
V. Bounded and unbounded operators on a Hilbert spa
e

Convention. In this 
hapter we 
onsider the Bana
h spa
es over the 
omplex �eld (ex
ept in Se
tion V.2 or unless

the 
onverse is expli
itly stated). In parti
ular, the Hilbert spa
es we deal with are the 
omplex ones.

V.1 Various types of bounded operators on Hilbert spa
es and their properties

Reminder: Let H and K be Hilbert spa
es.

(1) By L(H,K) we denote the Bana
h spa
e of all the bounded linear operators T : H → K equipped with the

operator norm. L(H) is a short
ut for L(H,H).

(2) For any T ∈ L(H,K) there is a unique operator T ∗ ∈ L(K,H), 
alled the adjoint of T satisfying

〈Tx, y〉K = 〈x, T ∗y〉H for x ∈ H and y ∈ K.

(3) The mapping T 7→ T ∗
is an involution on L(H) it turns L(H) to be a C∗

-algebra. Thus the notions and the

results from Chapter IV 
ould be applied to L(H). This applies, in parti
ular, to the notions of spe
trum,

spe
tral radius, resolvent set, resolvent fun
tion, holomorphi
 fun
tional 
al
ulus, self-adjoint, normal and

unitary elements and 
ontinuous fun
tional 
al
ulus for normal elements.

(4) For x, y ∈ H the following polarization identity holds:

〈x, y〉 = 1

4

(

‖x+ y‖2 − ‖x− y‖2 + i ‖x+ iy‖2 − i ‖x− iy‖2
)

.

De�nition. Let H and K be Hilbert spa
es. An operator T ∈ L(H,K) is 
alled unitary if T ∗
= T−1

, i.e., if

T ∗T = IH and TT ∗
= IK .

Proposition 1 (a 
hara
terization of unitary operators). Let H and K be Hilbert spa
es and T ∈ L(H,K).

Consider the following assertions:

(i) T is unitary.

(ii) T is an isometry of H onto K.

(iii) T is an isometry of H into K.

(iv) 〈Tx, T y〉K = 〈x, y〉H for x, y ∈ H .

Then (i) ⇔ (ii) ⇒ (iii) ⇔ (iv). If T is assumed to be onto, all the assertions are equivalent.

De�nition. Let X be a Bana
h spa
e, T ∈ L(X) and λ ∈ σ(T ).

• We say that λ is an eigenvalue of T if λI − T is not one-to-one, i.e., whenever there is x ∈ X \ {o} su
h

that Tx = λx (then x is an eigenve
tor asso
iated to λ). The set of all the eigenvalues is 
alled the point

spe
trum of T and is denoted by σp(T ).

• We say that λ is an approximate eigenvalue of T if there is a sequen
e of ve
tors (xn) of norm one su
h that

(λI − T )xn → o. The set of all the approximate eigenvalues is 
alled the approximate point spe
trum of T

and is denoted by σap(T ).

• We say that λ belongs to the 
ontinuous spe
trum σc(T ) if λI − T is one-to-one, has dense range but is not

onto.

• We say that λ belongs to the residual spe
trum σr(T ) (also 
alled 
ompression spe
trum) if λI − T is one to

one and its range is not dense.

Proposition 2 (on subsets of the spe
trum). Let X be a Bana
h spa
e and T ∈ L(X). Then the following

assertions hold:

(a) σp(T ) ⊂ σap(T ).

(b) λ ∈ C \ σap(T ) if and only if λI − T is an isomorphism of X into X .

(
) σ(T ) = σap(T ) ∪ σr(T ).

(d) σc(T ) = σap(T ) \ (σp(T ) ∪ σr(T ))) = σ(T ) \ (σp(T ) ∪ σr(T )).

(e) λ ∈ σr(T ) \ σap(T ) if and only if λI − T is an isomorphism of X onto a proper 
losed subspa
e of X .

De�nition. Let H be a Hilbert spa
e and T ∈ L(H).

• The numeri
al range of T is the set W (T ) = {〈Tx, x〉 ;x ∈ H, ‖x‖ = 1}.
• The numeri
al radius of T is de�ned by w(T ) = sup{|λ| ;λ ∈ W (T )} = sup{|〈Tx, x〉| ;x ∈ H, ‖x‖ = 1}.

Lemma 3 (polarization formula for an operator). Let H be a Hilbert spa
e and T ∈ L(H). For ea
h x, y ∈ H

the following formula holds:

〈Tx, y〉 = 1

4

(〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉+ i 〈T (x+ iy), x+ iy〉 − i 〈T (x− iy), x− iy〉)

Proposition 4 (properties of the numeri
al radius). Let H be a Hilbert spa
e.

(a) The numeri
al radius w is an equivalent norm on L(H) satisfying

1

2

‖T ‖ ≤ w(T ) ≤ ‖T ‖ for T ∈ L(H).

(b) If T ∈ L(H) satis�es 〈Tx, x〉 = 0 for all x ∈ H , then T = 0.

(
) If S, T ∈ L(H) satisfy 〈Tx, x〉 = 〈Sx, x〉 for all x ∈ H , then S = T .

(d) W (T ) is a 
onne
ted subset of C for T ∈ L(H).

(e) σp(T ) ⊂ W (T ) and σ(T ) ⊂ W (T ) for T ∈ L(H).

(f) w(T ) ≥ r(T ) for T ∈ L(H).



Proposition 5 (stru
ture of normal operators). Let H be a Hilbert spa
e and T ∈ L(H). The operator T is

normal if and only if ‖Tx‖ = ‖T ∗x‖ for ea
h x ∈ H . If T is normal, then the following assertions hold.

(a) kerT = kerT ∗
and kerT = (R(T ))⊥.

(b) R(T ) is dense if and only if T is one-to-one. Hen
e, σr(T ) = ∅ and σ(T ) = σap(T ).

(
) If λ ∈ C and x ∈ H then Tx = λx if and only if T ∗x = λx. In parti
ular, σp(T
∗
) = {λ;λ ∈ σp(T )}.

(d) If λ
1

, λ
2

∈ σp(T ) are distin
t, then ker(λ
1

I − T ) ⊥ ker(λ
2

I − T ).

Proposition 6 (
hara
terization of orthogonal proje
tions). Let H be a Hilbert spa
e and let P ∈ L(H) be a

proje
tion (i.e., P 2

= P ). The following assertions are equivalent:

(i) P is an orthogonal proje
tion, i.e., kerP ⊥ R(P ).

(ii) P is self-adjoint.

(iii) P is normal.

(iv) 〈Px, x〉 = ‖Px‖2 for x ∈ H .

(v) 〈Px, x〉 ≥ 0 for x ∈ H .

(vi) ‖P‖ ≤ 1.

Moreover, if P,Q ∈ L(H) are two orthogonal proje
tions, then R(P ) ⊥ R(Q) if and only if PQ = 0. In this 
ase

P and Q are 
alled mutually orthogonal.

Proposition 7 (spe
trum of a self-adjoint operator). Let H be a Hilbert spa
e and T ∈ L(H).

(a) T is self-adjoint if and only if W (T ) ⊂ R.

(b) Suppose that T is self-adjoint and set a = infW (T ) and b = supW (T ). Then σ(T ) ⊂ [a, b℄, a, b ∈ σ(T ),

‖T ‖ = max{|a| , |b|} and σ(T ) 
ontains one of the numbers ‖T ‖, −‖T ‖.
(
) W (T ) ⊂ [0,∞) if and only if T is self-adjoint and σ(T ) ⊂ [0,∞).

Remarks and de�nitions.

(1) Operators satisfying the two equivalent 
onditions from Proposition 7(
) are 
alled positive.

(2) T ∗T is a positive operator for any T ∈ L(H).

(3) If T ∈ L(H), we de�ne |T | =
√
T ∗T (i.e., we apply the 
ontinuous fun
tion t 7→

√
t to the positive operator

T ∗T ).

(4) If T is normal, then the operator |T | de�ned above 
oin
ides with the operator obtained by applying the


ontinuous fun
tion λ 7→ |λ| to the operator T . If T is not normal, then |T | 6= |T ∗|.
(5) An operator U ∈ L(H) is said to be a partial isometry if there is a 
losed subspa
e H

1

⊂ H su
h that U |H
1

is an isometry of H
1

into H and U |H⊥

1

= 0.

Theorem 8 (polar de
omposition). Let H be a Hilbert spa
e and T ∈ L(H). Then there is a unique partial

isometry U ∈ L(H) su
h that T = U |T | and U = 0 on R(|T |)⊥.
Moreover, U∗

is also a partial isometry and |T | = U∗T and U∗
= 0 on R(T )⊥.

Theorem 9 (Hilbert-S
hmidt). Let H be a Hilbert spa
e and T ∈ L(H) be a 
ompa
t normal operator. Then

there is an orthonormal basis of H 
onsisting of eigenve
tors of T . Moreover, if T 6= 0, then there exist an

orthonormal system (xk)k∈N and nonzero 
omplex numbers (λk)k∈N , where either N = N or N = {1, 2, . . . ,m}
for some m ∈ N, su
h that

Tx =

∑

k∈N λk 〈x, xk〉xk, x ∈ H.

Proposition 10. Let H be an in�nite-dimensional Hilbert spa
e. Let T ∈ L(H) be a 
ompa
t normal operator

represented as in Theorem 9. Then σ(T ) = {0} ∪ {λk; k ∈ N}. If f ∈ C(σ(T )) is arbitrary, then
~f(T )x = f(0)x+

∑

k∈N (f(λk)− f(0)) 〈x, xk〉xk, x ∈ H.

In parti
ular,

~f(T ) is 
ompa
t if and only if f(0) = 0.

Theorem 11 (S
hmidt representation of 
ompa
t operators). Let H be a Hilbert spa
e and T ∈ L(H) be a

nonzero 
ompa
t operator. Then there are orthonormal systems (ek)k∈N , (fk)k∈N and positive numbers (αk)k∈N ,

where either N = N or N = {1, 2, . . . ,m} for some m ∈ N, su
h that

Tx =

∑

k∈N αk 〈x, ek〉 fk, x ∈ H.

Remarks: As spe
i�ed above, all the statements hold for 
omplex spa
es. For real spa
es some of the statements

hold in the same way, some require a modi�
ation and some do not hold at all. More pre
isely:

• The adjoint operator may be de�ned in the real 
ase in the same way. The polarization identity in the real


ase is simpler: 〈x, y〉 = 1

4

(‖x+ y‖2 − ‖x− y‖2). Proposition 1 and Proposition 6 hold in the same form

for real spa
es, a proof may be done in the same way. Proposition 5 requires a modi�
ation for real spa
es.

• The spe
trum is 
onsidered only in 
omplex spa
es, for real spa
es (note that λ would be also real) it 
ould

be empty. The numeri
al range and radius may be of 
ourse de�ned in the real 
ase as well. But Lemma 3

does not hold for real spa
es (neither any analogue). This is related to the fa
t that assertions (a)-(
) from

Proposition 4 and assertions (a),(
) from Proposition 7 fail in the real 
ase. It may happen that a nonzero

operator has zero numeri
al radius.

• Some statements remain to be true in the real 
ase at least for self-adjoint operators (for example Proposition

7(b) and Theorem 9). We will analyze the situation later, at the end of Chapter VI.


