
VII. More on lo
ally 
onvex topologies

Reminder:

• A lo
ally 
onvex spa
e is a ve
tor spa
e X over F equipped with a topology T with the properties:

◦ The mapping (x, y) 7→ x+ y is a 
ontinuous mapping X ×X → X.

◦ The mapping (t, x) 7→ t · x is a 
ontinuous mapping F×X → X.

◦ There exists a base of neighborhoods of zero formed by 
onvex sets.

• Let X be a ve
tor spa
e over F and let U be a nonempty system of its subsets with the properties:

(a) Elements of U are absolutely 
onvex and absorbing.

(b) For any U ∈ U there exists V ∈ U satisfying 2V ⊂ U .

(
) For any two elements U, V ∈ U there exists W ∈ U satisfying W ⊂ U ∩ V .

Then there exists a unique lo
ally 
onvex topology onX su
h that U is a base of its neighborhoods

of zero. This topology is Hausdor� if and only if

⋂

U = {o}.
Conversely, any lo
ally 
onvex spa
e has a base of neighborhoods of zero U with the properties

(a)-(
). Moreover, U 
an 
onsist of open sets.

• Let X be a ve
tor spa
e over F and let P be a nonempty family of seminorms on X. Then the

family

U = {{x ∈ X; p
1

(x) < c
1

, . . . , pn(x) < cn}; p1, . . . , pn ∈ P , c
1

, . . . , cn ∈ (0,∞)}

is a base of neighborhoods of zero of some (uniquely determined) lo
ally 
onvex topology on X.

Conversely, any lo
ally 
onvex topology on X is de�ned in this way by a family of seminorms,

for example by the family of all the 
ontinuous seminorms.

Moreover, if the topology T is generated by a family of seminorms P , then a seminorm p is

T -
ontinuous if and only if there exist p
1

, . . . , pn ∈ P and c > 0 su
h that p ≤ c ·max{p
1

, . . . , pn}.

VII.1 Latti
e of lo
ally 
onvex topologies and topologies agreeing with duality

Notation: Let X be a ve
tor spa
e. Denote by the symbol LC(X) the family of all lo
ally 
onvex

topologies on X.

Proposition 1. Let X be a ve
tor spa
e. Then LC(X) is a 
omplete latti
e. I.e., whenever F ⊂
LC(X) is a nonempty subfamily, there exist the weakest lo
ally 
onvex topology �ner than all the

elements of F (we denote it supF) and the �nest lo
ally 
onvex topology weaker than all the elements

of F (we denote it inf F). They 
an be des
ribed as follows:

• supF is generated by the family of all the seminorms whi
h are 
ontinuous in some topology

from F.

• inf F is generated by the family of all the seminorms whi
h are 
ontinuous in all topologies from

F.

Remarks:

(1) If at least one element of F is a Hausdor� topology, then supF is a Hausdor� topology as well.

(2) supLC(X) is the strongest lo
ally 
onvex topology. A base of neighborhoods of zero is formed

by all the absorbing absolutely 
onvex sets. All the seminorms are 
ontinuous in it, so it is

generated by the family of all the seminorms on X. All linear fun
tionals are 
ontinuous in it,

hen
e (X, supLC(X))

∗
= X#

(the algebrai
 dual of X).

(3) inf LC(X) is the indis
rete topology, the unique neighborhood of zero is the whole spa
e X, the

unique 
ontinuous seminorm is the zero one and the unique 
ontinuous linear fun
tional is the

zero one.

(4) If dimX < ∞, then X admits a unique Hausdor� lo
ally 
onvex topology.

(5) Let dimX = ∞. Then inf F need not be a Hausdor� topology, even if all the elements of F

are Hausdor�. In fa
t, the in�mum of the family of all Hausdor� lo
ally 
onvex topologies is the

indis
rete topology.

Lemma 2. Let X be ve
tor spa
e, f : X → F linear fun
tional and p
1

, . . . , pn seminorms on X.

If |f | ≤ max{p
1

, . . . , pn}, then there exist linear fun
tionals f
1

, . . . , fn and numbers t
1

, . . . , tn ∈ [0, 1℄

satisfying

(i) |fj | ≤ pj for j = 1, . . . , n;

(ii) f = t
1

f
1

+ t
2

f
2

+ · · · + tnfn;

(iii) t
1

+ t
2

+ · · · + tn = 1.



Proposition 3. Let X be a ve
tor spa
e and let F ⊂ LC(X) be any nonempty subfamily. Then

(X, supF)

∗
= span

(

⋃

T ∈F

(X,T )

∗

)

, (X, inf F)

∗
=

⋂

T ∈F

(X,T )

∗.

De�nition. Let X be a ve
tor spa
e and M ⊂⊂ X#

.

• Denote

LC(X,M) = {T ∈ LC(X); (X,T )

∗
= M}.

If X is a lo
ally 
onvex spa
e and M = X∗
, then the topologies from the family LC(X,X∗

) are


alled admissible topologies or topologies agreeing with the duality.

• By Proposition 3 the family LC(X,M) has the smallest and the largest element, i.e.,

inf LC(X,M) ∈ LC(X,M) and supLC(X,M).

The smallest element is 
alled the weak topology generated by M and is denoted by σ(X,M) (it


oin
ides with the weak topology from Se
tion II.1). The largest element is 
alled the Ma
key

topology generated by M , we will denote it by µ(X,M). (The symbol τ(X,M) is often used as

well.)

Lemma 4. Let (X,T ) be a LCS. Consider X∗
as a subspa
e of X#

and the topologies σ(X∗,X) on

X∗
and σ(X#,X) on X#

. Then:

(a) The topology σ(X#,X) is Hausdor�. The topology σ(X∗,X) 
oin
ides with the subspa
e topol-

ogy generated by σ(X#,X).

(b) If T is Hausdor�, then X∗
is a σ(X#,X)-dense subspa
e of X#

.

(
) Let A ⊂ X∗
. Then A is relatively 
ompa
t in (X∗, σ(X∗,X)) (i.e., its 
losure is 
ompa
t) if and

only if the following two 
onditions hold:

◦ A is σ(X∗,X)-bounded.

◦ A
σ(X#,X)

⊂ X∗
.

De�nition. Let X be a ve
tor spa
e.

• Let A ⊂ X#

be a σ(X#,X)-bounded set. By the symbol qA we will denote the seminorm on X

de�ned by

qA(x) = sup{|f(x)| ; f ∈ A}, x ∈ X.

• Let A be a nonempty family of σ(X#,X)-bounded subsets of X#

. By the topology of uniform


onvergen
e on elements of A we mean the lo
ally 
onvex topology on X generated by the family

of seminorms {qA;A ∈ A}.

Lemma 5. Let X be a ve
tor spa
e, A ⊂ X#

a σ(X#,X)-bounded set and f ∈ X#

. Then

|f | ≤ qA ⇔ f ∈ a
oA
σ(X#,X)

.

Theorem 6 (Ma
key-Arens). Let X be a ve
tor spa
e and M ⊂⊂ X#

. Then the topology µ(X,M)


oin
ides with the topology of uniform 
onvergen
e on absolutely 
onvex σ(M,X)-
ompa
t subsets of

M .

Proposition 7. Let (X,T ) be a metrizable LCS. Then:

(a) (X∗, σ(X∗,X)) is σ-
ompa
t.

(b) µ(X,X∗
) = T .

Corollary 8. Let X be a normed linear spa
e. Then the topology µ(X,X∗
) is the norm topology on

X.

Example 9. Let X be a Bana
h spa
e.

(1) The topology µ(X∗,X) 
oin
ides with the topology of uniform 
onvergen
e on absolutely 
onvex

weakly 
ompa
t subsets ofX. Moreover, the topology µ(X∗,X) 
oin
ides with the norm topology

on X if and only if X is re
exive.

(2) Consider on X the topology of uniform 
onvergen
e on absolutely 
onvex weakly 
ompa
t subsets

of X∗
, denote it by ρ. Then ρ is an admissible topology on X, i.e., (X, ρ)∗ = X∗

.


