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ON KORN’S FIRST INEQUALITY FOR QUADRILATERAL
NONCONFORMING FINITE ELEMENTS

OF FIRST ORDER APPROXIMATION PROPERTIES
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Abstract. We investigate the Korn first inequality for quadrilateral noncon-

forming finite elements of first order approximation properties and clarify the

dependence of the constant in this inequality on the discretization parameter

h. Then we use the nonconforming elements for approximating the velocity

in a discretization of the Stokes equations with boundary conditions involv-

ing surface forces and, using the result on the Korn inequality, we prove error

estimates which are optimal for the pressure and suboptimal for the velocity.
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1. Introduction

Let Ω ⊂ R2 be a bounded domain with a Lipschitz–continuous boundary ∂Ω
and let ΓD be a measurable subset of ∂Ω with a positive one–dimensional measure.
The Korn first inequality (cf. e.g. [16]) states that there exists a positive constant
C such that

(1) |v|1,Ω ≤ C ‖∇v + (∇v)T‖0,Ω ∀ v ∈ V ,

where
V = {v ∈ H1(Ω)2; v = 0 on ΓD} .

This inequality guarantees the coerciveness of the bilinear form which is related to
weak formulations of problems from linear elasticity and fluid dynamics in which
forces are prescribed on a part of the boundary of the computational domain Ω.

Let Th be a triangulation of Ω consisting of shape–regular elements K satisfying
the usual compatibility conditions and let Vh be a finite element space build up
over Th and approximating the space V . Then a discrete analogue of (1) is the
inequality

(2)
∑

K∈Th

|vh|21,K ≤ Ch

∑

K∈Th

‖∇vh + (∇vh)T‖20,K ∀ vh ∈ Vh .

For clarity we shall assume that Ch denotes the smallest constant for which the
inequality (2) holds. In order to derive optimal convergence results, one usually
needs Ch to be bounded from above by a constant C0 independent of h. Such a
constant C0 always exists in the conforming finite element method where Vh ⊂ V
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but if Vh is a nonconforming finite element space, then the dependence of Ch on h
is not clear. It may even happen that, for some vh ∈ Vh, the right–hand side of (2)
vanishes whereas the left–hand side does not and hence the inequality (2) does not
hold for any constant Ch (cf. [10], [1]). Recently it was shown in [2] and [13] that
Ch ≤ C0 holds if, for any vh ∈ Vh and for any edge E of Th which does not lie on
∂Ω \ ΓD, the jump [|vh|]E of vh across E satisfies

(3)
∫

E

[|vh|]E q dγ = 0 ∀ q ∈ P1(E) .

Unfortunately, this condition does not hold for the most nonconforming finite ele-
ments of first order approximation properties. In fact it is known that for many of
these elements the inequality Ch ≤ C0 fails but a detailed analysis of the depen-
dence of Ch on h is not available.

In [9], the case of the nonconforming linear triangular Crouzeix–Raviart element
was studied and a modification of the discrete bilinear form ah from Section 5
was proposed which is uniformly coercive with respect to the discrete H1 norm.
This modification can be used also for the nonconforming quadrilateral finite ele-
ments considered below and leads to optimal error estimates. However, it has been
observed in numerical experiments with quadrilateral elements of first order approx-
imation properties that the standard discretization, which is simpler to implement,
already shows optimal order of convergence. Up to now there is no theoretical
explanation for such a behaviour. Note that also the technique of [18] for proving
convergence without using (2) cannot be applied in this case since this technique
uses the property (3) which is – in general – not satisfied for first order elements.

Therefore, in this paper, we will focus our attention on a theoretical support
of the unexpected behaviour of nonconforming quadrilateral finite elements of first
order approximation properties observed in numerical calculations. In doing this
we shall concentrate on two questions:

a) characterization of the asymptotic behaviour of the constant Ch if h →∞;
b) convergence properties of discrete solutions in the case Ch →∞.

In order to cover most of the used first order nonconforming finite element spaces
on quadrilaterals, we consider a class of finite element spaces Vh constructed using
spaces of the type

(4) span{1, x̂, ŷ, θ(x̂)− θ(ŷ)}
defined on the reference square. A precise definition of Vh will be given in Section 2.
The function θ is usually an even polynomial, e.g.,

θ(x) = x2 ,(5)

θ(x) = x2 − 5
3

x4 ,(6)

θ(x) = x2 − 25
6

x4 +
7
2

x6 .(7)

The function (5) leads to the rotated bilinear element of [17] and the functions
(6), (7) were proposed in [8] in order to improve the properties of the element of
[17]. In the literature one can also find nonconforming spaces which contain the
above–described space as a subspace, cf. [5], [15].

In what follows we shall consider the model case

Ω = (0, 1)2 , ΓD = ([0, 1]× {0}) ∪ ({0} × [0, 1]) ,
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i.e., Ω is a unit square and ΓD is formed by the two sides of Ω lying on the coordinate
axes. Moreover, for simplicity, we consider uniform triangulations Th of Ω consisting
of equal squares although rectangles could also be used.

First we show that for nonconforming spaces defined using the reference space
(4) and approximating the space V one has Ch = O(h−2). One step in establishing
this result will be the proof of the inequality

‖vh‖20,Ω ≤ C̄
∑

K∈Th

‖∇vh + (∇vh)T‖20,K ∀ vh ∈ Vh ,

which holds with a constant C̄ independent of h. This result excludes the case
that the right–hand side of (2) does not define a norm on Vh as it can happen
for the nonconforming piecewise linear element (cf. [10], [1]). In particular, the
corresponding discrete problems can be solved uniquely for each fixed meshsize.

Then we apply this result to investigate the convergence of finite element solu-
tions of the Stokes equations

−∆ u +∇ p = f in Ω,(8)
div u = 0 in Ω,(9)

u = ub on ΓD,(10)
t · σ(u, p)n = 0 on ΓN ≡ ∂Ω \ ΓD,(11)

u · n = 0 on ΓN .(12)

Here u and p are the unknown velocity and pressure, respectively, f is an outer
volume force, ub is a prescribed velocity on ΓD, n is the outer unit normal vector
to ∂Ω, t is a tangent vector to ∂Ω and σ(u, p) is the stress tensor defined by

σ(u, p) = −p I + 2 D(u) , D(u) =
1
2

(
∇u + (∇u)T

)

with I being the identity tensor. Boundary conditions of the form (10)–(12) appear
when a part of the boundary of Ω represents a free surface.

The discretization of the problem (8)–(12) investigated in this paper will be ob-
tained directly from the standard weak formulation of (8)–(12) by replacing the test
function spaces by finite element spaces. We shall approximate the velocity u using
the space Vh and the pressure p using piecewise constant functions. Since the ellip-
ticity condition for the bilinear form in the discrete problem corresponding to the
Laplace operator is equivalent to the inequality (2) and, as we mentioned, the con-
stant Ch in this inequality behaves like h−2, there is apparently little hope to prove
any convergence results. Despite these negative expectations we succeeded in prov-
ing an optimal convergence of the discrete pressure ph, namely, ‖p−ph‖0,Ω = O(h)
and a suboptimal convergence for the discrete velocity uh in the L2 norm, namely,
‖u−uh‖0,Ω = O(h). Moreover, we were able to prove an optimal L2 convergence of
the derivatives of the non–rotational component of the velocity. To our knowledge,
these are first convergence results for discretizations of the type described above.
It is surprising that in the literature no deterioration of the convergence rates is
reported when using such discretizations. Indeed, in the numerical experiments in
[19], the velocity error convergences as O(h2) in the L2 norm and as O(h) in the
H1 norm.

The paper is organized as follows. In Section 2, we introduce the class of first
order nonconforming finite elements on quadrilaterals considered in this paper. In
Section 3, we recall an example showing that Ch tends to infinity at least as fast
as O(h−1). Moreover, we give a new example improving this result to O(h−2).
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Further, in Section 4, we prove an estimate of Ch from above with the conclusion
that Ch behaves asymptotically as h−2 indeed. Finally, in Section 5, we establish
the above–mentioned convergence results for a discretization of the Stokes equations
(8)–(12).

Throughout the paper we use a standard notation (cf. e.g. [6]). Particularly, we
denote by ‖·‖0,G the norm in the Lebesque space L2(G) and by ‖·‖k,G and |·|k,G the
norm and seminorm, respectively, in the Sobolev space Hk(G) ≡ W k,2(G), k ≥ 1.
For definitions of this notation in case of fractional Sobolev spaces (non–entire k)
we refer to [11]. The notation L2

0(G) is used for the space of those functions from
L2(G) which have zero mean value over G. As usual, we shall denote by C a generic
positive constant independent of h.

2. Definition of the nonconforming space Vh

Let K̂ = [−1, 1]2 be the reference square and let Ê1, . . . , Ê4 be its edges. We
denote by CÊi

the midpoint of Êi, i = 1, . . . , 4, and assume that CÊ1
= (1, 0),

CÊ2
= (0, 1), CÊ3

= (−1, 0), and CÊ4
= (0,−1).

Let θ ∈ C1(R) be an even function satisfying θ(0) = 0 and set

(13) Q̂ = span{1, x̂, ŷ, θ(x̂)− θ(ŷ)} .

We introduce nodal functionals JÊ1
, . . . , JÊ4

on Q̂ defined either by

JÊi
(v̂) = v̂(CÊi

) , i = 1, . . . , 4 ,

or by

JÊi
(v̂) =

1
2

∫

Êi

v̂ dγ̂ , i = 1, . . . , 4 .

We denote ϕ(x̂, ŷ) = θ(x̂)− θ(ŷ), find

JÊ1
(ϕ) = −JÊ2

(ϕ) = JÊ3
(ϕ) = −JÊ4

(ϕ),

and set
κ = 4 JÊ1

(ϕ) .

We assume that θ is chosen in such a way that κ 6= 0 which is indeed the case
for the three examples mentioned in Section 1. Then the both sets of the nodal
functionals are unisolvent with the space Q̂ and we can introduce a basis q̂1, . . . , q̂4

in Q̂ which is dual to the nodal functionals, i.e.,

JÊi
(q̂j) = δij , i, j = 1, . . . , 4 ,

where δij is the Kronecker symbol. The basis functions are given by the following
formulas:

q̂1(x̂, ŷ) =
1
4

+
1
2

x̂ +
1
κ

(θ(x̂)− θ(ŷ)) ,

q̂2(x̂, ŷ) =
1
4

+
1
2

ŷ − 1
κ

(θ(x̂)− θ(ŷ)) ,

q̂3(x̂, ŷ) =
1
4
− 1

2
x̂ +

1
κ

(θ(x̂)− θ(ŷ)) ,

q̂4(x̂, ŷ) =
1
4
− 1

2
ŷ − 1

κ
(θ(x̂)− θ(ŷ)) .

We have
|q̂1|1,K̂ = |q̂2|1,K̂ = |q̂3|1,K̂ = |q̂4|1,K̂



KORN’S FIRST INEQUALITY 443

and define

(14) M = |q̂i|1,K̂ , i = 1, . . . , 4 .

Let Th be a triangulation of Ω consisting of n × n equal square elements K of
edge length h = 1/n, where n ≥ 3. We denote by Eh the set of all edges E of Th,
by E in

h the set of the inner edges (i.e., E ∈ E in
h ⇔ E 6⊂ ∂Ω), by ED

h the set of the
edges lying on ΓD, by EN

h the set of the edges lying on ΓN , by CE the midpoint of
the edge E, and by nE a fixed unit normal vector to E which corresponds to the
outer normal vector n for E ⊂ ∂Ω. Further, for any inner edge E ∈ E in

h , we define
the jump [|v|]E of a function v across E by

[|v|]E = (v|K)|E − (v|K̃)|E ,

where K, K̃ are the two elements adjacent to E denoted in such a way that nE

points into K̃. For boundary edges, we simply set

[|v|]E = v|E .

For any element K we denote by xK , yK the coordinates of its barycentre and
we define

FK(x̂, ŷ) =
(

xK +
x̂ h

2
, yK +

ŷ h

2

)
, (x̂, ŷ) ∈ K̂ .

Then FK is a one–to–one mapping which maps the reference element K̂ onto K.
We denote

Q(K) = {v̂ ◦ F−1
K ; v̂ ∈ Q̂} ,

where Q̂ is the space defined in (13). Note that

(15) ∇(v̂ ◦ F−1
K ) =

2
h

(∇̂v̂) ◦ F−1
K ∀ v̂ ∈ H1(K̂) .

This particularly implies that

(16) |v̂ ◦ F−1
K |1,K = |v̂|1,K̂ ∀ v̂ ∈ H1(K̂) .

Finally, for any edge E ∈ Eh, we define a nodal functional JE by

JE(v) = v(CE) or JE(v) =
1
|E|

∫

E

v dγ

in correspondence to the definition of the nodal functionals JÊi
.

Now, the nonconforming space Vh approximating the space V is defined by

Vh = {vh ∈ L2(Ω)2; vh|K ∈ Q(K)2 ∀K ∈ Th, JE([|vh|]E) = 0 ∀E ∈ E in
h ∪ ED

h } .

The condition JE([|vh|]E) = 0 implies that JE(vh|K) = JE(vh|K̃) for any inner
edge E, where K, K̃ are the two elements adjacent to E. We shall denote this value
simply by JE(vh), which is the vector–valued degree of freedom of vh associated
with E. Note that the degrees of freedom associated with boundary edges lying on
ΓD vanish for any function from the space Vh.

3. Counterexamples to the uniform validity of (2)

Since the square roots of both sides of the inequality (2) represent norms on
the space Vh, it follows from the equivalence of norms on finite–dimensional spaces
that, for any h, there exists a positive constant Ch such that the inequality (2)
holds. However, the constants Ch cannot be bounded from above by a constant
independent of h, which will be shown in this section by constructing suitable
counterexamples.
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Figure 1. Degrees of freedom of ṽh.

For any K ∈ Th, we define a function

vK(x, y) =
2
h

(y − yK , xK − x)

which represents a vortex in the clockwise direction around the barycentre of K.
Note that

(17) ∇vK + (∇vK)T = 0 and |vK |1,K = 2
√

2 .

Let T 1
h and T 2

h be disjoint subsets of Th representing a checkerboard decomposition
of Th and let T 1

h contain the lower left element of Th. We define a piecewise linear
function ṽh by

ṽh|K = vK ∀ K ∈ T 1
h , ṽh|K = −vK ∀ K ∈ T 2

h .

Then ṽh has jumps across all inner edges but it is continuous at the midpoints of
inner edges. Thus,

JE([|ṽh|]E) = 0 ∀ E ∈ E in
h

for both definitions of JE . The values of ṽh at the midpoints of edges are depicted
in Fig. 1 for a triangulation consisting of 5×5 elements. For each edge E, the value
ṽh(CE) = JE(ṽh) is parallel to E and of magnitude 1.

Let us define a function vh ∈ Vh by

JE(vh) = JE(ṽh) ∀ E ∈ E in
h , JE(vh) = 0 ∀ E ∈ Eh , E ⊂ ∂Ω .

Then vh = ṽh on all elements which do not intersect the boundary of Ω and hence
it follows from (17), (16) and (14) that

∑

K∈Th

‖∇vh + (∇vh)T‖20,K =
∑

K∈Th, K∩∂Ω6=∅
‖∇vh + (∇vh)T‖20,K ≤ 16M2 n ,

∑

K∈Th

|vh|21,K ≥
∑

K∈Th, K∩∂Ω=∅
|vh|21,K = 8 (n− 2)2 .

This shows that the constant Ch from (2) has to satisfy Ch ≥ (n− 2)2/(2M2 n) ≥
h−1/(18M2). The above function vh is basically the counterexample from [13]. It
is also similar to the counterexample of [10] used for the Crouzeix–Raviart element.
In the following, we construct another counterexample which even shows that Ch ≥
C h−2.
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Figure 2. Decomposition of the set of the edges.

We decompose the set Eh of the edges of Th into the sets E0
h, . . . , En−1

h defined in
the following way:

E0
h = {E ∈ Eh; E ⊂ ∂Ω} ,

E i
h = {E ∈ Eh \

i−1⋃

j=0

Ej
h; ∃E′ ∈ E i−1

h : E ∩ E′ 6= ∅ ∧ E ⊥ E′}, i = 1, . . . , n− 1 .

Then
card E i

h = 4 (n− i) , i = 0, . . . , n− 1 .

The decomposition of Eh is depicted in Fig. 2 for a triangulation consisting of 5× 5
elements.

Now we introduce a function vh ∈ Vh satisfying

JE(vh) = i JE(ṽh) ∀ E ∈ E i
h, i = 0, . . . , n− 1 .

Consider any K ∈ Th. Then there exists i = iK ∈ {1, . . . , n− 2} such that all four
edges of K belong to E i−1

h ∪ E i
h ∪ E i+1

h . Moreover, either two edges of K belong to
E i

h or all edges of K belong to E i+1
h = En−1

h . Set

uK = vh|K − iK ṽh|K .

Then |JE(uK)| ≤ 1 for any edge E ⊂ ∂K. In addition, either JE(uK) = 0 for two
edges of K or uK = ṽh|K . Thus, it follows from (16), (14) and (17) that

|uK |1,K ≤ 2 M or ∇uK + (∇uK)T = 0 .

Consequently, in view of (17), we get

(18)
∑

K∈Th

‖∇vh + (∇vh)T‖20,K =
∑

K∈Th

‖∇uK + (∇uK)T‖20,K ≤ 16 M2 n2 .

For any K ∈ Th, the function vh ◦ FK has the form

vh ◦ FK = α1 (0,−1) q̂1 + α2 (1, 0) q̂2 + α3 (0, 1) q̂3 + α4 (−1, 0) q̂4

with some real numbers α1, . . . , α4. Since |·|1,K̂ is a norm on the spaces span{q̂1, q̂3}
and span{q̂2, q̂4}, it follows from the equivalence of norms on finite–dimensional
spaces that there exists a positive constant L such that

|vh ◦ FK |21,K̂
= |α1 q̂1 − α3 q̂3|21,K̂

+ |α2 q̂2 − α4 q̂4|21,K̂
≥ L

4∑

i=1

α2
i .
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Thus, we deduce using (16) that

∑

K∈Th

|vh|21,K ≥ 2 L
∑

E∈Eh

|JE(vh)|2 = 2 L

n−1∑

i=1

∑

E∈Ei
h

|JE(vh)|2

= 8 L

n−1∑

i=1

(n− i) i2 =
2
3

L (n4 − n2) ≥ 1
2

L n4 .

This implies that the constant Ch in (2) has to satisfy Ch ≥ h−2 L/(32M2).

4. Estimate of the constant Ch from above

In this section we prove that there exists a constant C0 independent of h such that
the constant Ch from the inequality (2) satisfies Ch ≤ C0 h−2. The proof will be
carried out by rewriting the right–hand side of (2) in terms of the degrees of freedom
of vh and by estimating the resulting sum from below by the sum of the squares of
the degrees of freedom multiplied by h2. This expression is equivalent to ‖vh‖20,Ω

and hence also larger than C h2
∑

K∈Th
|vh|21,K due to an inverse inequality.

First let us investigate the terms from the right–hand side of (2) on the reference
element. Let wi ≡ (ui, vi) ∈ R2, i = 1, . . . , 4, be arbitrary and set

v̂ =
4∑

i=1

wi q̂i , u = v̂ · (1, 0) , v = v̂ · (0, 1) .

Then

‖∇̂v̂ + (∇̂v̂)T‖2
0,K̂

=
∫

K̂

4
(

∂u

∂x̂

)2

+ 2
(

∂u

∂ŷ
+

∂v

∂x̂

)2

+ 4
(

∂v

∂ŷ

)2

dx̂dŷ .

In view of the definition of the functions q̂1, . . . , q̂4, we have
∂u

∂x̂
=

1
2

(u1 − u3) +
1
κ

(u1 − u2 + u3 − u4) θ′(x̂) ,

∂v

∂ŷ
=

1
2

(v2 − v4)− 1
κ

(v1 − v2 + v3 − v4) θ′(ŷ) ,

∂u

∂ŷ
+

∂v

∂x̂
=

1
2

(u2 − u4 + v1 − v3)− 1
κ

(u1 − u2 + u3 − u4) θ′(ŷ)

+
1
κ

(v1 − v2 + v3 − v4) θ′(x̂) .

Using the fact that θ′ is odd and denoting

ε =
2
κ2

∫ 1

−1

[θ′(x)]2 dx ,

we easily derive that

1
2
‖∇̂v̂ + (∇̂v̂)T‖2

0,K̂
= 2 (u1 − u3)2 + 2 (v2 − v4)2 + (u2 − u4 + v1 − v3)2(19)

+ 3 ε (u2 + u4 − u1 − u3)2

+ 3 ε (v2 + v4 − v1 − v3)2 .

To apply the identity (19) to the right–hand side of (2), we have to introduce
a suitable numbering of the edges of the triangulation Th. First, we number the
elements K ∈ Th by indices i, j = 1, . . . , n, where i corresponds to the horizontal
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Figure 3. Numbering of the elements and edges.

direction and j corresponds to the vertical direction, see Fig. 3. The indices of
the edges of the triangulation are defined as the averages of the indices of the two
elements adjacent to the respective edge. For edges lying on the boundary of Ω,
the indices are also defined in this way imagining that the triangulation continues
outside Ω, cf. Fig. 3.

Now, for a given function vh ∈ Vh, we denote

(ui,j+1/2, vi,j+1/2) = JEi,j+1/2(vh) , i = 1, . . . , n , j = 0, . . . , n ,

(ui+1/2,j , vi+1/2,j) = JEi+1/2,j
(vh) , i = 0, . . . , n , j = 1, . . . , n .

Recall that the degrees of freedom associated with boundary edges lying on ΓD

vanish, i.e.,

(20) ui,1/2 = vi,1/2 = 0 , i = 1, . . . , n , u1/2,j = v1/2,j = 0 , j = 1, . . . , n .

Applying (15) and (19), we obtain for any i, j ∈ {1, . . . , n}
1
2
‖∇vh + (∇vh)T‖20,Kij

= 2 (ui+1/2,j − ui−1/2,j)2 + 2 (vi,j+1/2 − vi,j−1/2)2

+(ui,j+1/2 − ui,j−1/2 + vi+1/2,j − vi−1/2,j)2

+ 3 ε (ui,j+1/2 + ui,j−1/2 − ui+1/2,j − ui−1/2,j)2(21)

+ 3 ε (vi,j+1/2 + vi,j−1/2 − vi+1/2,j − vi−1/2,j)2 .

For investigating the sum of the right–hand sides of (21) over all indices i, j ∈
{1, . . . , n}, we shall need the following simple lemma.
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Lemma 1. Consider any n ∈ N and let α1, . . . , αn be arbitrary real numbers. Set
α0 = 0. Then

(22)
n∑

i=1

(αi − αi−1)2 ≥ 1
n2

n∑

i=1

α2
i .

Proof. For any j ∈ {1, . . . , n}, we have

αj =
j∑

i=1

(αi − αi−1)

and hence

α2
j ≤ j

j∑

i=1

(αi − αi−1)2 .

Thus,
n∑

j=1

α2
j ≤

n(n + 1)
2

n∑

i=1

(αi − αi−1)2 ,

which implies (22). ¤

Remark 1. Setting αi = i for i = 1, . . . , n, we realize that the factor 1/n2 in (22)
is optimal.

First let us analyze the sum of the right–hand sides of (21) for ε = 1/3 (this
value of ε corresponds to θ defined by (5) if midpoint–oriented degrees of freedom
are used). The following result is crucial for proving the desired Korn inequality.

Lemma 2. Let ui,j+1/2, vi,j+1/2 with i = 1, . . . , n, j = 0, . . . , n, and ui+1/2,j,
vi+1/2,j with i = 0, . . . , n, j = 1, . . . , n be arbitrary real numbers satisfying (20).
Then

n∑

i,j=1

{2 (ui+1/2,j − ui−1/2,j)2 + 2 (vi,j+1/2 − vi,j−1/2)2(23)

+ (ui,j+1/2 − ui,j−1/2 + vi+1/2,j − vi−1/2,j)2

+(ui,j+1/2 + ui,j−1/2 − ui+1/2,j − ui−1/2,j)2

+(vi,j+1/2 + vi,j−1/2 − vi+1/2,j − vi−1/2,j)2}

≥ 1
18 n2

n∑

i,j=1

{u2
i,j+1/2 + v2

i,j+1/2 + u2
i+1/2,j + v2

i+1/2,j} .

Proof. Let us denote for i, j = 1, . . . , n

aij = ui+1/2,j − ui−1/2,j ,

bij = vi,j+1/2 − vi,j−1/2 ,

cij = ui,j+1/2 − ui,j−1/2 + vi+1/2,j − vi−1/2,j ,

dij = ui,j+1/2 + ui,j−1/2 − ui+1/2,j − ui−1/2,j ,

eij = vi,j+1/2 + vi,j−1/2 − vi+1/2,j − vi−1/2,j ,

sij = 2 a2
ij + 2 b2

ij + c2
ij + d2

ij + e2
ij .

Then the left–hand side of (23) is
∑n

i,j=1 sij .
For any real numbers a, b, we have

a2 + b2 ≥ 1
2

(a + b)2
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and hence, for any real numbers a, b, c, d, e, we derive

2 a2 + 2 b2 + c2 + d2 + e2 ≥ 1
2

(a + b + c)2 +
1
2

(d + e)2 ≥ 1
4

(a + b + c + d + e)2 .

Consequently,

(24) sij ≥ 1
4

(aij +bij +cij +dij +eij)2 = (ui,j+1/2 +vi,j+1/2−ui−1/2,j−vi−1/2,j)2

and

(25) sij ≥ 1
4

(aij +bij +cij−dij−eij)2 = (ui,j−1/2+vi,j−1/2−ui+1/2,j−vi+1/2,j)2 .

We denote

fi,j+1/2 = ui,j+1/2 + vi,j+1/2 , i = 1, . . . , n , j = 0, . . . , n ,

fi+1/2,j = ui+1/2,j + vi+1/2,j , i = 0, . . . , n , j = 1, . . . , n .

Then, according to (20),

(26) fi,1/2 = 0 , i = 1, . . . , n , f1/2,j = 0 , j = 1, . . . , n .

For convenience we further set

(27) f0,j+1/2 = 0 , j = 0, . . . , n , fi+1/2,0 = 0 , i = 0, . . . , n .

It follows from (24) and (25) that

2 sij ≥ (fi,j+1/2 − fi−1/2,j)2 + (fi,j−1/2 − fi+1/2,j)2 , i, j = 1, . . . , n .

In view of (26) and (27) we have

n∑

i,j=1

(fi,j+1/2 − fi−1/2,j)2 =
n∑

i,j=1
i−j≤0

(fi,j+1/2 − fi−1/2,j)2 +
n∑

i,j=1
i−j≥0

(fi,j−1/2 − fi−1/2,j−1)2

=
0∑

k=1−n

n+k∑

i=1

(fi,i−k+1/2 − fi−1/2,i−k)2 +
n−1∑

k=0

n∑

i=1+k

(fi,i−k−1/2 − fi−1/2,i−k−1)2 ,

where now the summation runs over diagonals. Similarly,
n∑

i,j=1

(fi,j−1/2 − fi+1/2,j)2 =
n∑

i,j=1
i−j≤0

(fi−1,j−1/2 − fi−1/2,j)2 +
n∑

i,j=1
i−j≥0

(fi,j−1/2 − fi+1/2,j)2

=
0∑

k=1−n

n+k∑

i=1

(fi−1,i−k−1/2 − fi−1/2,i−k)2 +
n−1∑

k=0

n∑

i=1+k

(fi,i−k−1/2 − fi+1/2,i−k)2 .

Thus,

2
n∑

i,j=1

sij ≥
0∑

k=1−n

n+k∑

i=1

{(fi,i−k+1/2 − fi−1/2,i−k)2 + (fi−1/2,i−k − fi−1,i−k−1/2)2}

+
n−1∑

k=0

n∑

i=1+k

{(fi+1/2,i−k − fi,i−k−1/2)2 + (fi,i−k−1/2 − fi−1/2,i−k−1)2} .
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Applying Lemma 1 to each inner sum on the right–hand side of this inequality, we
obtain

2
n∑

i,j=1

sij ≥
0∑

k=1−n

1
4 (n + k)2

n+k∑

i=1

{f2
i,i−k+1/2 + f2

i−1/2,i−k}

+
n−1∑

k=0

1
4 (n− k)2

n∑

i=1+k

{f2
i+1/2,i−k + f2

i,i−k−1/2}

≥ 1
4 n2

n∑

i,j=1
i−j≤0

{f2
i,j+1/2 + f2

i−1/2,j}+
1

4 n2

n∑

i,j=1
i−j≥0

{f2
i+1/2,j + f2

i,j−1/2} .

Due to (26) we have

n∑

i,j=1
i−j≤0

f2
i−1/2,j =

n∑

i,j=1
i−j<0

f2
i+1/2,j ,

n∑

i,j=1
i−j≥0

f2
i,j−1/2 =

n∑

i,j=1
i−j>0

f2
i,j+1/2 .

This implies that

(28)
n∑

i,j=1

sij ≥ 1
8 n2

n∑

i,j=1

{f2
i,j+1/2 + f2

i+1/2,j} .

To obtain another lower bound of the left–hand side of (23), we observe that
(20) and Lemma 1 imply

n∑

i=1

(ui+1/2,j − ui−1/2,j)2 ≥
1
n2

n∑

i=1

u2
i+1/2,j , j = 1, . . . , n .

Similarly, we derive

n∑

j=1

(vi,j+1/2 − vi,j−1/2)2 ≥
1
n2

n∑

j=1

v2
i,j+1/2 , i = 1, . . . , n .

Thus, we have

(29)
n∑

i,j=1

sij ≥ 2
n2

n∑

i,j=1

{u2
i+1/2,j + v2

i,j+1/2} .

Using the fact that for any i, j ∈ {1, . . . , n}

f2
i,j+1/2 + v2

i,j+1/2 ≥
1
2

u2
i,j+1/2 , f2

i+1/2,j + u2
i+1/2,j ≥

1
2

v2
i+1/2,j ,

and combining (28) and (29), we obtain the lemma. ¤

As corollaries of the above lemma we can now state the following two Korn
inequalities representing the main result of this section.
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Theorem 1. We have

(30) ‖vh‖20,Ω ≤ C̄
∑

K∈Th

‖∇vh + (∇vh)T‖20,K ∀ vh ∈ Vh ,

where C̄ = 18 ‖q̂1‖20,K̂
/ min{1, 3 ε}.

Proof. For any vh ∈ Vh and any K ∈ Th, one easily derives that

‖vh‖20,K ≤ h2 ‖q̂1‖20,K̂

∑

E⊂∂K

|JE(vh)|2 .

Summing up these inequalities over all elements K ∈ Th and applying (21) and
(23), we obtain (30). ¤

Theorem 2. There exists a constant C0 independent of h such that

(31)
∑

K∈Th

|vh|21,K ≤ C0 h−2
∑

K∈Th

‖∇vh + (∇vh)T‖20,K ∀ vh ∈ Vh .

Proof. It follows from the equivalence of norms on finite–dimensional spaces that
there exists a constant Ĉ such that, for any K ∈ Th and any vh ∈ Vh,

|vh|1,K = |vh ◦ FK |1,K̂ ≤ Ĉ ‖vh ◦ FK‖0,K̂ = 2 Ĉ h−1 ‖vh‖0,K .

Thus, we have ∑

K∈Th

|vh|21,K ≤ 4 Ĉ2 h−2 ‖vh‖20,Ω

and the theorem follows from (30). ¤

The results of Section 3 show that the estimate (31) is sharp.

5. Convergence analysis for a nonconforming finite element discretiza-
tion of the Stokes equations

In this section we analyze the convergence of the discrete solutions of the Stokes
equations (8)–(12) discretized using a suitable subspace of the space Vh introduced
in Section 2. We shall only consider the mean–value–oriented degrees of freedom,
i.e.,

JE(v) =
1
|E|

∫

E

v dγ .

The subspace of Vh will be used for approximating the velocity u whereas the
pressure p will be approximated by piecewise constant functions from the space

Qh = {qh ∈ L2
0(Ω); qh|K ∈ P0(K) ∀K ∈ Th} .

We shall assume that the data of the problem (8)–(12) satisfy f ∈ L2(Ω)2 and

ub · n = 0 on ΓN ,

∫

ΓD

ub · n dγ = 0 .

Moreover, from now on, ub will denote a lifting of the boundary condition satisfying
ub ∈ H1(Ω)2.
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To introduce a weak formulation of (8)–(12), we first define a test function space

W = {v ∈ V ; v · n = 0 on ΓN} .

Then the standard weak formulation of (8)–(12) reads: Find u ∈ H1(Ω)2 and
p ∈ L2

0(Ω) such that u− ub ∈ W and

a(u, v) + b(v, p)− b(u, q) = (f , v) ∀ v ∈ W, q ∈ L2
0(Ω) .

Here, (·, ·) denotes the usual inner product in L2(Ω)2 and

a(u, v) = 2 (D(u), D(v)) , b(v, p) = −(p, div v) .

Since the Korn first inequality (1) implies that the bilinear form a is W–elliptic
and since the spaces W and L2

0(Ω) satisfy an inf–sup condition (see [12]), it can be
proved that there always exists a unique weak solution of (8)–(12) (cf. e.g. [4] or
[12]). In what follows we shall still assume that this solution possesses at least the
regularity u ∈ H2(Ω)2, p ∈ H1(Ω), which implies that the functions u, p satisfy
the equations (8)–(12) almost everywhere.

For piecewise H1 vector–valued functions v, we define the ‘elementwise’ differ-
ential operators Dh and divh by

Dh(v)|K =
1
2

(
∇(v|K) + (∇v|K)T

)
, (divh v)|K = div(v|K) ∀ K ∈ Th

and we set

ah(u, v) = 2 (Dh(u), Dh(v)) , bh(v, p) = −(p,divh v) .

Further, we define a discrete analogue of | · |1,Ω by

|v|1,h =

( ∑

K∈Th

|v|21,K

)1/2

.

Obviously, it is a norm on Vh and the discrete Korn inequality (31) assures that,
for each h, the bilinear form ah is Vh–elliptic with respect to this norm.

We introduce the spaces

Wh = {vh ∈ Vh; JE(vh) · n|E = 0 ∀E ∈ EN
h } ,

W̃h = {vh ∈ L2(Ω)2; vh|K ∈ Q(K)2 ∀K ∈ Th, JE([|vh|]E) = 0 ∀E ∈ E in
h }

and an interpolation operator ih : H1(Ω)2 → W̃h such that

JE(ih v) = JE(v) ∀ E ∈ Eh, v ∈ H1(Ω)2 .

Further we define an operator jh : L2
0(Ω) → Qh by

(jh q)|K =
1
|K|

∫

K

q dx dy ∀ K ∈ Th, q ∈ L2
0(Ω) .

Then (cf. e.g. [3] or [6])

‖v − ih v‖0,Ω + h |v − ih v|1,h ≤ C h2 |v|2,Ω ∀ v ∈ H2(Ω)2 ,(32)

‖q − jh q‖0,Ω ≤ C h |q|1,Ω ∀ q ∈ L2
0(Ω) ∩H1(Ω) .(33)

Note also that ih v ∈ Wh for any v ∈ W and that ih v is discretely divergence–free
if div v = 0, i.e.,

bh(ih v, qh) = 0 ∀ qh ∈ Qh, v ∈ H1(Ω)2, div v = 0 .

The spaces Wh and Qh satisfy the inf–sup condition

(34) sup
vh∈Wh\{0}

bh(vh, qh)
|vh|1,h

≥ β ‖qh‖0,Ω ∀ qh ∈ Qh
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with a positive constant β independent of h (cf. [17], [7]).
It is natural to define the discrete solution of (8)–(12) as functions uh ∈ W̃h and

ph ∈ Qh such that

uh − ih ub ∈ Wh

and

(35) ah(uh, vh) + bh(vh, ph)− bh(uh, qh) = (f ,vh) ∀ vh ∈ Wh, qh ∈ Qh .

The properties of the bilinear forms ah and bh immediately imply that the discrete
problem always has a unique solution.

Since the space Wh is nonconforming, the exact solution u, p does not solve the
discrete problem. Indeed, multiplying (8) by a function vh ∈ Wh, integrating by
parts over each K ∈ Th and summing up, we obtain

(36) ah(u,vh) + bh(vh, p) = (f ,vh) + eh(u, p;vh) ∀ vh ∈ Wh ,

where the consistency error eh is defined by

eh(u, p; vh) =
∑

K∈Th

∫

∂K

vh|K · σ(u, p)n∂K dγ

with n∂K being the outer unit normal vector to the boundary of K. For estimating
the consistency error we shall use the following lemma.

Lemma 3. Consider any K ∈ Th and denote for any z, v ∈ H1(K)

eK(z, v) =
∑

E⊂∂K

∫

E

z (v − JE(v)) n∂K dγ .

Then eK(z, v) = 0 for any v ∈ Q(K) and any function z ∈ H1(K) having the form
z(x, y) = z1(x) + z2(y).

Proof. Let us denote ẑi = zi ◦ FK , i = 1, 2, and set ẑ(x̂, ŷ) = ẑ1(x̂) + ẑ2(ŷ). Then
eK(z, v) = 1

2 h eK̂(ẑ, v ◦ FK). Denoting

ϑ(ξ) = −1
4

+
1
κ

(θ(1)− θ(ξ)) ,

we have

eK̂(ẑ, q̂1) = (1, 0)
∫ 1

−1

ϑ(ŷ) (ẑ(1, ŷ)− ẑ(−1, ŷ)) dŷ

+ (0, 1)
∫ 1

−1

(
x̂

2
− ϑ(x̂)) (ẑ(x̂, 1)− ẑ(x̂,−1)) dx̂ .

Since ẑ(1, ŷ)− ẑ(−1, ŷ) = ẑ1(1)− ẑ1(−1), ẑ(x̂, 1)− ẑ(x̂,−1) = ẑ2(1)− ẑ2(−1) and
∫ 1

−1

ϑ(ξ) dξ =
∫

Ê3

q̂1 dγ = 0 ,

we obtain eK̂(ẑ, q̂1) = 0. It is easy to see that the basis functions q̂2, q̂3 and q̂4

can be obtained from q̂1 by rotating the coordinate system through angles of π/2,
π and 3 π/2. Since these rotations preserve the additive form of ẑ, we deduce that
eK̂(ẑ, q̂i) = 0 for i = 1, . . . , 4. ¤



454 P. KNOBLOCH AND L. TOBISKA

Now we can prove an error estimate for the above–defined discrete solution uh,
ph.

Theorem 3. Let the weak solution of (8)–(12) satisfy u ∈ H2+α(Ω)2 and p ∈
H1+α(Ω) for some α ∈ [0, 1]. Then

‖u− uh‖0,Ω + ‖Dh(u− uh)‖0,Ω + ‖p− ph‖0,Ω ≤ C hα (|u|2+α,Ω + |p|1+α,Ω) ,

where C is a constant independent of h, u and p.

Proof. According to (35) and (36), we have

(37) ah(u− uh, vh) + bh(vh, p− ph) = eh(u, p; vh) ∀ vh ∈ Wh .

Since wh ≡ uh − ih u belongs to Wh and is discretely divergence–free, we derive
from (37) with vh = wh that

(38) 2 ‖Dh(wh)‖20,Ω = ah(u− ih u, wh) + bh(wh, p− jh p)− eh(u, p;wh) .

Using (32) and (33), we get

ah(u− ih u, wh) ≤ 2 |u− ih u|1,h ‖Dh(wh)‖0,Ω ≤ C h |u|2,Ω ‖Dh(wh)‖0,Ω ,(39)

bh(wh, p− jh p) ≤ ‖p− jh p‖0,Ω ‖divh wh‖0,Ω ≤ C h |p|1,Ω ‖Dh(wh)‖0,Ω .(40)

Further, we have for any vh ∈ Wh

eh(u, p;vh) =
∑

K∈Th

∑

E⊂∂K

∫

E

(vh|K − JE(vh)) · σ(u, p)n∂K dγ .

Let us denote by P1(K)2×2 the space of 2 × 2 matrices whose entries are linear
functions on K. Applying Lemma 3 componentwise, we get

eh(u, p;vh) =
∑

K∈Th

inf
z∈P1(K)2×2

∑

E⊂∂K

∫

E

(vh|K − JE(vh)) · (σ(u, p)− z) n∂K dγ .

In view of Lemma 3 from [7], we derive∫

E

(vh|K − JE(vh)) · (σ(u, p)− z) n∂K dγ ≤ C h |σ(u, p)− z|1,K |vh|1,K .

Since each component of σ(u, p) belongs to H1+α(Ω), we get by virtue of [11] and
[6]

inf
z∈P1(K)2×2

|σ(u, p)− z|1,K ≤ C hα |σ(u, p)|1+α,K .

Thus, using the Cauchy–Schwarz inequality, we deduce that

eh(u, p; vh) ≤ C h1+α |σ(u, p)|1+α,Ω |vh|1,h ≤ C h1+α (|u|2+α,Ω + |p|1+α,Ω) |vh|1,h

and, applying the discrete Korn inequality (31), we obtain

(41) eh(u, p; vh) ≤ C hα (|u|2+α,Ω + |p|1+α,Ω) ‖Dh(vh)‖0,Ω .

Combining (38)–(41), we get

(42) ‖Dh(wh)‖0,Ω ≤ C hα (|u|2+α,Ω + |p|1+α,Ω) ,

which, together with (32), immediately implies the estimate for ‖Dh(u− uh)‖0,Ω.
Applying the discrete Korn inequality (30) to (42) and using (32) once again, we
derive the estimate for ‖u− uh‖0,Ω. Finally, in view of (37), we have

bh(vh, ph − jh p) = ah(u− uh,vh) + bh(vh, p− jh p)− eh(u, p; vh) ∀ vh ∈ Wh

and the estimate for ‖p−ph‖0,Ω follows from (34), (33) and (41) using the estimate
for ‖Dh(u− uh)‖0,Ω. ¤
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Remark 2. It is easy to see that Lemma 3 also holds for any parallelogram K if
we consider z ∈ P1(K). Consequently, Theorem 3 remains valid for triangulations
consisting of shape–regular parallelograms provided that Theorems 1 and 2 still
hold.

Remark 3. We were not able to prove the convergence of uh with respect to
the seminorm | · |1,h. For this, it would be sufficient to prove the convergence of
‖rot(u−uh)‖0,Ω, which, however, seems to be a difficult task. At least, using (42),
(31) and (32), we can prove that |uh|1,h is bounded.

Remark 4. For the midpoint–oriented degrees of freedom JE(v) = v(CE) Lemma 3
does not hold for z ∈ P1(K), which prevents us from proving convergence results
using the techniques applied above. Therefore, we consider only the meanvalue–
oriented degrees of freedom in this section.

If u ∈ H3(Ω)2 and p ∈ H2(Ω), then it follows from Theorem 3 that

‖Dh(u− uh)‖0,Ω + ‖p− ph‖0,Ω ≤ C h (‖u‖3,Ω + ‖p‖2,Ω) .

This estimate is optimal with respect to the convergence order but the required
regularity of the weak solution is higher than usually. In fact, one would expect
that there exists a constant C such that

‖Dh(u− uh)‖0,Ω + ‖p− ph‖0,Ω ≤ C h (‖u‖2,Ω + ‖p‖1,Ω)

as soon as the weak solution satisfies u ∈ H2(Ω)2, p ∈ H1(Ω). However, according
to (37), this would imply that

eh(u, p;vh) ≤ C h (‖u‖2,Ω + ‖p‖1,Ω) ‖Dh(vh)‖0,Ω ∀ vh ∈ Wh

for any u ∈ W ∩H2(Ω)2 and p ∈ L2
0(Ω) ∩H1(Ω). Unfortunately, such an estimate

of the consistency error does not hold as it follows from the following theorem.

Theorem 4. There exists a constant C independent of h such that

∀ h =
1
n

, n ≥ 2, ∃ p ∈ L2
0(Ω) ∩H1(Ω), vh ∈ Wh :

eh(0, p;vh) > C ‖p‖1,Ω ‖Dh(vh)‖0,Ω .

Proof. Consider any h = 1/n, n ≥ 2. For any E ∈ Eh, let tE = ṽh(CE) be a tangent
vector to E, see Fig. 1. For any element K ∈ Th we introduce a triangulation
depicted in Fig. 4, where the distances between the vertices of K and the nearest
points in the interiors of the edges are h/4. We define a function p ∈ L2

0(Ω)∩H1(Ω)
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Figure 4. Triangulation of an element K.

which is piecewise linear with respect to the triangulation of any element K. We
set p = 0 at the vertices and centres of the elements K and p = 1 or p = −1 at the
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points in the interiors of edges. These values are chosen in such a way that, for any
E ∈ Eh,

p|E is odd and
∂p

∂tE
(CE) > 0 .

Then ‖p‖0,Ω = 1/
√

6 and |p|1,Ω = 2
√

6/h so that ‖p‖1,Ω < 5/h.
Let vh ∈ Wh be the function constructed in Section 3. Let E be any inner edge

of Th. Then (possibly after a rotation of the coordinate system), the directions of
the degrees of freedom of vh associated with the edges of the two elements adjacent

¾

-

-

¾

?
6

?
E

Figure 5. Directions of the degrees of freedom of vh.

to E are like in Fig. 5. Let us denote by E1, . . . , E4 the four edges sharing a vertex
with E which are perpendicular to E. Let ζE vanish at the midpoint of E and
satisfy

∂ζE

∂tE
=

1
h

.

Then

[|vh|]E = −
(

4∑

k=1

|JEk
(vh)|

)
ζE nE + ξE(vh) ,

where the function ξE(vh) is even along E. Since p is odd along E, we see that

−
∫

E

p [|vh|]E · nE dγ =

(
4∑

k=1

|JEk
(vh)|

) ∫

E

p ζE dγ .

Consequently,

−
∫

E

p [|vh|]E · nE dγ =
h

8

4∑

k=1

|JEk
(vh)|

and hence

−
∫

E

p [|vh|]E · nE dγ ≥ h

4
i ∀ E ∈ E i

h, i = 1, . . . , n− 1 .

If E ⊂ ∂Ω, then we have

−
∫

E

p [|vh|]E · nE dγ ≥ h

8
.

Thus, we derive using (18)

eh(0, p; vh) ≥ h

2
n+h

n−1∑

i=1

(n−i) i =
1
2

+
n2 − 1

6
≥ n2

6
>

1
60 M

‖p‖1,Ω ‖Dh(vh)‖0,Ω .

¤



KORN’S FIRST INEQUALITY 457

The above theorem shows that for p ∈ L2
0(Ω) ∩H1(Ω) the estimate

eh(0, p; vh) ≤ C ‖p‖1,Ω ‖Dh(vh)‖0,Ω ∀ vh ∈ Wh

cannot be improved. This is also the reason why it is impossible to improve the
results of Theorem 3 using the Aubin–Nitsche duality technique.

Remark 5. A triangular counterpart of the quadrilateral finite elements considered
in this paper is the piecewise linear Crouzeix–Raviart element, see [7]. Thus, let us
now assume that Th consists of triangles and Vh is defined as in Section 2 with Q(K)
replaced by P1(K). It is known that, for certain types of triangulations, the finite
element spaces Vh contain functions vh for which Dh(vh) = 0 so that the inequality
(2) cannot hold for any constant Ch (cf. [10], [1]). However, if we construct Th from
the mesh in Fig. 3 by dividing each square by its diagonal from the lower left vertex
to the upper right vertex, then Dh(vh) 6= 0 for any vh ∈ Vh \ {0} and hence the
natural question is whether one can prove similar results as above. This question
was investigated in [14] where it was proved using similar techniques as above that
Theorems 1 and 2 still hold and that the dependence on h in Theorem 2 is optimal.
However, for the consistency error, one can only prove that

|eh(u, p;vh)| ≤ C ‖vh‖0,Ω , |eh(u, p;vh)| ≤ C ‖Dh(vh)‖0,Ω ∀ vh ∈ Wh

with C independent of h. It was shown in [14] that these estimates cannot be
improved (also not for infinitely smooth functions). That leads to error estimates
of the type ‖u − uh‖0,Ω = O(1), ‖Dh(u − uh)‖0,Ω = O(1), |u − uh|1,h = O(h−1)
and ‖p − ph‖0,Ω = O(1) which were also confirmed by our unpublished numerical
experiments. Moreover, in the numerical tests, the convergence of the used solver
was very bad compared to the case when the bilinear form

∑
K∈Th

∫
K
∇u·∇v dxdy

is used instead of ah.
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