
Basic notation

• R . . . the set of real numbers
• C . . . the set of complex numbers
• C . . . the extended complex plane, i.e. C ∪ {∞}
• H(G) . . . the algebra of functions holomorphic (=analytic) on G,
where G ⊂ C is a nonempty open subset.

• U(a, r) (a ∈ C, r > 0) . . . the open disc with center a and radius r
• P (a, r) (a ∈ C, r > 0) . . . the reduced neighborhood U(a, r) \ {a}
• P (a, r, R) (a ∈ C, 0 ≤ r < R ≤ +∞)

. . . the annulus {z ∈ C : r < |z − a| < R}
• indγ a . . . the index of the point a with respect to the closed path γ

(= the winding number of γ around a)
• resa f . . . the residue of the function f at the point a

I.1 Harmonic functions on R
2

and their connections to holomorphic ones

Definition. Let G ⊂ R2 be an open set. A function f : G → R is said to be
harmonic, if it is continuous on G and satisfies on G the equality

∆f =
∂2f

∂x2
+

∂2f

∂y2
= 0.

Remark. Complex-valued harmonic functions are defined similarly. Then
obviously, a complex function f is harmonic if and only if both Re f and Im f

are harmonic.

Proposition 1. Let G ⊂ C be an open set.

(i) If f ∈ H(G), then functions f1, f2 defined by the formulas

f1(x, y) = Re f(x+ iy), f2(x, y) = Im f(x+ iy)

are harmonic on G (if we identify C and R2).
(ii) Let f : G → R be a harmonic function (if we identify C and R

2). If
moreover f ∈ C2(G), then the following assertions hold:

• The function

g(x+ iy) =
∂f

∂x
(x, y)− i

∂f

∂y
(x, y)

is holomorphic on G.
• If G is simply connected, then there is f̃ ∈ H(G) such that

Re f̃(x+ iy) = f(x, y) on G.

Corollary. Let G ⊂ C be an open set and f be a holomorphic function on
G, which does not attain zero on G. Then the function g(x, y) = ln |f(x+ iy)|
is harmonic on G (if we identify C and R

2).

Remark. It follows from Theorem 6 below that harmonic functions are au-
tomatically C∞.



Definition. By the Poisson kernel we understand the function defined by the
formula

Pr(t) =
∞
∑

n=−∞

r|n|eint, t ∈ R, r ∈ [0, 1).

Proposition 2 (properties of the Poisson kernel).

(i) Pr(θ − t) = Re eit+reiθ

eit−reiθ
= 1−r2

1−2r cos(θ−t)+r2
for r ∈ [0, 1), t, θ ∈ R.

(ii) 1
2π

∫ π

−π
Pr(t) dt = 1 for r ∈ [0, 1).

(iii) Pr is a strictly positive even 2π-periodic function for each r ∈ [0, 1).
For r > 0 the function Pr is strictly decreasing on [0, π].

(iv) lim
r→1−

Pr(t) = 0 unless t is a multiple of 2π.

Remark. By T we denote the unit circle, i.e., {eit, t ∈ R}. Functions on T

are canonically identified with 2π-peridodic functions on R, measures on T are
identified with measures on [−π, π) (sometimes on [α, α+2π) for some α ∈ R).
On T we consider the normalized Lebesgue measure. The spaces Lp(T) are
considered with respect to this measure.

Definition.

• Let f ∈ L1(T). By the Poisson integral of the function f we mean the
function P [f ] defined on U(0, 1) by the formula

P [f ](reiθ) =
1

2π

∫ π

−π

Pr(θ − t)f(t) dt, r ∈ [0, 1), θ ∈ R.

• Let µ be a (signed or complex-valued) Borel measure on T. By the
Poisson integral of the measure µ we mean the function P [ dµ] defined
on U(0, 1) by the formula

P [ dµ](reiθ) =

∫

[−π,π)

Pr(θ − t) dµ(t), r ∈ [0, 1), θ ∈ R.



Proposition 3. P [ dµ] is a harmonic function on U(0, 1) for any complex
Borel measure µ on T. In particular, P [f ] is a harmonic function on U(0, 1)
for any f ∈ L1(T).
Further, if µ is a real-valued measure, the function P [ dµ] is real-valued as

well. If µ is non-negative, the function P [ dµ] is non-negative as well. Similarly
for f and P [f ].

Proposition 4 (a version of the residue theorem). Let a ∈ C, R > 0 and
M ⊂ U(a,R) be a finite set. Let f be a complex function continuous on

U(a,R) \M and holomorphic on U(a,R) \M . If ϕ is the positively oriented
circle with center a and radius R, then

∫

ϕ

f = 2πi
∑

a∈M

resa f.

Corollary (Poisson integral of a holomorphic function). Let a ∈ C, R >

0 and f be a complex function continuous on U(a,R) and holomorphic on
U(a,R). Then for each r ∈ [0, R) and θ ∈ R the following formulas hold:

• 1
2π

∫ π

−π
f(a+Reit) · Reit+reiθ

Reit−reiθ
dt = 2f(a+ reiθ)− f(a);

• 1
2π

∫ π

−π
f(a+Reit) · Re−it+re−iθ

Re−it−re−iθ dt = f(a);

• f(a+ reiθ) = 1
2π

∫ π

−π
f(a+Reit) · Re Reit+reiθ

Reit−reiθ
dt.

Theorem 5 (solution of the Dirichlet problem on the disc). Let f be a
function continuous on T. Let us define a function Hf by the formula

Hf(reiθ) =

{

f(eiθ), r = 1, θ ∈ R,

P [f ](reiθ), r ∈ [0, 1), θ ∈ R.

Then the function Hf is continuous on U(0, 1) (and also harmonic on U(0, 1)
and equal to f on T).

Theorem 6 (expressing a harmonic function by the Poisson integral). Let

f be a complex function continuous on U(0, 1) and harmonic on U(0, 1). Then
f = P [f |T] on U(0, 1).

Corollary.

• If f is a complex function continuous on U(a,R) and harmonic on
U(a,R), then for r ∈ [0, R) and θ ∈ R the following formula holds:

f(a+ reiθ) =
1

2π

∫ π

−π

R2 − r2

R2 − 2Rr cos(θ − t) + r2
f(a+Reit) dt

=
1

2π

∫ π

−π

f(a+ Reit) · Re
Reit + reiθ

Reit − reiθ
dt.



• A real-valued harmonic function on U(a,R) is the real part of a holo-
morphic function on U(a,R).

• Harmonic functions are C∞.
• Let f be a function continuous on U(a,R) and harmonic on U(a,R).
Then f(a) = 1

2π

∫ π

−π
f(a+Reit) dt.

Theorem 7 (Harnack). Let G ⊂ R2 be a domain and let (fn) be a sequence
of harmonic functions on G.

(i) It the sequence (fn) is locally uniformly convergent on G, the limit
function is harmonic on G.

(ii) Suppose that the functions fn are real-valued and the sequence (fn(z))
is non-decreasing for each z ∈ G. Then either the sequence (fn) is
locally uniformly convergent on G or fn(z)→ +∞ for each z ∈ G.

Definition. Let G ⊂ R2 be an open set and let f be a continuous function
on G. We say that f enjoys the mean value property, if for any a ∈ G there is
a sequence rn ց 0 such that for any n ∈ N the following formula holds:

f(a) =
1

2π

∫ π

−π

f(a+ rne
it) dt

Věta 8. Let G ⊂ R
2 be an open set and let f be a continuous function on

G. If f enjoys the mean value property, then f is harmonic on G.

Theorem 9 (Schwarz reflection principle). Let Ω ⊂ C be a domain, which
is symmetric with respect to reflection through the real axis. Denote by Ω+

the intersection of Ω with the half-plane {z : Im z > 0} and Ω− the intersection
with the half-plane {z : Im z < 0}. Let f be a holomorphic function on Ω+

such that for each x ∈ Ω ∩ R we have

lim
z→x,z∈Ω+

Im f(z) = 0.

Then there is F ∈ H(Ω) such that F = f na Ω+. Moreover, this F satisfies

F (z) = F (z) for z ∈ Ω.


