graph is a (non-induced) subgraph of Py, (i.e., find witnesses for the
vertices ¢, u, v, w), and use this to conclude that h(a) = h(b):

12



e Finally, conclude that if a; = b; for all ¢ € I, then h(a) = h(b).

Let k be maximal such that Py, is isomorphic to an induced subgraph of G(k > 1 is well-defined
since G contains a triangle by assumption). By abuse of notation, we consider Py, itself to be an
induced subgraph of G.

Problem 5. Show that the vertex set of Py is pp-definable in (G, {v1},...,{v.}).

Hint: This is equivalent to showing that for every idempotent polymorphism f of G, the vertex
set of P is invariant under f. Observe that f induces a homomorphism P, — G, where n is the
arity of f.

Problem 6. To conclude the proof of the theorem, show that for all £ > 1, K3 has a ppinter-
pretation in the expansion of Py by all unary constant relations.

Hint: show that the equivalence relation x ~ y :< x1 = y; is pp-definable in the expansion of P, by
all unary constant relations. There are two approaches, either by finding a concrete pp-definition,
or by showing that ~ is preserved under every idempotent polymorphism of Pj.

Problem 7.  Show the following corollary (Hell-Nesetfil, 1990): let G = (V; E) be a finite
undirected graph without loops. Then CSP(G) is in P if G is bipartite, and CSP(G) is NP-
complete otherwise.

Hint: if G = (V; E) is not bipartite, it has a cycle of length 2¢ + 1 for some ¢. Take ¢ minimal.
Consider the graph H on V where (x,y) is an edge iff there is (in G ) a walk of length 2¢ — 1
between x and y. What can be said about H ?
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CSP lecture 24/25 — Problem Set 9

All sets here are assumed finite. Clones are idempotent. (These assumptions are sometimes not
necessary.)

A relation R C A? is subdirect, written R Cyq A2, if its projection to each of the two coordinates
is equal to A. A relation R C A? is linked if it is subdirect and, for each a,a’, there is a “fence”
R(a = ag, bo), R(a1,bo), R(ax,b1), R(az,b1), ..., R(an = a’,b,—1) for some n, a; € A, b; € A.

Problem 1. Suppose that G = (V; E) is a connected undirected graph. Show that E C V2 is
linked iff G is non-bipartite.

Problem 2. Let R C A2 Show that there exists a largest B C A (w.r.t. inclusion) such that
RN (B x B) Cyq B? and show that this B is pp-definable from R. Let’s call this B the “subdirect
part” of R. Show that the subdirect part of R is nonempty iff R contains a directed cycle.

Let f: A" — A and B C A. We say that B absorbs A with respect to f, and write B <f A, if
f(ay,...,a,) € B whenever all the a; but at most one are in B. For a clone A on A, we say that
B is an absorbing subuniverse of A, written B <y A, if B is invariant under A, f € A, and B <y A.

Problem 3. Consider the important idempotent clones on {0,1} (generated by the binary
minimum/maximum, majority, minority). What are the absorbing subuniverses?

Problem 4. Let A be a clone. Suppose that R Cyq A? is invariant under A and B, C < A.
Show that BN C <y A, that B+ R := {c: 3b (b,c) € R} <y A, and that the “subdirect part” of
BN (R x R) absorbs A with respect to f, as well. (Side note: if B <y A and C <4 A, then there
exists a common h such that B, C <y, A; hint: star composition defined below.)

Problem 5. Let A be a clone. Suppose that R Cyq A? is linked and invariant under A, B <y A,
and S := RN (B x B) Cyq B2. Show that S is linked.

Problem 6. Let R C A? be linked and invariant under A and let B <A be nontrivial
(i.e., 0 # B C A). Show that there exists a nontrivial C C A invariant under A such that
S:=RN(C x C) Cyq C? and S is linked.

Let f: A" — A and a : [n] — [m]. The operation f®: A™ — A defined by f“(a1,...,amn) =
J(aa(1), @a(2), - - - @a(n)) is called a minor of f. For two clones A, B, an arity preserving mapping
¢ : A — Bis a minion homomorphism if it preserves minors, i.e., £(f) = [£(f)]* (for every n,
n-ary f € A, and every « : [n] — [m]).

Remark: There exists a minion homomorphism Pol(A) — Pol(B) iff A pp-constructs B.

A clone is Taylor if it is idempotent and there exists no homomorphism from & to the clone of
projections (say, on a two-element set). By the remark, Pol(A) is not Taylor iff A pp-constructs
all finite structures.

A subset B C A is called a projective subuniverse of A if for every f € A there exists a
coordinate ¢ such that f(ay,...,a,) € B whenever a; € B.

Problem 7. Let B be a projective subuniverse of A. Show that B <, A (where g can be taken
binary) or A is not Taylor.

Problem 8. Suppose that A has no nontrivial projective subuniverses. Show that A contains
a transitive operation, i.e., f € A such that for every coordinate ¢ and every a,b € A, there exists
(a1,...,a,) € A™ such that a; = a and t(ay,...,a,) =b.
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The left center of R C A? is the set {a: Vb € A (a,b) € R}.

Problem 9. Suppose that R C,q A? is compatible with a transitive operation f : A” — A and
let B be the left center of R. Show that B <y A.

Problem 10. Suppose that R C,q A? is linked. Show that R together with the singleton unary
relations {a} pp-defines a relation S Cyq A%, S # A% with a nonempty left center.

Problem 11. Suppose that A is Taylor and R C A2 is linked and invariant under A. Show that
there exists a nontrivial B <. A. (This is so called Absorption Theorem.)

Problem 12. Suppose that A is Taylor and R C A? is linked and invariant under .A. Show that
(a,a) € R for some a € A. (This is so called Loop Lemma.) Deduce the Hell-NeSet¥il dichotomy
theorem for undirected graphs (Problem 7 in Problem Set 8)
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