Uniform generation by minors 0 0000 0000 Clonoids between vector spaces 0000000

Clonoids and uniform generation by minors

Stefano Fioravanti, Michael Kompatscher, Bernardo Rossi

Charles University

BLAST 2025 May 21st 2025, CU Boulder

Uniform generation by minors 0 0000 0000

Clonoids between vector spaces

Outline

Clonoids

Definition and examples History Clonoids between modules

Uniform generation by minors

Definition and example Simplifications of existing classifications

Clonoids between vector spaces

Clonoids between vector spaces

Clones and clonoids

Clones $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a clone on \mathcal{A} if • all $\pi_i^n \in \mathcal{A}$ with $\pi_i^n(x_1, \dots, x_n) = x_i$ • $f, g_1, \dots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \dots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$ Clo(\mathbf{A}) := term clone of algebra \mathbf{A}

Clonoids

For clones \mathcal{A}, \mathcal{B} (on \mathcal{A}, \mathcal{B}), $\mathcal{C} \subseteq \bigcup_{n \geq 1} \mathcal{B}^{\mathcal{A}^n}$ is a $(\mathcal{A}, \mathcal{B})$ -clonoid if

- $\mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C}$,
- $\mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}$.

An (\mathbf{A}, \mathbf{B}) -clonoid is a $(Clo(\mathbf{A}), Clo(\mathbf{B}))$ -clonoid.

Goal: For given algebras A, B, describe the (A, B)-clonoids.

Uniform generation by minors 0 0000 0000

Clonoids between vector spaces

Example:
$$A = B = (\mathbb{Z}_2, +, -, 0)$$

 $\mathcal{C} \subseteq \bigcup_{n \ge 1} \mathbb{Z}_2^{\mathbb{Z}_2^n}$ is (\mathbf{A}, \mathbf{B}) -clonoid $\Leftrightarrow \circ$ -closed under linear functions

Represent $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ by reduced polynomials, e.g.

$$f(x, y, z, u) = 1 + xz + xyz.$$

Then
$$f \in \mathcal{C} \Rightarrow f(0, 0, 0, 0) = 1 \in \mathcal{C}$$
,
 $\Rightarrow f(x, 0, z, 0) - 1 = xz \in \mathcal{C}$
 $\Rightarrow f(x, y, z, 0) - 1 - xz = xyz \in \mathcal{C}$

Conversely f(x, y, z, u) = 1 + xxz + xyz.

In general: $f \in \mathcal{C} \Leftrightarrow f(0, \dots, 0), x_1 x_2 \cdots x_{\deg(f)} \in \mathcal{C}$

Uniform generation by minors 0 0000 0000

Clonoids between vector spaces

Example: $A = B = (\mathbb{Z}_2, +, -, 0)$

 $\langle F \rangle_{\mathbf{A},\mathbf{B}} = \text{smallest } (\mathbf{A},\mathbf{B})\text{-clonoid containing } F.$

Observations

- lattice ordered by \subseteq
- ω-many (**A**, **B**)-clonoids
- all but top two clonoid have finite generating set *F*

[Kreinecker '19]

Complete classification for all

 $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p.$

Jniform generation by minors 0 0000 0000

Clonoids between vector spaces

Goal revisited

Goal

For given finite algebras A, B:

- Describe the *lattice* of (**A**, **B**)-clonoids.
- What is its cardinality?
- Find nice generating sets.

Observation

Finite lattice $\Leftrightarrow \exists k \in \mathbb{N} \colon \mathcal{C} = \langle \mathcal{C}^{(k)} \rangle$ for every (\mathbf{A}, \mathbf{B}) -clonoid \mathcal{C} .

 $\mathcal{C}^{(k)} = \mathcal{C} \cap B^{A^k}$

Clonoids between vector spaces

Some known results

- Pippenger '02 : (A, B)-clonoid = minor closed set/minion. Minions are equal to $Pol(\mathbb{A}, \mathbb{B}) = \{h \colon \mathbb{A}^n \to \mathbb{B}, n \ge 1\}$ for relational structures \mathbb{A}, \mathbb{B} .
- $\begin{array}{l} \mbox{Couceiro, Foldes '09} \ : \ (\mathcal{A},\mathcal{B})\mbox{-clonoid} = \mbox{left/right stable} \ under \ \mathcal{A}/\mathcal{B} \\ (\mathcal{A},\mathcal{B})\mbox{-clonoids} = \mbox{Pol}(\mathbb{A},\mathbb{B}) \ \mbox{for } \mathbb{A},\mathbb{B} \ \mbox{invariant under } \mathcal{A},\mathcal{B}. \end{array}$

Lehtonen, Szendrei '11 : $(\mathcal{A}, \mathcal{A})$ -clonoids study of clones \mathcal{A} with finitely many \mathcal{A} -equivalence classes $(f \equiv g \Leftrightarrow \langle f \rangle = f \circ \mathcal{A} = g \circ \mathcal{A} = \langle g \rangle)$

Aichinger, Mayr '16 : (A, B)-clonoid = B-clonoid

Sparks '19 : The number of (A, \mathbf{B}) -clonoid is

- 1. finite if **B** has NU-term,
- 2. ω if **B** has few subpowers, no NU-term,

3. 2^ω else.

Lehtonen '25 : classification of (\mathcal{A}, \mathcal{B})-clonoid, for Boolean \mathcal{A}, \mathcal{B}

Clonoids between vector spaces

Erkko's results on Boolean clonoids

Cardinalities of (C_1, C_2) -clonoid lattices [V01, V] [MU[™], MU[∞]] U∞ Um Wm [J, I] $[l^*, \Omega(1)]$ [A₀₁, A] [MW[∞]₀₁, MW[∞]] W∞ $[L_{01}, L] = [\{SM, MU_{01}^k, MW_{01}^k\}, \Omega]$ J U U U I_0, I_1 U U U U U С U F С U U FUFUFUF С U U U U F 1* $\Omega(1)$ U U U С F U U U FFFF V₀₁, Λ₀₁ U F U U FUF V_{0*}, Λ_{*1} F V+1. An-U U U F U V. A U U U U U U U U U U U U U U U F FFFCC MUk1, MWk1 F MU^k, MW^k U U U U U U U U U_{01}^k, W_{01}^k U U U Uk. Wk U F U U U Lot U U Lo., L.1 U U F С LS U U U U U U F С L Ū U U F SM U U F F С С F F F. [M₀₁, M] F F F F F $[S_{01}, \Omega]$ F F F E. Lehtonen (Khalifa University) Clonoids 8 April 2025, Sorbonne Abu Dhabi 69/7

Clonoids between vector spaces

Clonoids between modules

R-modules are algebras $\mathbf{A} = (A, +, -, 0, (r)_{r \in \mathbf{R}})$, with $r(x) = r \cdot x$.

$$Clo(\mathbf{A}) = {\mathbf{x} \mapsto \mathbf{r}^T \mathbf{x} = \sum_{i=1}^n r_i \cdot x_i \text{ with } r_i \in \mathbf{R}.}$$

Goal

Describe the (A, B)-clonoids for finite modules A, B.

Motivation: 2-nilpotent algebras

- classification results [Aichinger, Mayr '07], [Fioravanti '21]
- equational bases [Mayr, K. '24]
- complexity of computational problems
 CEQV [Kawałek, K., Krzaczkowski '24], SMP [K. '24] [Patrick Wynne's talk]

Clonoids between vector spaces

Finitely many clonoids

Conjecture for A, B finite modules

There are finitely many (**A**, **B**)-clonoids \Leftrightarrow gcd(|A|, |B|) = 1.

" \Rightarrow " [Mayr, Wynne '24]

as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

"⇐" True for:

- $\mathbf{A} = \mathbb{F}$ (1-dim. vector space) [Fioravanti '20]
- $\mathbf{A} = \mathbb{F}_1 imes \mathbb{F}_2 imes \cdots imes \mathbb{F}_m$ (as regular module) [Fioravanti '21]
- Con(**A**) is distributive [Mayr, Wynne '24] (*k*-generated, *k* = nilpotence-degree of Jacobson radical of **R**_A)
- $\mathbf{A} = \mathbb{F}^k$ (k-dim. vector space) [Fioravanti, MK, Rossi '25] (k-generated) (in preparation)

Uniform generation by minors

• 0000 0000 Clonoids between vector spaces

Outline

Clonoids

Definition and examples History Clonoids between modules

Uniform generation by minors

Definition and example Simplifications of existing classifications

Clonoids between vector spaces

Clonoids between vector spaces

Generation from minors

Let **A**, **B** be modules, $f : A^k \to B$, $C = \langle f \rangle$. Question: When is $C = \langle C^{(n)} \rangle$?

$$\mathcal{C}^{(n)} = \mathcal{B} \circ f \circ \mathcal{A}^{(n)}$$

= $\mathcal{B} \circ \{ \mathbf{x} \mapsto f(U\mathbf{x}) : U \in \mathbf{R}^{k \times n}_{\mathbf{A}} \}$
 $\langle \mathcal{C}^{(n)} \rangle = \mathcal{B} \circ \{ \mathbf{x} \mapsto f(M\mathbf{x}) : M \in \mathbf{R}^{k \times m}_{\mathbf{A}}, rk(M) \le n \}$
 $rk(M) \le n \Leftrightarrow M = UV, U \in \mathbf{R}^{k \times n}_{\mathbf{A}}, V \in \mathbf{R}^{n \times m}_{\mathbf{A}}$

So
$$\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle \Leftrightarrow f(\mathbf{x}) = \sum_{rk(\mathcal{M}) \leq n} r_{\mathcal{M}} f(\mathcal{M}\mathbf{x})$$
 for $r_{\mathcal{M}} \in \mathbf{R}_{\mathbf{B}}$

Uniform generation by minors O • O 0 O • O 0 O • O 0

Clonoids between vector spaces

Generation from minors

Let \mathcal{A}, \mathcal{B} be clones, $f : \mathcal{A}^k \to \mathcal{B}, \mathcal{C} = \langle f \rangle$. Question: When is $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$?

$$\mathcal{C}^{(n)} = \mathcal{B} \circ f \circ \mathcal{A}^{(n)}$$

= $\mathcal{B} \circ \{ \mathbf{x} \mapsto f(U\mathbf{x}) : U \in \mathbf{R}_{\mathbf{A}}^{k \times n} \}$
 $\langle \mathcal{C}^{(n)} \rangle = \mathcal{B} \circ \{ \mathbf{x} \mapsto f(r(\mathbf{x})) : rk_{\mathcal{A}}(r) \leq n \}$
 $rk_{\mathcal{A}}(r) \leq n \Leftrightarrow \exists u_i \in \mathcal{A}^{(n)}, v_j \in \mathcal{A} : r_i = u_i \circ (v_1, \dots, v_n)$

So
$$C = \langle C^{(n)} \rangle \Leftrightarrow f = t \circ (f \circ r_1, \dots, f \circ r_s),$$

for $t \in \mathcal{B}, rk_{\mathcal{A}}(r_i) \leq n$

Clonoids between vector spaces

Uniform generation from minors

Definition

For clones $\mathcal{A}, \mathcal{B}, U \subseteq B^{\mathcal{A}^k}$ is uniformly generated by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors if $\exists t \in \mathcal{B}, r_1, \ldots, r_s$ with $rk_{\mathcal{A}}(r_i) \leq n$

$$\forall f \in U \colon f = t \circ (f \circ r_1, f \circ r_2, \dots, f \circ r_s).$$

For modules **A**, **B**:

 $U \subseteq B^{A^k}$ is uniformly generated by *n*-ary minors if $\exists r_M \in \mathbf{R}_{\mathbf{B}}$.

$$\forall f \in U \colon f = \sum_{rk(M) \leq n} r_M f(M\mathbf{x}).$$

Uniform generation by minors OOOO OOOO

Clonoids between vector spaces

Example [Fioravanti '20]

 $\mathbf{A} = \mathbb{F}$, \mathbf{B} coprime module

For all $f : \mathbb{F}^2 \to B$ with f(0,0) = 0:

$$I(f)(x,y) := |F|^{-1} \left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0) \right) = \begin{cases} f(x,y) \text{ if } y = 0 \\ 0 \text{ else.} \end{cases}$$

(similar for lines other than y = 0)

$$\Rightarrow \exists r_M \in \mathbf{R}_{\mathbf{B}} \forall f \in B^{\mathbb{P}^2} \colon f(\mathbf{x}) = f(\mathbf{0}) + \sum_{\mathsf{rk}(M)=1} r_M f(M\mathbf{x})$$

- $\{f : \mathbb{F}^2 \to B\}$ is uniformly generated by unary minors.
- *I* is *uniformly representable* by unary minors.

Uniform finite generation

Observation [Fioravanti, MK, Rossi '25] For clones \mathcal{A} , \mathcal{B} , the following are equivalent: 1. $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors, 2. $\forall k : B^{A^k}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors, 3. All **ur** $I : B^{A^k} \to B^{A^l}$ are **ur** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors.

Consequence

 $B^{A^{n+1}}$ is **ug** by *n*-ary $(\mathcal{A}, \mathcal{B})$ -minors $\Rightarrow \forall (\mathcal{A}, \mathcal{B})$ -clonoid: $\mathcal{C} = \langle \mathcal{C}^{(n)} \rangle$

Example [Fioravanti '20] $\{f : \mathbb{F}^2 \to \mathbf{B}\}$ is ug by 1-minors $\Rightarrow \mathcal{C} = \langle \mathcal{C}^{(1)} \rangle$ for (\mathbb{F}, \mathbf{B}) -clonoids

Clonoids between vector spaces

Products

Observation 2 [Fioravanti, MK, Rossi '25]

- $B^{A_1^k}$ ug by *n*-ary $(\mathcal{A}_1, \mathcal{B})$ -minors
- $B^{A_2^k}$ ug by *n*-ary $(\mathcal{A}_2, \mathcal{B})$ -minors
- $\Rightarrow B^{(A_1 \times A_2)^k}$ ug by *n*-ary $(\mathcal{A}_1 \times \mathcal{A}_2, \mathcal{B})$ -minors.

Example [Fioravanti '21]

For $\mathbf{A} = \mathbb{F}_1 \times \mathbb{F}_2 \times \cdots \times \mathbb{F}_m$, \mathbf{B} coprime: $\mathcal{C} = \langle \mathcal{C}^{(1)} \rangle$.

Example [Mayr, Wynne '24]

Conjecture true for uniserial $\mathbf{A} \Rightarrow$ true for Con(\mathbf{A}) distributive.

Clonoids between vector spaces

Beyond modules

Example [Sparks '19]

- \mathcal{P}_A projection clone on A
- \mathcal{B} contains a NU-operation of arity n

$$\Rightarrow B^{\mathcal{A}^k}$$
 is **ug** by $|\mathcal{A}|^n$ -ary $(\mathcal{P}_{\mathcal{A}}, \mathcal{B})$ -minors.

Caution

Not all finiteness results are covered by ug!

Example [Lehtonen, Szendrei '11]

For $\mathcal{A} = \bigcup_{n \in \mathbb{N}} \mathcal{A}^{\mathcal{A}^n} \exists^{<\omega} (\mathcal{A}, \mathcal{P}_{\mathcal{A}})$ -clonoids, but $\forall n : \mathcal{A}^{\mathcal{A}^{n+1}}$ is **not ug** by *n*-ary $(\mathcal{A}, \mathcal{P}_{\mathcal{A}})$ -minors.

Additional consequences

Relational bases Assume $C = \langle C^{(n)} \rangle$, for every $(\mathcal{A}, \mathcal{B})$ -clonoid. Then $C = \text{Pol}(\mathbb{A}, \mathbb{B})$, for $\mathbb{A} = (\mathcal{A}, \mathcal{A}^{(n)}), \mathbb{B} = (\mathcal{B}, \mathcal{C} \circ \mathcal{A}^{(n)}).$ Equational basis Assume $C = \langle C^{(n)} \rangle$, for every (\mathbf{A}, \mathbf{B}) -clonoid. Then

 $f = g \Leftrightarrow f \circ (t_1, \dots, t_k) = g \circ (t_1, \dots, t_k)$ for all $t_1, \dots, t_k \in \mathsf{Clo}(\mathbf{A})^{(n)}$

 \rightsquigarrow **ug** helpful for equational basis of C (as many-sorted algebra **A**, **B**, C^(k)). Example [Mayr, K.'24]

Nilpotent extensions of $\mathbb{Z}_p \times \mathbb{Z}_q$ for primes $p \neq q$ are finitely based.

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces •000000

Outline

Clonoids

Definition and examples History Clonoids between modules

Uniform generation by minors

Definition and example Simplifications of existing classifications

Clonoids between vector spaces

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

Clonoids from \mathbb{F}^k to **B**

Goal for $\mathbf{A} = \mathbb{F}^k$: Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:

$$\forall f \colon \mathbb{F}^{(k+1) \times k} \to B \colon f(X) = \sum_{\mathsf{rk}(M) \leq k} r_M f(MX).$$

Proof outline (induction step $k - 1 \rightarrow k$):

1. By induction hypothesis: $\exists r'_M$:

$$f(X) = \sum_{\mathsf{rk}(M) \le k-1} r'_M f(MX) \text{ for } \mathsf{rk}(X) \le k-1.$$

2. \Rightarrow wlog f(X) = 0 if $\mathsf{rk}(X) \leq k - 1$.

3. Find coefficients r_M such that

$$I(f)(X) = \sum_{\mathsf{rk}(M)=k} \mathsf{r}_M f(MX) = \begin{cases} f(X) \text{ if } \mathbf{e}_{k+1}^T X = 0\\ 0 \text{ else.} \end{cases}$$

4. use operations as in (3) to cover all subspaces $\mathbf{a}^T X = 0$ and sum up.

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

Proof step 3

Find coefficients r_M such that

$$I(f)(X) = \sum_{\mathsf{rk}(M)=k} r_M f(MX) = \begin{cases} f(X) \text{ if } \mathbf{e}_{k+1}^T X = 0\\ 0 \text{ else.} \end{cases}$$

wlog $\mathbf{B} = \mathbb{K}$ is a field.

1. Let
$$\chi_N(X) := \begin{cases} 1 \text{ if } X = N \\ 0 \text{ else.} \end{cases}$$

2. It is enough to find r_M with

$$\chi_{(Id,0)}\tau(X) = \sum_{\mathsf{rk}(M)=k, M \in \mathbb{K}^{k \times (k+1)}} r_M \chi_{Id}(MX)$$

3. MX = Id has solution space of form

$$\theta_{X_0,\mathbf{u}} = \{X_0 + \mathbf{uv}^T | \mathbf{v} \in \mathbb{F}^k\}, \mathbf{u} \notin R(X_0)$$

4. find formula $\chi_{(Id,0)^T}(X) = \sum_{V \text{ is } \theta - \text{space }} \chi_V(X)$

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

Upper bounds

Observation [Fioravanti, MK, Rossi '25] For modules **A**, **B**:

$$\langle B^{A^m} \rangle_{\mathbf{A},\mathbf{B}} = \bigcup_{n \in \mathbb{N}} B^{A^n} \Rightarrow m \ge \frac{\log |A|}{\log |R_A|}.$$

Corollary [Fioravanti, MK, Rossi '25] $(\mathbb{F}^k, \mathbf{B})$ -clonoids, for coprime \mathbb{F} , **B**

- are generated by their k-ary functions
- in general not by their (k-1)-ary functions.

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

The lattice of $(\mathbb{F}^k, \mathbf{B})$ -clonoids

Task

Describe the lattice of $(\mathbb{F}^k, \mathbf{B})$ -clonoids \mathcal{C} .

•
$$\mathcal{C}^{(0)} \leq \mathbf{B}$$
,

•
$$\{f \in \mathcal{C}^{(1)} \mid f(0) = 0\} \leq \mathbf{B}^{\mathbb{F}^k \setminus \{0\}}$$
 as $\mathbf{R}_{\mathbf{B}}[\mathbb{F}^*]$ -module

•
$$\{f \in \mathcal{C}^{(m)} \mid f(X) = 0 \text{ for } X \notin R_m\} \leq \mathbf{B}^{R_m} \text{ as } \mathbf{R}_{\mathbf{B}}[GL(\mathbb{F}, m)]\text{-module}$$

 $R_m = \{X \in \mathbb{F}^{k \times m} \mid rk(X) = m\}$

Corollary [Fioravanti, MK, Rossi '25] The lattice of $(\mathbb{F}^k, \mathbf{B})$ -clonoids $\cong \prod_{m=0}^k L_m$, with

 L_m = lattice of $\mathbf{R}_{\mathbf{B}}[GL(\mathbb{F}, m)]$ -submodules of \mathbf{B}^{R_m} .

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

Back to the conjecture

Conjecture

Every (A, B)-clonoid is finitely generated $\Leftrightarrow \gcd(|A|, |B|) = 1$.

Now confirmed for:

- $\mathbf{A} = \mathbb{F}^k$ vector spaces
- $\mathbf{A} = \mathbb{F}_1^{k_1} \times \mathbb{F}_2^{k_2} \times \cdots \times \mathbb{F}_n^{k_n} \times \mathbf{A}'$, as $(\mathbb{F}_1 \times \cdots \times \mathbb{F}_n \times \mathbf{R}_{\mathbf{A}'})$ -module, with Con(\mathbf{A}') distributive.

It would be enough to prove:

Conjecture (*)

For **A** abelian *p*-group, **B** coprime abelian group. $\exists k: B^{A^{k+1}}$ uniformly generated by *k*-ary (**A**, **B**)-minors.

Uniform generation by minors 0 0000 0000 Clonoids between vector spaces

Thank you!

Questions? Remarks? Counterexamples?