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Background:
[Couceiro, Foldes '09], [Aichinger, Mayr '16], [Sparks '19], [Lehtonen],...
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Applications for 2-nilpotent algebras
» Classification results:
expansions of Zy X Zq [Aichinger, Mayr '07], [Fioravanti '21]
> finite basis results [Mayr, K. '24]

» complexity of computational problems
CSAT / CEQV [Kawatek, K., Krzaczkowski '24], SMP [K. '24]
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Example: A =B = Z,, p prime

f(x,y) =x%y +1 (deg(f) = 3).
g(x,y,z) = f(x,2z) + f(0,y + z) = 2x%z + 2 (deg(g) = 3).

If g € (F)ag = deg(g) < maxscr deg(f)
» T infinitely many (A, B)-clonoids
» full clonoid not not finitely generated

» full classification: [Kreinecker '20]
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> A =T field [Fioravanti '20]
» A=TF; xFy x--- x Fp, for coprime fields F; [Fioravanti '21]
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(k-generated, k = nilpotence-degree of Jacobson radical of Ra)

New result [Fioravanti, K., Rossi '25] (unpublished)
Clonoid from A = F¥ to a coprime module B are k-generated.
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Clonoids from I to B [Fioravanti '20]

Lemma
For f: F2 — B with £(0,0) = 0:

fix,y)ify=0
FI (30 At a.0) - Flay.0) ) = 4 [T
0 else.
acF

(similar for lines other than y = 0)

Consequence

There are ryy € Rg, for M € F"*" such that for every f: F" — B:

Fx)=f(0)+ > ruf(Mx) (1)

rk(M)=1

> f is generated by unaries
» (1) is uniform in f
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Clonoids from F* to B

Goal for A = Fk:
Find ry € Rg for all M € F(k+1)x(k+1).

vFFUHK S B f(X) = ) rmf(MX).
rk(M)<k
Proof outline (induction step k — 1 — k):

1. By induction hypothesis: 3ry,:

FX)= D> ryf(MX) for rk(X) < k—1.
rk(M)<k—1

2. — wlog f(X) =0if rk(X) < k—1.
3. Find coefficients ry; such that

> mf(MX) =

{f(X) if Xip1 =0
rk(M)=k

0 else.

4. transform terms from 3 and sum up.
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Upper bounds

Observation [Fioravanti, K., Rossi '25]

Am _ A" log |A|
If <B >A:B*Un€NB , then m > log [Ra "

Corollary [Fioravanti, K., Rossi '25]
(Fk, B)-clonoids, for coprime I, B
> are generated by their k-ary functions

» in general not by their (k — 1)-ary functions.
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Back to the conjecture

Conjecture
Every (A, B)-clonoid is finitely generated < gcd(|A|,|B|) = 1.

Now confirmed for:
» A = Fk vector spaces
> A=TFN xF2 x .. x Fl x A/, as
(F1 x -+ x F, X Ras)-module, with Con(A’) distributive.

It is enough to prove:

Conjecture 2

A... abelian p-group
B... coprime abelian group

= TJk: BA™ uniformly generated by k-ary (A, B)-minors.



Thank you!

Questions? Remarks? Counterexamples?
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