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Clones and clonoids

Clones
A ⊆

⋃
n≥1 A

An
is a clone on A if

• all πn
i ∈ A with πn

i (x1, . . . , xn) = xi
• f , g1, . . . , gk ∈ A ⇒ f ◦ (g1, . . . , gk) ∈ A (A ◦ A ⊆ A)

Clonoids
For clones A,B (on A,B), C ⊆

⋃
n≥1 B

An
is a (A,B)-clonoid if

• C ◦ A ⊆ C,
• B ◦ C ⊆ C.

An (A,B)-clonoid is a (Clo(A),Clo(B))-clonoid.

Goal: For given clones A, B, describe the (A,B)-clonoids.
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Some known results

Pippenger ’02 : (A,B)-clonoid = minor closed set/minion.
Minions are equal to Pol(A,B) = {h : An → B, n ≥ 1} for
relational structures A,B.

Couceiro, Foldes ’09 : (A,B)-clonoid = left/right stable under A/B
(A,B)-clonoids = Pol(A,B) for A,B invariant under A,B.

Lehtonen, Szendrei ’11 : (A,A)-clonoids
study of clones A with finitely many A-equivalence classes
(f ≡ g ⇔ f ◦ A = g ◦ A)

Aichinger, Mayr ’16 : (A,Clo(B))-clonoid = clonoid with target B

Sparks ’19 : The number of (A,B)-clonoid, for |A|, |B| ≥ 2 is

1. finite if B has NU operation,
2. ω if B has few subpowers, no NU-term,
3. 2ω else. (*)

Lehtonen ’25 : classification of (A,B)-clonoid, for Boolean A,B
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Erkko’s results on Boolean clonoids



Clonoids Uniform generation by minors

Generating sets of clonoids

For clones A, B on finite sets A,B; F ⊆
⋃

n∈N BAn

⟨F ⟩ := B ◦ F ◦ A is the (A,B)-clonoid generated by F .

Goal revisited
• Describe the lattice of (A,B)-clonoids.
• For which A, B is it finite?

• Are there finite generating sets?

Observation, for fixed A, B:

Finite lattice ⇔ ∃k ∈ N : C = ⟨C(k)⟩ for every clonoid C.
⇔ ∃k ∈ N : C = ⟨C(k)⟩ for every C = ⟨f ⟩
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Our motivation: Clonoids between affine clones

Clonoids between affine clones ↭ 2-nilpotent algebras.

Conjecture for affine A, B:
∃ finitely many (A,B)-clonoids ⇔ gcd(|A|, |B|) = 1.

wlog A = Clo(A), B = Clo(B) for modules A,B.

Conjecture confirmed for A:

• F [Fioravanti ’20]

• F1 × F2 × · · · × Fm (as regular module) [Fioravanti ’21]

• distributive module [Mayr, Wynne ’24]

• Fk [Fioravanti, MK, Rossi ’25]
(in preparation)

All these results were proved by uniform generation by minors.
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Generation by n-ary minors

Let A, B be clones, f : Ak → B, C = ⟨f ⟩. When is C = ⟨C(n)⟩?

C(n) = B ◦ f ◦ A(n)

⟨C(n)⟩ = B ◦ f ◦ A(n) ◦ A
= B ◦ {x 7→ f (r(x)) : r ∈ Rn(A)}

r ∈ Rn(A) :⇔ r(x) =

u1 ◦ (v1, . . . , vn)(x)...
uk ◦ (v1, . . . , vn)(x)

 , ui ∈ A(n), vj ∈ A

Thus C = ⟨C(n)⟩ iff ∃t ∈ B, r1, . . . , rs ∈ Rn(A):

f = t ◦ (f ◦ r1, f ◦ r2, . . . , f ◦ rs).
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Uniform generation by n-ary minors

Definition
For clones A,B, U ⊆ BAk

is uniformly generated (ug) by n-ary
(A,B)-minors if ∃t ∈ B, r1, . . . , rs ∈ Rn(A):

∀f ∈ U : f = t ◦ (f ◦ r1, f ◦ r2, . . . , f ◦ rs).

Example: for term clones of modules A, B:

U ⊆ BAk
is uniformly generated by n-ary minors if ∃rM ∈ RB.

∀f ∈ U : f =
∑

rk(M)≤n

rM f (Mx).
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Uniform finite generation

Observation [Rossi, MK, Fioravanti ’25]

For clones A, B, the following are equivalent:

1. BAn+1
is ug by n-ary (A,B)-minors,

2. ∀k : BAk
is ug by n-ary (A,B)-minors,

3. (All ur I : BAk → BAl
are ur by n-ary (A,B)-minors.)

Consequence

BAn+1
is ug by n-ary (A,B)-minors ⇒ ∀(A,B)-clonoid: C = ⟨C(n)⟩

Example [Fioravanti ’20]

For a field F, coprime module B:
{f : F2 → B} is ug by 1-minors ⇒ C = ⟨C(1)⟩ for (F,B)-clonoids
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Example: Uniform generation by binary minors

Let A = Clo({0, 1}, ·, 0), B = Clo(Z2).

Represent f : {0, 1}3 → {0, 1} by polynomials over Z2:

f (x , y , z) = a1xyz + a2xy + · · ·+ a7z + a8

I (f )(x , y , z) : = f (x , y , 0) + f (x , 0, z) + · · ·+ f (0, 0, z) + f (0, 0, 0)

Then (f − I (f ))(xyz) = a1xyz . Moreover

J(f )(xyz) := (f − I (f ))(xy , xy , z) = f (xy , xy , z)− I (f )(xy , xy , z)

= a1xyz .

By f = I (f ) + J(f ), 3-ary functions are ug by 2-ary (A,B)-minors

⇒ C = ⟨C(2)⟩ for clonoids from A to B. [Couceiro, Lehtonen ’24]

(I , J are uniformly representable (ur) by 2-ary (A,B)-minors.)
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Products

Observation 2 [Rossi, MK, Fioravanti ’25]

• BAk
1 ug by n-ary (A1,B)-minors

• BAk
2 ug by n-ary (A2,B)-minors

⇒ B(A1×A2)k ug by n-ary (A1 ×A2,B)-minors!

Example [Fioravanti ’21]

For A = F1 × F2 × · · · × Fm, B coprime: C = ⟨C(1)⟩.

Example [Mayr, Wynne ’24]

Conjecture true for uniserial modules A ⇒ true for distributive
modules.
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Conjecture true for uniserial modules A ⇒ true for distributive
modules.
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Polynomial equivalence

A, B... clones
A... polynomially equivalent to a module A. Then

Observation 3
• BAk

ug by n-ary (Clo(A),B)-minors ⇒
BAk

ug by (n + 1)-ary (A,B)-minors.

• ABk
ug by n-ary (B,Clo(A))-minors ⇒

ABk
ug by n-ary (B,A)-minors.

Example [Couceiro, Lehtonen ’24]

⇒ C = ⟨C(2)⟩ for (A,B)-clonoids

A = Clo({0, 1}, ·, 0)
B = Clo({0, 1}, x − y + z).
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Useful in the affine case:

Lemma [Wynne, Mayr ’24]
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Beyond affine clones

Example [Sparks ’19]

For a clone B with n-ary NU-operation:
∀k : {f : Ak → B} is ug by |A|n-ary (A,B)-minors.

⇒ only finitely many (A,B)-clonoids.

Caution
Not all finiteness results are covered by ug!

Example [Lehtonen, Szendrei ’11]

There are only finitely many (ΩA,A)-clonoids, for ΩA =
⋃

n∈N AAn
.

But ∀n : AAn+1
is not ug by n-ary (ΩA,A)-minors.
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Thank you!
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