Clonoids between vector spaces

Stefano Fioravanti, Michael Kompatscher, Bernardo Rossi

Charles University

7.2.2025 AAA106 - Olomouc

< □ > < @ > < ≧ > < ≧ > = うへで 1/11

Clones and clonoids

Clones $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a <u>clone</u> on a set \mathcal{A} if $\blacktriangleright \mathcal{A}$ contains all projections $\pi_i^n(x_1, \dots, x_n) = x_i$ $\flat f, g_1, \dots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \dots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$ Clo(\mathbf{A}) = clone of term operations of algebra \mathbf{A}

Clones and clonoids

Clones $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a <u>clone</u> on a set \mathcal{A} if $\blacktriangleright \mathcal{A}$ contains all projections $\pi_i^n(x_1, \dots, x_n) = x_i$ $\flat f, g_1, \dots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \dots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$ $\text{Clo}(\mathbf{A}) = \text{clone of term operations of algebra } \mathbf{A}$

<□> < @> < E> < E> E の < C 2/11

Clonoids

$$\begin{array}{l} \mathcal{A}, \mathcal{B}... \text{ clones on } \mathcal{A}, \ \mathcal{B} \\ \mathcal{C} \subseteq \bigcup_{n \ge 1} \mathcal{B}^{\mathcal{A}^n} \text{ is an } (\mathcal{A}, \mathcal{B}) \text{-clonoid } \text{if} \\ \blacktriangleright \ \mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C}, \\ \blacktriangleright \ \mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}. \end{array}$$

An (\mathbf{A}, \mathbf{B}) -clonoid is a $(Clo(\mathbf{A}), Clo(\mathbf{B}))$ -clonoid.

Clones and clonoids

Clones $\mathcal{A} \subseteq \bigcup_{n \ge 1} \mathcal{A}^{\mathcal{A}^n}$ is a <u>clone</u> on a set \mathcal{A} if $\blacktriangleright \mathcal{A}$ contains all projections $\pi_i^n(x_1, \dots, x_n) = x_i$ $\blacktriangleright f, g_1, \dots, g_k \in \mathcal{A} \Rightarrow f \circ (g_1, \dots, g_k) \in \mathcal{A}$ $(\mathcal{A} \circ \mathcal{A} \subseteq \mathcal{A})$ Clo(\mathbf{A}) = clone of term operations of algebra \mathbf{A}

Clonoids

$$\mathcal{A}, \mathcal{B}... \text{ clones on } \mathcal{A}, \mathcal{B}$$

$$\mathcal{C} \subseteq \bigcup_{n \ge 1} \mathcal{B}^{\mathcal{A}^n} \text{ is an } (\mathcal{A}, \mathcal{B})\text{-clonoid } \text{ if}$$

$$\blacktriangleright \mathcal{C} \circ \mathcal{A} \subseteq \mathcal{C},$$

$$\vdash \mathcal{B} \circ \mathcal{C} \subseteq \mathcal{C}.$$

An (\mathbf{A}, \mathbf{B}) -clonoid is a $(Clo(\mathbf{A}), Clo(\mathbf{B}))$ -clonoid.

Background:

[Couceiro, Foldes '09], [Aichinger, Mayr '16], [Sparks '19], [Lehtonen],...

Clonoids between modules

For an **R**-module $\mathbf{A} = (A, +, 0, -, (r)_{r \in \mathbf{R}})$ Clo(**A**) consists of all linear maps

$$\mathbf{x} \mapsto \mathbf{r}^T \mathbf{x} = \sum_{i=1}^n r_i \cdot x_i \text{ with } r_i \in \mathbf{R}.$$

Clonoids between modules

For an **R**-module $\mathbf{A} = (A, +, 0, -, (r)_{r \in \mathbf{R}})$ Clo(**A**) consists of all linear maps

$$\mathbf{x} \mapsto \mathbf{r}^T \mathbf{x} = \sum_{i=1}^n r_i \cdot x_i \text{ with } r_i \in \mathbf{R}.$$

Goal

Understand the (A, B)-clonoids for finite modules A, B.

 \leq countably many [Sparks'19]

Clonoids between modules

For an **R**-module $\mathbf{A} = (A, +, 0, -, (r)_{r \in \mathbf{R}})$ Clo(**A**) consists of all linear maps

$$\mathbf{x} \mapsto \mathbf{r}^T \mathbf{x} = \sum_{i=1}^n r_i \cdot x_i \text{ with } r_i \in \mathbf{R}.$$

Goal

Understand the (A, B)-clonoids for finite modules A, B. \leq countably many [Sparks'19]

Applications for 2-nilpotent algebras

Classification results:

expansions of $\mathbb{Z}_p \times \mathbb{Z}_q$ [Aichinger, Mayr '07], [Fioravanti '21]

- finite basis results [Mayr, K. '24]
- complexity of computational problems
 CSAT / CEQV [Kawałek, K., Krzaczkowski '24], SMP [K. '24]

$$\begin{split} \langle F \rangle_{\mathbf{A},\mathbf{B}} &:= (\mathbf{A},\mathbf{B}) \text{-clonoid generated by } F \subseteq \bigcup_{n \ge 1} B^{A^n}. \\ g(\mathbf{x}) \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Leftrightarrow g(\mathbf{x}) = \sum_{i=1}^m r_i \, f_i(M_i \mathbf{x}), \\ f_i \in F, r_i \in \mathbf{R}_{\mathbf{B}}, M_i \in \mathbf{R}_{\mathbf{A}}^{\operatorname{ar}(f_i) \times n} \end{split}$$

・ ・ ● ・ ・ = ・ ・ = - つへで 4/11

Question: Which clonoids are finitely generated?

$$\langle F \rangle_{\mathbf{A},\mathbf{B}} := (\mathbf{A}, \mathbf{B})$$
-clonoid generated by $F \subseteq \bigcup_{n \ge 1} B^{A^n}$.
 $g(\mathbf{x}) \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Leftrightarrow g(\mathbf{x}) = \sum_{i=1}^m r_i f_i(M_i \mathbf{x}),$
 $f_i \in F, r_i \in \mathbf{R}_{\mathbf{B}}, M_i \in \mathbf{R}_{\mathbf{A}}^{\operatorname{ar}(f_i) \times n}$

Question: Which clonoids are finitely generated?

Example: $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$, *p* prime $f(x, y) = x^2 y + 1$ (deg(*f*) = 3). $g(x, y, z) = f(x, 2z) + f(0, y + z) = 2x^2 z + 2$ (deg(*g*) = 3).

(ロ) (母) (目) (目) (日) (4/11)

$$\langle F \rangle_{\mathbf{A},\mathbf{B}} := (\mathbf{A}, \mathbf{B})$$
-clonoid generated by $F \subseteq \bigcup_{n \ge 1} B^{A^n}$.
 $g(\mathbf{x}) \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Leftrightarrow g(\mathbf{x}) = \sum_{i=1}^m r_i f_i(M_i \mathbf{x}),$
 $f_i \in F, r_i \in \mathbf{R}_{\mathbf{B}}, M_i \in \mathbf{R}_{\mathbf{A}}^{\operatorname{ar}(f_i) \times n}$

Question: Which clonoids are finitely generated?

Example: $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$, *p* prime $f(x, y) = x^2y + 1$ (deg(*f*) = 3). $g(x, y, z) = f(x, 2z) + f(0, y + z) = 2x^2z + 2$ (deg(*g*) = 3).

If $g \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Rightarrow \deg(g) \leq \max_{f \in F} \deg(f)$

- ► ∃ infinitely many (A, B)-clonoids
- full clonoid not not finitely generated

$$\langle F \rangle_{\mathbf{A},\mathbf{B}} := (\mathbf{A}, \mathbf{B})$$
-clonoid generated by $F \subseteq \bigcup_{n \ge 1} B^{A^n}$.
 $g(\mathbf{x}) \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Leftrightarrow g(\mathbf{x}) = \sum_{i=1}^m r_i f_i(M_i \mathbf{x}),$
 $f_i \in F, r_i \in \mathbf{R}_{\mathbf{B}}, M_i \in \mathbf{R}_{\mathbf{A}}^{\operatorname{ar}(f_i) \times n}$

Question: Which clonoids are finitely generated?

Example: $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$, *p* prime $f(x, y) = x^2y + 1$ (deg(*f*) = 3). $g(x, y, z) = f(x, 2z) + f(0, y + z) = 2x^2z + 2$ (deg(*g*) = 3).

If $g \in \langle F \rangle_{\mathbf{A},\mathbf{B}} \Rightarrow \mathsf{deg}(g) \le \mathsf{max}_{f \in F} \mathsf{deg}(f)$

- ► ∃ infinitely many (A, B)-clonoids
- full clonoid not not finitely generated
- full classification: [Kreinecker '20]

Conjecture (A, B modules)

Every (**A**, **B**)-clonoid is finitely generated \Leftrightarrow gcd(|A|, |B|) = 1.

<□> <@> < ≧> < ≧> < ≧> ≧ のQで 5/11

Conjecture (**A**, **B** modules)

Every (**A**, **B**)-clonoid is finitely generated \Leftrightarrow gcd(|A|, |B|) = 1.

<□> <@> < ≧> < ≧> < ≧> ≧ のQで 5/11

" \Rightarrow " \checkmark as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

Conjecture (**A**, **B** modules)

Every (**A**, **B**)-clonoid is finitely generated \Leftrightarrow gcd(|A|, |B|) = 1.

"⇒" \checkmark as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

"⇐" True for:

 \blacktriangleright **A** = \mathbb{F} field

[Fioravanti '20]

Conjecture (**A**, **B** modules)

Every (A, B)-clonoid is finitely generated $\Leftrightarrow gcd(|A|, |B|) = 1$.

" \Rightarrow " \checkmark as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

"⇐" True for:

A = F field [Fioravanti '20]
 A = F₁ × F₂ × · · · × F_m for coprime fields F_i [Fioravanti '21]

Conjecture (A, B modules)

Every (A, B)-clonoid is finitely generated $\Leftrightarrow \gcd(|A|, |B|) = 1$.

"⇒" \checkmark as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

"⇐" True for:

 A = F field [Fioravanti '20]
 A = F₁ × F₂ × ··· × F_m for coprime fields F_i [Fioravanti '21]
 Con(A) is distributive [Mayr, Wynne '24] (k-generated, k = nilpotence-degree of Jacobson radical of R_A)

Conjecture (A, B modules)

Every (A, B)-clonoid is finitely generated $\Leftrightarrow \gcd(|A|, |B|) = 1$.

" \Rightarrow " \checkmark as for $\mathbf{A} = \mathbf{B} = \mathbb{Z}_p$

"⇐" True for:

 A = F field [Fioravanti '20]
 A = F₁ × F₂ × ··· × F_m for coprime fields F_i [Fioravanti '21]
 Con(A) is distributive [Mayr, Wynne '24] (k-generated, k = nilpotence-degree of Jacobson radical of R_A)

New result [Fioravanti, K., Rossi '25] (unpublished) Clonoid from $\mathbf{A} = \mathbb{F}^k$ to a coprime module **B** are *k*-generated.

Lemma For $f : \mathbb{F}^2 \to \mathbf{B}$ with f(0,0) = 0: $|F|^{-1}\left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0)\right) = \begin{cases} f(x, y) \text{ if } y = 0\\ 0 \text{ else.} \end{cases}$

Lemma
For
$$f: \mathbb{F}^2 \to \mathbf{B}$$
 with $f(0,0) = 0$:
 $|F|^{-1}\left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0)\right) = \begin{cases} f(x, y) \text{ if } y = 0\\ 0 \text{ else.} \end{cases}$

(similar for lines other than y = 0)

Consequence

There are $r_M \in \mathbf{R}_B$, for $M \in \mathbb{F}^{2 \times 2}$ such that for every $f : \mathbb{F}^2 \to \mathbf{B}$:

$$f(\mathbf{x}) = f(\mathbf{0}) + \sum_{\mathsf{rk}(M)=1} r_M f(M\mathbf{x})$$
(1)

<□> < @ > < ≧ > < ≧ > ≧ の < ⊙ 6/11

Lemma
For
$$f: \mathbb{F}^2 \to \mathbf{B}$$
 with $f(0,0) = 0$:
 $|F|^{-1}\left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0)\right) = \begin{cases} f(x, y) \text{ if } y = 0\\ 0 \text{ else.} \end{cases}$

(similar for lines other than y = 0)

Consequence

There are $r_M \in \mathbf{R}_B$, for $M \in \mathbb{F}^{n \times n}$ such that for every $f : \mathbb{F}^n \to \mathbf{B}$:

$$f(\mathbf{x}) = f(\mathbf{0}) + \sum_{\mathsf{rk}(M)=1} r_M f(M\mathbf{x})$$
(1)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 6/11

Lemma
For
$$f: \mathbb{F}^2 \to \mathbf{B}$$
 with $f(0,0) = 0$:
 $|F|^{-1}\left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0)\right) = \begin{cases} f(x, y) \text{ if } y = 0\\ 0 \text{ else.} \end{cases}$

(similar for lines other than y = 0)

Consequence

There are $r_M \in \mathbf{R}_B$, for $M \in \mathbb{F}^{n \times n}$ such that for every $f : \mathbb{F}^n \to \mathbf{B}$:

$$f(\mathbf{x}) = f(\mathbf{0}) + \sum_{\mathsf{rk}(M)=1} r_M f(M\mathbf{x})$$
(1)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ · ⑦ Q @ 6/11

f is generated by unaries

Lemma
For
$$f: \mathbb{F}^2 \to \mathbf{B}$$
 with $f(0,0) = 0$:
 $|F|^{-1}\left(\sum_{a \in \mathbb{F}} f(x + ay, 0) - f(ay, 0)\right) = \begin{cases} f(x, y) \text{ if } y = 0\\ 0 \text{ else.} \end{cases}$

(similar for lines other than y = 0)

Consequence

There are $r_M \in \mathbf{R}_B$, for $M \in \mathbb{F}^{n \times n}$ such that for every $f : \mathbb{F}^n \to \mathbf{B}$:

$$f(\mathbf{x}) = f(\mathbf{0}) + \sum_{\mathsf{rk}(M)=1} r_M f(M\mathbf{x})$$
(1)

◆□ ▶ < 圕 ▶ < ∃ ▶ < ∃ ▶ < ∃ ▶ < ∃ < </p>

f is generated by unaries
(1) is <u>uniform</u> in f

Uniformly generated functions

Uniform generation [Mayr, Wynne 24] B^{A^n} is <u>uniformly generated by k-ary</u> (**A**, **B**)-minors if $\exists r_M$ for $M \in \mathbf{R}^{n \times n}_{\mathbf{A}}$:

$$\forall f \colon A^n \to B \colon f(\mathbf{x}) = \sum_{\mathsf{rk}(M) \leq k} r_M f(M\mathbf{x}).$$

Uniformly generated functions

Uniform generation [Mayr, Wynne 24] B^{A^n} is uniformly generated by *k*-ary (**A**, **B**)-minors if $\exists r_M$ for $M \in \mathbf{R}^{n \times n}_{\mathbf{A}}$:

$$\forall f \colon A^n \to B \colon f(\mathbf{x}) = \sum_{\mathsf{rk}(M) \leq k} r_M f(M\mathbf{x}).$$

- definable for general clones $(\mathcal{A}, \mathcal{B})$
- u.g. for $n = k + 1 \Rightarrow$ u.g. for all n > k
- closed under products $A_1 \times A_2 \frown A_1 \times A_2$

Uniformly generated functions

Uniform generation [Mayr, Wynne 24] B^{A^n} is uniformly generated by *k*-ary (**A**, **B**)-minors if $\exists r_M$ for $M \in \mathbf{R}^{n \times n}_{\mathbf{A}}$:

$$\forall f \colon A^n \to B \colon f(\mathbf{x}) = \sum_{\mathbf{rk}(M) \leq k} r_M f(M\mathbf{x}).$$

- definable for general clones $(\mathcal{A}, \mathcal{B})$
- u.g. for $n = k + 1 \Rightarrow$ u.g. for all n > k
- closed under products $A_1 imes A_2 \cap A_1 imes A_2$

Goal for $\mathbf{A} = \mathbb{F}^{k}$ Find $r_{M} \in \mathbf{R}_{\mathbf{B}}, M \in \mathbb{F}^{(k+1) \times (k+1)}$: $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\substack{\mathsf{rk}(M) \leq k}} r_{M}f(MX).$

Goal for
$$\mathbf{A} = \mathbb{F}^k$$
:
Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \le k} r_M f(MX).$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ? 8/11

Goal for
$$\mathbf{A} = \mathbb{F}^k$$
:
Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \leq k} r_M f(MX).$
Proof outline (induction step $k - 1 \to k$):

Goal for
$$\mathbf{A} = \mathbb{F}^{k}$$
:
Find $r_{M} \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \leq k} r_{M}f(MX).$

Proof outline (induction step $k - 1 \rightarrow k$):

1. By induction hypothesis: $\exists r'_M$:

$$f(X) = \sum_{\mathsf{rk}(M) \le k-1} \mathsf{r}'_M f(MX) \text{ for } \mathsf{rk}(X) \le k-1.$$

Goal for
$$\mathbf{A} = \mathbb{F}^k$$
:
Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \leq k} r_M f(MX).$

Proof outline (induction step $k - 1 \rightarrow k$):

1. By induction hypothesis: $\exists r'_M$:

$$f(X) = \sum_{\mathsf{rk}(M) \leq k-1} \mathsf{r}'_M f(MX) \text{ for } \mathsf{rk}(X) \leq k-1.$$

2.
$$\rightarrow$$
 wlog $f(X) = 0$ if $rk(X) \le k - 1$.

Goal for
$$\mathbf{A} = \mathbb{F}^k$$
:
Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \leq k} r_M f(MX).$

Proof outline (induction step $k - 1 \rightarrow k$):

1. By induction hypothesis: $\exists r'_M$:

$$f(X) = \sum_{\mathsf{rk}(M) \leq k-1} r'_M f(MX) \text{ for } \mathsf{rk}(X) \leq k-1.$$

- 2. \rightarrow wlog f(X) = 0 if $rk(X) \leq k 1$.
- 3. Find coefficients r_M such that

$$\sum_{\text{rk}(M)=k} r_M f(MX) = \begin{cases} f(X) \text{ if } X_{k+1} = 0\\ 0 \text{ else.} \end{cases}$$

<□> < @ > < ≧ > < ≧ > ≧ の < ⊗ 8/11

Goal for
$$\mathbf{A} = \mathbb{F}^k$$
:
Find $r_M \in \mathbf{R}_{\mathbf{B}}$ for all $M \in \mathbb{F}^{(k+1) \times (k+1)}$:
 $\forall f : \mathbb{F}^{(k+1) \times k} \to B : f(X) = \sum_{\mathsf{rk}(M) \leq k} r_M f(MX).$

Proof outline (induction step $k - 1 \rightarrow k$):

1. By induction hypothesis: $\exists r'_M$:

$$f(X) = \sum_{\operatorname{rk}(M) \leq k-1} r'_M f(MX) \text{ for } \operatorname{rk}(X) \leq k-1.$$

- 2. \rightarrow wlog f(X) = 0 if $rk(X) \leq k 1$.
- 3. Find coefficients r_M such that

$$\sum_{\mathsf{rk}(M)=k} \mathsf{r}_M f(MX) = \begin{cases} f(X) \text{ if } X_{k+1} = 0\\ 0 \text{ else.} \end{cases}$$

・ロト・日ト・ヨト・ヨー ヨー つへで 8/11

4. transform terms from 3 and sum up.

Observation [Fioravanti, K., Rossi '25] If $\langle B^{A^m} \rangle_{\mathbf{A},\mathbf{B}} = \bigcup_{n \in \mathbb{N}} B^{A^n}$, then $m \geq \frac{\log |A|}{\log |R_A|}$.

<□ > < @ > < ≧ > < ≧ > ≧ > りへで 9/11

Observation [Fioravanti, K., Rossi '25] If $\langle B^{A^m} \rangle_{\mathbf{A},\mathbf{B}} = \bigcup_{n \in \mathbb{N}} B^{A^n}$, then $m \geq \frac{\log |A|}{\log |R_A|}$.

Corollary [Fioravanti, K., Rossi '25]

 $(\mathbb{F}^k, \mathbf{B})$ -clonoids, for coprime \mathbb{F} , \mathbf{B}

- are generated by their k-ary functions
- in general not by their (k-1)-ary functions.

<ロ> < 母> < 目> < 目> < 目> 目 の へ つ 9/11

Back to the conjecture

Conjecture Every (**A**, **B**)-clonoid is finitely generated \Leftrightarrow gcd(|A|, |B|) = 1.

Back to the conjecture

Conjecture

Every (**A**, **B**)-clonoid is finitely generated \Leftrightarrow gcd(|A|, |B|) = 1.

Now confirmed for:

Back to the conjecture

Conjecture

Every (A, B)-clonoid is finitely generated $\Leftrightarrow gcd(|A|, |B|) = 1$.

Now confirmed for:

It is enough to prove:

Conjecture 2

- A... abelian p-group
- B... coprime abelian group

 $\Rightarrow \exists k: B^{A^{k+1}}$ uniformly generated by k-ary (**A**, **B**)-minors.

Thank you!

Questions? Remarks? Counterexamples?

< □ > < @ > < ≧ > < ≧ > ≧ の Q ↔ 11/11