
FEW REMARKS ON STRUCTURE OF

CERTAIN SPACES OF MEASURES

In this note we study the structure of spaces of measures on spacesKB introduced
in [Ka3], which forms the previous chapter of this thesis. In [Ka3] it is proved that
under certain assumptions on B (some additional axioms of the set theory are
needed) the space KB belongs to the Stegall class S but is not fragmentable. This
is related to a well known open problem, whether there is a Stegall Banach space
(i.e., a space X such that (X?, w?) belongs to S) whose dual is not fragmentable (in
the w?-topology). In this context a natural question is whether the dual unit ball(
BC(KB)? , w?

)
belongs to the class S, too. We present here some partial positive

results in this direction. This is inspired by the following characterization due to
C.Stegall.

Theorem A([S]). Let K be a compact Hausdorff space. Then the following con-
ditions are equivalent.
(i) K is Stegall with respect to completely regular spaces (i.e. every minimal

usco from a completely regular Baire space into K is singlevalued at points of a
residual set).
(ii) For every complete metric space M and every closed subset F ⊂ K ×M the

set F contains a dense completely metrizable subspace.

We show that, under certain additional set-theoretical assumptions, there is
a set B such that KB is Stegall and non-fragmentable and, moreover, each ccc
closed subset of M+ (KB) contains a dense completely metrizable subset (Exam-
ple). However, this does not cover all closed subsets of M+ (KB) since there are
closed subsets ofM+ (KB) which are even “locally non-ccc” (by Proposition 4).
In proving our Example we need two results which may be of an independent

interest – Theorem 1 on “Baire-property-additive” systems in compact spaces and
Theorem 2 on descriptive properties of sets of measures having an atom in a given
set. Theorem 1 is proved in Section 1. Section 2 is devoted to some general facts
on spaces of measures. In Section 3 we prove Theorem 2 and in the last section we
prove Example using both theorems and some auxiliary results on structure of the
spaceM+ (KB).

1. A theorem on Baire-property-additive systems.
In this section we prove a result on “Baire-property-additive” families in certain

compact spaces. We will use this result in Section 4 to prove Proposition 8.
Before stating the result let us recall that by c(X), where X is a topological

space, we denote the Suslin number of X, i.e.

c(X) = sup {card E | E is a disjoint family of nonempty open sets in X} .
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An uncountable cardinal is called weakly inaccessible if it is regular and limit.
Also let us recall that a subset A of a topological space X is said to have restricted
Baire property if, for every H ⊂ X, the set A ∩H has the Baire property in H.

Theorem 1. (i) Let K be a compact Hausdorff space such that c(K) < 2ℵ0 and
cardK is less than the least weakly inaccessible cardinal. Then, whenever E is a
point-finite family of meager sets in K such that the union of every subfamily has
the Baire property in K, the union

⋃
E is meager in K, too.

(ii) Let K be a compact Hausdorff space of cardinality ≤ 2ℵ0 and E a point-finite
family of meager subsets of K such that

⋃
E ′ has the restricted Baire property for

every E ′ ⊂ E. Then
⋃
E is meager.

Proof. (i) By [Fr,Corollary 7D] it is enough to consider disjoint families. Let T =
{G \ N | G open, N meager in K}. By [Ka2, Lemma 2] T is a topology. Put
H = (K, T ). By [Fr, Lemma 2O] H is weakly α-favorable, it is easy to see (and
follows from [Ka1, Lemma 6.1(h)]) that c(H) = c(K) < 2ℵ0 and by [Ka2, Lemma
2(c)] every set with the Baire property in H is of the form F ∩G with F closed and
G open in H. So by [Ka1, Theorem 5.5(i)] the conclusion holds if card E is less than
the least weakly inaccessible cardinal, but card E cannot have greater cardinality
than cardK for E is disjoint. This finishes the proof.
(ii) By [Fr,Theorem 4D(b)] it is enough to consider disjoint families. Now, let

E be a disjoint family of meager sets in K, such that the union of every subfamily
has the restricted Baire property. Since E has clearly cardinality at most 2ℵ0 ,
in particular, less than the least measurable cardinal, by [P] we get that

⋃
E is

meager. �

In fact, we will use only the part (ii) of this theorem. But we give here part (i),
too, for two reasons. Firstly, the part (i) deals with the Baire property, which is a
more general notion than that of restricted Baire property, so we find interesting to
compare it with part (ii). And secondly, using part (i) we can get the same example
with only a bit stronger set-theoretical assumptions than using part (ii).

2. Some general facts on spaces of measures on compact spaces.
In this section we collect several general facts which we will use in Section 4.
If K is a compact Hausdorff space, by C(K) we denote the Banach space of all

continuous functions on K, byM(K) the space of all finite signed Radon measures
on K which is canonically identified with the dual of C(K). ByM+ (K) we denote
the cone of positive measures fromM(K), by P (K) the probability Radon measures
on K. The spaces M+ (K) and P (K) are considered (unless specified otherwise)
with the w?-topology inherited from C(K)?. We will often use the fact (see [Ko])
that the sets {µ ∈ M+ (K) | µ(K) < c} for c > 0 and {µ ∈ M+ (K) | µ(G) > c}
for G ⊂ K open and c > 0 form a subbase for the w? topology onM+ (K).

Proposition 1. Let K, L be compact Hausdorff spaces, F : K → L a continuous
surjection. Then the mapping F̃ : C(L)→ C(K) defined by F̃ (f) = f ◦F is a linear
isometry of C(L) into C(K). Consider the adjoint operator F̃ ? :M(K) →M(L).
Then F̃ ? is continuous when both spaces are equipped with the w? topology, maps
positive measures onto positive measures, is norm-preserving on positive measures
and for any µ ∈ M(K) its image F̃ ?(µ) is the image of µ by F (denoted F (µ)),
that means F̃ ∗(µ)(B) = µ(F−1(B)) for every B ⊂ L Borel.
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Proof. It is obvious that F̃ is a linear isometry. Recall that F̃ ? is defined by
F̃ ?(µ)(f) = µ(f ◦ F ) for µ ∈ M(K) and f ∈ C(L). So clearly F̃ ?(µ) is positive
whenever µ is positive and F̃ ? is w? → w? continuous, norm-preserving on positive
measures (since if µ ≥ 0 then ‖µ‖ = µ(1)). Moreover, F̃ ? (M+(K)) contains all
positive measures on L supported by a finite set (by the surjectivity of F ). So it
follows, by w?-density of finitely supported measures and w? compactness of the
unit ball, that F̃ ? maps M+(K) onto M+(L). The identification of F̃ ?(µ) with
F (µ) easily follows from the substitution theorem. �

Proposition 2. Let K be a compact Hausdorff space. Then P (K) contains a
homeomorphic copy of KN.

Proof. For a sequence (kn)n∈N ∈ KN let us define g((kn)) =
∑

n∈N

2
3n δkn . It is

standard to check that g : KN → P (K) is continuous since the topology on KN is
that of pointwise convergence. Moreover, g is one-to-one. To see it take (kn) 6= (ln)
two different elements of KN. There is a minimal m such that km 6= lm. Find
f : K → [0, 1] continuous with f(km) = 0 and f(lm) = 1. Then g((ln))(f) −
g((kn))(f) ≥ 1

3m . Hence g is one-to-one and so it is a homeomorphism onto its
image. �

Proposition 3. Let K be a compact Hausdorff space.
(1) If B is a basis for the topology of K then the family

BM = {{µ ∈M+ (K) | µ(K) < p, µ
(
Bi
1 ∪ · · · ∪Bi

ki

)
> qi, i = 1, . . . , n} |

Bi
j ∈ B, j = 1, . . . , ki, ki ∈ N, qi ∈ Q, i = 1, . . . , n, n ∈ N, p ∈ Q}

forms a basis ofM+ (K). In particular w(K) + ℵ0 = w (M+ (K)) + ℵ0.
(2) If µ ∈ M+ (K) and P is a family of open subsets of K with the property

that for any U ⊂ K open there is C ⊂ P such that
⋃
C ⊂ U and µ (U \

⋃
C) = 0

then the collection

PM = {{ν ∈M+ (K) |

ν(K) < µ(K) +
1
m

, ν
(
P i
1 ∪ · · · ∪ P i

ki

)
> µ

(
P i
1 ∪ · · · ∪ P i

ki

)
− 1

qi
, i = 1, . . . , n} |

P i
j ∈ P, j = 1, . . . , ki, ki, qi ∈ N, i = 1, . . . , n, n,m ∈ N}

forms a neighborhood basis of µ. In particular the character ofM+ (K) at µ is at
most cardP + ℵ0.

Proof. (1) Let µ ∈ M+ (K) and U be an open set containing µ. There are
G1, . . . , Gn open subsets of K and c, ε1, . . . , εn > 0 such that

µ ∈ {ν ∈M+ (K) | ν(K) < c, ν(Gi) > εi, i = 1, . . . , n} ⊂ U.

Choose a rational number p such that µ(K) < p < c. For i = 1, . . . , n choose qi

rational such that µ (Gi) > qi > εi. By the regularity of µ there is Hi ⊂ Gi compact
with µ (Hi) > qi. Since B is a basis and Hi is compact, there are Bi

1, . . . , B
i
ki
∈ B

satisfying Hi ⊂ Bi
1 ∪ · · · ∪Bi

ki
⊂ Gi. Then clearly

µ ∈ {ν ∈M+ (K) | ν(K) < p, ν
(
Bi
1 ∪ · · · ∪Bi

ki

)
> qi, i = 1, . . . , n} ⊂ U,
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which shows that BM is a basis. Now, it is clear that cardBM ≤ cardB + ℵ0, so
w (M+ (K)) + ℵ0 ≤ w(K) + ℵ0. The inverse inequality follows from the fact that
M+ (K) contains a copy of K.
(2) Let U be an open set containing µ. Then there are G1, . . . , Gn open subsets

of K and c, ε1, . . . , εn > 0 such that

µ ∈ {ν ∈M+ (K) | ν(K) < c, ν(Gi) > εi, i = 1, . . . , n} ⊂ U.

Choose a natural number m such that µ(K) + 1
m < c. Now let i ∈ {1, . . . , n}.

There is C ⊂ P with
⋃
C ⊂ Gi and µ (Gi \

⋃
C) = 0. Find qi ∈ N such that

µ (Gi)− 2
qi

> εi. By the regularity of µ (similarly as in (1)) we find P i
1, . . . , P

i
ki
∈ C

such that µ
(
P i
1 ∪ · · · ∪ P i

ki

)
> µ (Gi)− 1

qi
. Then clearly

µ ∈
{
ν ∈M+ (K) | ν(K) < µ(K) +

1
m

,

ν
(
P i
1 ∪ · · · ∪ P i

ki

)
> µ

(
P i
1 ∪ · · · ∪ P i

ki

)
− 1

qi
, i = 1, . . . , n

}
⊂ U,

which completes the proof. �

3. Descriptive properties of certain sets of measures.
The main goal of this section is to prove the following theorem which we will

need in Section 4 in the proof of Proposition 8.

Theorem 2. If K is a compact Hausdorff space and A ⊂ K is Borel (Suslin-F ,
Suslin-B, co-Suslin-F , co-Suslin-B) then so are the sets {µ ∈ M+(K) | (∃a ∈
A)(µ({a}) > c)} and {µ ∈M+(K) | (∃a ∈ A)(µ({a}) ≥ c)} for every c ≥ 0.

We prove this theorem in two lemmas. To this end we fix the following notation.
Let K be a compact Hausdorff space, and M+(K) be the space of all positive

finite Radon measures on K endowed with the w? topology. For A ⊂ K arbitrary,
p, s > 0 we put

F s
A,p = {µ ∈M+(K) | (∃B ⊂ A finite) (µ(B) ≥ s & (∀b ∈ B) (µ({b}) ≥ p))}

Gs
A,p = {µ ∈M+(K) | (∃B ⊂ A finite) (µ(B) > s & (∀b ∈ B) (µ({b}) ≥ p))}

Lemma 1. Let A ⊂ K be arbitrary, p, s > 0. Then the following hold.

(1) Gs
A,p =

⋃
n∈N

F
s+ 1n
A,p , F s

A,p =
⋂
n∈N

G
s− 1

n

A,p .

(2) If A is closed then F s
A,p is closed (and Gs

A,p is Fσ).

(3) If B ⊂ A then Gs
A\B,p =

⋃
t>s,t∈Q

(
Gt

A,p \Gt−s
B,p

)
.

(4) If A is a collection of subsets of K which is closed to finite unions then
Gs⋃

A,p =
⋃ {

Gs
A,p | A ∈ A

}
. The analogue holds for F s⋃

A,p.
(5) If A is a collection of subsets of K which is closed to finite intersections then

Gs⋂
A,p =

⋂ {
Gs

A,p | A ∈ A
}
. The analogue holds for F s⋂

A,p.

Proof. The assertion (1) is obvious. To see (2) let A be closed and µα be a net
in F s

A,p converging to µ ∈ M+(K). By the definition of the w? topology we have
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µα(K) → µ(K), hence without loss of generality we can suppose that the net µα

is bounded, i.e. there is M > 0 such that µα(K) ≤ M for each α. For every
α let Bα ⊂ A be finite such that µα (Bα) ≥ s and for each b ∈ Bα we have
µ({b}) ≥ p. Since each Bα has cardinality at most M

p , we can suppose (by passing
to a subnet) that all Bα have the same cardinality, say n. Hence we can write
Bα = {b1α, . . . , bn

α}. Since K is compact, each net has a converging subnet, so
we can suppose that for each k = 1, . . . , n the net bk

α converges to some bk ∈ K.
Moreover, bk ∈ A for A is closed. Put B = {b1, . . . , bn}. At first let us notice that
µ

(
bk

)
≥ p. Suppose not, which means µ

(
bk

)
< p. By the regularity of µ there

is U , an open neighborhood of bk such that µ (U) < p. By the regularity of K
there is V open neighborhood of bk such that V ⊂ U . Then µ

(
V

)
< p and hence

the set W =
{
ν ∈M+(K) | ν

(
V

)
< p

}
is a neighborhood of µ, therefore there is

α0 such that for α > α0 we have µα ∈ W . But since bk
α converges to bk, there

is α1 > α0 such that for α > α1 we have bk
α ∈ V . So, whenever α > α1 then

µα

(
bk
α

)
≤ µα (V ) < p, a contradiction. Thus µ

(
bk

)
≥ p. In a similar way we can

see that µ(B) ≥ s. It follows that F s
A,p is closed, and by (1) that Gs

A,p is Fσ.

(3) Let t > s be rational and µ ∈ Gt
A,p \Gt−s

B,p. Put C = {x ∈ A | µ({x}) ≥ p}.
Then µ(C) > t and µ(C∩B) ≤ t−s, so µ(C\B) = µ(C)−µ(C∩B) > t−(t−s) = s,
hence µ ∈ Gs

A\B,p, which proves the inclusion “⊃”. To see the other one let
µ ∈ Gs

A\B,p. Put C = {x ∈ A | µ({x}) ≥ p}. Then µ(C \ B) > s, and thus
µ(C) > s+µ(C∩B). Choose a rational number t such that µ(C) > t > s+µ(C∩B).
Then µ ∈ Gt

A,p but µ /∈ Gt−s
A∩B,p (since µ(C ∩ B) < t − s), which completes the

proof.
(4) The inclusion “⊃” is obvious, let us show the other one. Let µ ∈ Gs⋃

A,p.
By the definition there is B ⊂

⋃
A finite such that µ(B) > s and µ(b) ≥ p for all

b ∈ B. Since B is finite and A closed to finite unions there is A ∈ A such that
B ⊂ A. It follows that µ ∈ Gs

A,p, which yields the assertion. The same proof works
evidently for F s

A,p too.
(5) The inclusion “⊂” is obvious. Let us consider the inverse one. Choose

µ ∈
⋂ {

Gs
A,p | A ∈ A

}
. For A ∈ A put BA = {x ∈ A | µ({x}) ≥ p}. Clearly

BA1∩A2 = BA1 ∩BA2 and µ (BA) > s for every A,A1, A2 ∈ A. We shall prove that
for some A we have BA ⊂

⋂
A. Suppose not. Choose A1 ∈ A arbitrary. By the

assumption we can construct An ∈ A such that for every n we have BAn \An+1 6= ∅.
But this is a contradiction, since BA1 is finite and we cannot have an infinite strictly
decreasing sequence of finite sets. The same proof works clearly also for F s

A,p. �

Lemma 2. Let p, s > 0. Then the following hold.
(i) If A ⊂ K is Borel then Gs

A,p and F s
A,p are Borel sets.

(ii) If A ⊂ K is Suslin-F then Gs
A,p and F s

A,p are Suslin-F , too.
(iii) If A ⊂ K is Suslin-B then Gs

A,p and F s
A,p are Suslin-B, too.

(iv) If A ⊂ K is co-Suslin-F (or co-Suslin-B) then Gs
A,p and F s

A,p are co-Suslin-
F (or co-Suslin-B), too.

Proof. (i) The familyM =
{
A ⊂ K | Gs

A,p, F s
A,p are Borel for every p, s > 0

}
con-

tains closed sets (by Lemma 1(2)), is closed with respect to complements (Lemma
1(3)), and with respect to monotone countable unions and intersections (it follows
easily from Lemma 1(4),(5)), so it is standard to check thatM contains all Borel
sets.
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(ii) and (iii) Suppose that A =
⋃

α∈NN

⋂
n∈N

Aα�n where As are closed (resp. Borel).

To clarify the notation let us remark that for an infinite sequence of natural numbers
α and a natural number n we denote by α � n the finite sequence formed by the
first n members of α. We can suppose that this Suslin operation is monotone, i.e.
that As ⊂ At if t is a beginning of s. We can write

A =
⋃

α1,...,αk∈NN,k∈N

 k⋃
j=1

⋂
n∈N

Aαj�n

 = ⋃
α1,...,αk∈NN,k∈N

 ⋂
n∈N

k⋃
j=1

Aαj�n

 ,

so by Lemma 1(4),(5) we get

Gs
A,p =

⋃
α1,...,αk∈NN,k∈N

⋂
n∈N

Gs⋃k
j=1 Aαj�n,p

=
⋃
k∈N

⋃
(α1,...,αk)∈(NN)k

⋂
n∈N

Gs⋃k
j=1 Aαj�n,p

.

Each of the sets
⋃k

j=1Aαj�n is closed (resp. Borel), so Gs⋃k
j=1 Aαj�n,p

is Fσ (resp.

Borel) by Lemma 1(2) (resp. by (i)). It follows that Gs
A,p is a countable union of

results of Suslin operation on Fσ-sets (resp. on Borel sets), hence Gs
A,p is Suslin-F

(resp. Suslin-B). Similarly for F s
A,p.

(iv) Let “Suslin” mean either Suslin-F or Suslin-B. If A is co-Suslin then B =

K \ A is Suslin. By Lemma 1(3) we have Gs
A,p =

⋃
t>s,t∈Q

(
Gt

K,p \Gt−s
B,p

)
. The sets

Gt
Kp
are Fσ by Lemma 1(2), the sets Gt−s

B,p are Suslin by (iii), so the differences

Gt
K,p \Gt−s

B,p are co-Suslin, and so is Gs
A,p. Similarly for F s

A,p. �

Proof of Theorem 2. We have

{µ ∈M+(K) | (∃a ∈ A)(µ({a}) > c)} =
⋃

s>0,s∈Q

⋃
n∈N

F s
A,c+ 1n

, and

{µ ∈M+(K) | (∃a ∈ A)(µ({a}) ≥ c)} =
⋃

s>0,s∈Q
F s

A,c.

Hence the theorem follows immediately from Lemma 2. �

4. On structure of the space of Radon measures on KB.
In this section we will consider a fixed compact perfect set K ⊂ R and a fixed

set B ⊂ Kd (Kd is the set of all both-side accumulation points of K). We will
study the properties of the space KB and of measures on that space. We adopt the
notation of [Ka3], which forms the previous chapter of this thesis. The main result
of this section is the following example. (The consistency of the used axioms with
ZFC was proved in [ST], see also [Ka3].)

Example. Suppose MA & ¬CH & ℵ1 = ℵL
1 . Let B ⊂ Kd have cardinality ℵ1.

Then KB is Stegall, non-fragmentable and every compact ccc subset of M+ (KB)
contains a dense completely metrizable subset.

In view of Theorem A this is a partial result in the attempt to find an exam-
ple of nonfragmentable compact space such that the dual unit ball of the space of
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continuous functions belongs to the Stegall class (i.e. such that the space of con-
tinuous functions is Stegall space whose dual is not fragmentable). But we do not
know if, in our example, at least all compact subsets ofM+ (KB) contain a dense
completely metrizable subspace. We know that this holds for ccc compact sets and
also for a slightly more general class (see Proposition 8) but this does not cover all
compact sets as it is witnessed by the following proposition.

Proposition 4. The space P (KB) contains a homeomorphic copy of DN where
D is the discrete space of the same cardinality as B.

Proof. By Proposition 2 the space P (KB) contains a homeomorphic copy of KB
N.

Clearly KB
N is homeomorphic with (KB ×KB)

N. The set D = {((b, 0), (b, 1)) | b ∈
B} is relatively discrete in KB×KB and has the same cardinality as B. So P (KB)
contains a copy of DN. �

If B is uncountable and we take H to be the closure inM+ (KB) of the copy of
DN (whose existence was proved in the previous proposition), then H is compact
and “locally non-ccc”. However this H contains a dense completely metrizable
subspace.
Now we will prove a sequence of propositions which leads to the proof of Example.

Most of these propositions are stated in a more general setting than they are really
needed here.

Proposition 5. Let A ⊂ B be arbitrary. Let F : KB → KA be the canonic
surjection (as in [Ka3, Proposition 6]). Then the following hold.
(1) If ν ∈M(KA) is such that ν({x}) = 0 for every x ∈ (B \A)×{0}, then the

formula µ(M) = ν(F (M)) for M ⊂ KB Borel defines a measure µ ∈M(KB).
(2) For every µ ∈ M(KB) there exists a unique pair of measures ν1 ∈ M(KA)

and ν2 ∈ M(KB) such that ν1({x}) = 0 for every x ∈ (B \ A) × {0} and ν2 is
supported by a countable subset of (B \A)× {0, 1} and for any M ⊂ KB Borel we
have µ(M) = ν1(F (M)) + ν2(M).

Proof. (1) By [Ka3, Proposition 6(3)], F (M) is Borel whenever M is Borel, so we
can define µ(M) = ν(F (M)) for every Borel set M ⊂ KB . If Mn is a sequence of
disjoint Borel subsets of KB , it follows from [Ka3, Proposition 6(3)] that F (Mk) ∩
F (Ml) is an at most countable subset of (B \ A)× {0} for any pair k, l of distinct
integers, so it is a ν-null set. Now it easily follows that µ is σ-additive; hence it is a
Borel measure. Moreover, KB is compact and it can be easily seen that each open
subset of KB is Fσ, therefore by [GP, Theorem 11.15] any finite Borel measure on
KB is a Radon one, which completes the proof.
(2) If µ ∈ M(KB) then we put ν2 =

∑
{µ({x})δx | x ∈ (B \ A) × {0, 1}} and

ν1 = F (µ−ν2). The pair ν1, ν2 is clearly the unique one which satisfies the required
conditions. �

Lemma 3. Let A ⊂ B be arbitrary and F : KB → KA be the canonic surjection
(as in [Ka3, Proposition 6]) and F̃ ? have the same meaning as in Proposition 1.
Put

M = {µ ∈M+ (KB) | (∀t ∈ B \A) (µ ({(t, 0)}) = µ ({(t, 1)}) = 0)} .

Then F̃ ? maps homeomorphically M onto the set

{ν ∈M+ (KA) | (∀t ∈ B \A) (ν ({(t, 0)}) = 0)} .
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Proof. By Proposition 1 the map F̃ ? is continuous. It follows from Proposition
5 that F̃ ? is one-to-one on M and maps M onto the mentioned set. It remains
to prove that F̃ ? is open onto its image. To see it let µ ∈ M be arbitrary and
U = {ν ∈ M+ (KB) | ν (KB) < a, ν (Gi) > bi, i = 1, . . . , n}, where G1, . . . , Gn are
open inKB , be a neighborhood of µ. We will show that F̃ ?(U∩M) is relatively open
in F̃ ?(M). Let Ci = {(t, ε) ∈ Gi | t ∈ B \A&(t, 1− ε) /∈ Gi} and Hi = Gi \ Ci.
Then it is easy to see, by the definition of the topology of KA, that Ci is countable,
Hi open in KB and F (Hi) open in KA. Moreover, for ν ∈ M we have ν (Ci) = 0
and hence ν (Gi) = ν (Hi), therefore U ∩M = Ũ ∩M , where Ũ = {ν ∈M+ (KB) |
ν (KB) < a, ν (Hi) > bi, i = 1, . . . , n}. Moreover,

F̃ ?
(
Ũ

)
= {ν ∈M+ (KA) | ν (KA) < a, ν

(
F̃ ? (Hi)

)
> bi, i = 1, . . . , n}

is open inM+ (KA) and F̃ ?
(
Ũ ∩M

)
= F̃ ?

(
Ũ

)
∩F̃ ? (M). As for the last equality,

the inclusion “⊂” is obvious. To see the inverse one let ν ∈ F̃ ?
(
Ũ

)
∩F̃ ? (M). Since

ν ∈ F̃ ? (M) we have ν({(b, 0)}) = 0 for b ∈ B \ A, so by Proposition 5(1) we can
define a measure µ ∈M+ (KB) by the formula µ(S) = ν(F (S)) for S ⊂ KB Borel.
Now, clearly µ ∈ Ũ ∩M , which completes the proof. �

In the next proposition we evaluate the weight of any subset ofM+ (KB). We
will use later a particular case, namely the characterization of second countable
subsets ofM+ (KB).

Proposition 6. Let N ⊂M+ (KB) be arbitrary. Then

w(N) + ℵ0 = nw(N) + ℵ0 = card {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}+ ℵ0,

where w(N) denotes the weight of N (in the w? topology), and nw(N) is the
“netweight” of N (i.e., minimal cardinality of a network of N).

Proof. The inequality nw(N) ≤ w(N) is obvious.
Next we will show that

w(N) + ℵ0 ≤ card {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}+ ℵ0.

Put A = {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}. Let F and F̃ ? have the same
meaning as in Lemma 3. So, by Lemma 3 the map F̃ ? is a homeomorphism of N
onto its image, so it is enough to show that w (M+ (KA)) ≤ cardA+ ℵ0. But this
follows from Proposition 3(1) since the weight of KA is clearly ≤ cardA+ ℵ0.
It remains to show that

nw(N) + ℵ0 ≥ card {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}+ ℵ0.

Let N be a network of N . Put

κ = cardN + ℵ0 and τ = card {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}+ ℵ0.
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Suppose that τ > κ, which means τ ≥ κ+. In this case τ is necessarily uncountable
(and hence τ = card {t ∈ B | (∃µ ∈ N) (µ ({(t, 0), (t, 1)}) > 0)}). It follows that
there is a positive rational number p such that

card

{
t ∈ B | (∃µ ∈ N)

(
µ ({(t, 0), (t, 1)}) ∈

(
p,
3
2
p

))}
≥ κ+.

Without loss of generality we can suppose that cardC ≥ κ+, where

C =

{
t ∈ B | (∃µ ∈ N)

(
µ ({(t, 0), (t, 1)}) ∈

(
p,
3
2
p

)
&µ ({(t, 1)}) ≤ µ ({(t, 0)})

)}
.

Otherwise the set with the inequality “≤” replaced by “≥” would have cardinality
at least κ+ and the rest of the proof would be analogous as in our case.
Let t ∈ C be arbitrary. Choose µt ∈ N satisfying the above condition. Then

µt ({(t, 1)}) < 3
4p, hence by regularity of µt there is εt > 0 such that

µt ({(t, 1)} ∪ ((t, t+ εt]× {0, 1}) ∩KB) <
3
4
p.

Now,

Ut =

{
µ ∈ N | µ ({(t, 1)} ∪ ((t, t+ εt]× {0, 1}) ∩KB) <

3
4
p

}
is a neighborhood of µt in N , so there is Nt ∈ N such that µt ∈ Nt ⊂ Ut. Next
we will show that the map t 7→ Nt is countable-to-one, and therefore cardN ≥ κ+,
which will be a contradiction. Choose M ∈ N and put A = {t ∈ C | Nt =M}.
Let us show that every point of A is right-isolated, namely if t, s ∈ A, t < s then
s > t+εt. Of course, if t < s ≤ t+εt then µs ({(t, 1)} ∪ ((t, t+ εt]× {0, 1}) ∩KB) ≥
µs ({(s, 0), (s, 1)}) > p > 3

4p, hence µs /∈ Ut, so Nt 6= Ns. Thus necessarily A is
countable and we are done. �

In the following proposition we in particular evaluate the Suslin number of some
subsets ofM+ (KB) and characterize compact subsets ofM+ (KB) which contain
a dense completely metrizable subspace within ccc subsets.

Proposition 7. (1) The spaceM+ (KB) is first countable and has cardinality 2ℵ0 .
(2) Let H ⊂M+ (KB) be an arbitrary compact subset. Put

A = {b ∈ B | (∃µ ∈ H)(µ({(b, 0), (b, 1)}) > 0)},
C = {b ∈ B | {µ ∈ H | µ({(b, 0), (b, 1)}) > 0)} has nonempty interior in H},
L = {µ ∈ H | (∃b ∈ A \ C)(µ({(b, 0), (b, 1)}) > 0)}.

(a) If L has empty interior in H then c(H) + ℵ0 = cardC + ℵ0 (where c(H)
denotes the Suslin number of H).
(b) If relatively open subsets of H which satisfy ccc form a pseudobase of

H, then H contains a dense completely metrizable subspace if and only if L
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is meager in H. In this case H contains a dense locally separable completely
metrizable subspace.

Proof. (1) Let µ ∈ M+ (KB). Put S = {b ∈ B | µ({(b, 0), (b, 1)}) > 0}. Then S is
countable and the family

P = {(p, q)× {0, 1} ∩KB | p, q ∈ Q} ∪ {(s− 1
n

, s)× {0, 1} ∪ {(s, 0)} ∩KB ,

(s, s+
1
n
)× {0, 1} ∪ {(s, 1)} ∩KB | s ∈ S}

satisfies the condition required in Proposition 3(2). Moreover, P is countable,
thereforeM+ (KB) is first countable.
Now, by Proposition 6 we have w (M+ (KB)) ≤ 2ℵ0 , hence there is a dense subset

D of M+ (KB) of cardinality ≤ 2ℵ0 . Since every point of M+ (KB) is the limit
of a sequence in D, it follows that cardM+ (KB) ≤ 2ℵ0 . The inverse inequality is
obvious sinceM+ (KB) contains a copy of KB .
(2a) If L has empty interior in H then H \ L is dense in H, and therefore

c(H) = c(H \ L). By Proposition 6 we have w(H \ L) + ℵ0 = cardC + ℵ0, hence
c(H) = c(H \ L) ≤ w(H \ L) ≤ cardC + ℵ0. It remains to show that cardC ≤
c(H)+ℵ0. Suppose not. Put κ = c(H)+ℵ0, τ = cardC, and assume that τ ≥ κ+.
Now, H is compact, and hence is bounded, let M > 0 be such that for every
µ ∈ H we have µ (KB) < M . Put Cn = {b ∈ B | {µ ∈ H | µ({(b, 0), (b, 1)}) ≥
M
n )} has nonempty interior in H}. Then C =

⋃
n∈N

Cn. The inclusion ⊃ is obvious,

to see the inverse choose b ∈ C. Then

{µ ∈ H | µ({(b, 0), (b, 1)}) > 0} =
⋃
n∈N

{µ ∈ H | µ({(b, 0), (b, 1)}) ≥ M

n
},

the set on the left-hand side has nonempty interior, and hence is nonmeager, and
each of the sets on the right-hand side is closed (by the definition of the w?

topology), so one of them has nonempty interior, which means that b ∈ Cn for
some n. It follows that for some n we have cardCn ≥ κ+. For b ∈ Cn put
Ub = intH{µ ∈ H | µ({(b, 0), (b, 1)}) ≥ M

n }. Then (Ub | b ∈ Cn) is a family of
nonempty relatively open subsets of H which is “point-≤ n”, i.e. every µ ∈ H
belongs to at most n different Ub’s. Choose minimal m such that there is a family
of nonempty relatively open subsets of H which is “point-≤ m” and has cardinal-
ity at least κ+. Such an m exists (m ≤ n for n chosen above) and m > 1 (since
c(H) ≤ κ). Let U be such a family. Put Z = {V ⊂ U | cardV = m &

⋂
V 6= ∅}.

For V,V ′ ∈ Z different we have
⋂
V ∩

⋂
V ′ = ∅ (since U is “point-≤ m”), hence

cardZ ≤ κ (for c(H) ≤ κ) and also card
⋃
Z ≤ κ. Then card (U \

⋃
Z) ≥ κ+ and

U \
⋃
Z is “point-≤ (m− 1)”, which is a contradiction with the minimality of m.

(b) Now suppose that the relatively open subsets of H which satisfy ccc form
a pseudobase of H. If L is meager in H then H \ L is residual. Let U be the
union of all relatively open ccc subsets of H. By the assumption U is open dense
in H, so U ∩ (H \ L) is residual in H. Let G be a dense Gδ subset of H contained
in U ∩ (H \ L). Choose µ ∈ G arbitrary. Then there is V , a neighborhood of
µ in H, which is ccc. So, by the previous paragraph, the set {b ∈ C | (∃µ ∈
V ∩ G)(µ({(b, 0), (b, 1)}) > 0)} is countable. And since, by the construction, {b ∈
B | (∃µ ∈ V ∩G)(µ({(b, 0), (b, 1)}) > 0)} ⊂ C we get (by Proposition 6) that V ∩G
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has countable basis, and thus it is a separable completely metrizable space (for it
is obviously Čech complete). It follows that each point of G has a neighborhood
which is separable and completely metrizable. Finally, let Y be the union of a
maximal disjoint family of relatively open subsets of G each member of which is a
separable completely metrizable space. Then clearly Y is dense open subset of G
(and hence dense Gδ in H) which is completely metrizable and locally separable.
Conversely, suppose that G ⊂ H is a dense completely metrizable space but L

is non-meager in H. By the Banach localization principle there is U , a nonempty
relatively open subset of H such that L ∩ U is a dense Baire subspace of U . By
the assumption there is V ⊂ U nonempty relatively open such that V satisfies
ccc. Then L ∩ V is a dense Baire subspace of V , and hence G ∩ L ∩ V is non-
meager in H and dense in V . Now, V is ccc, and hence G ∩ V is ccc. Since G is
metrizable, G ∩ V has countable basis. By Proposition 6 the set {b ∈ B | (∃µ ∈
G∩V )(µ({(b, 0), (b, 1)}) > 0)} is countable. Therefore there is E ⊂ A\C countable
such that

G ∩ L ∩ V ⊂
⋃
e∈E

{µ ∈ H | µ({(e, 0), (e, 1)}) > 0}.

The sets on the right-hand side have empty interior in H (for E ∩ C = ∅), are Fσ

and hence are meager. It follows that G ∩ L ∩ V is meager, a contradiction. �

Proposition 8. Suppose that every subset of B is coanalytic. Let H ⊂M+ (KB)
be compact and A,C, L have the same meaning as in Proposition 7. Then L is
meager in H. In particular, if relatively open subsets of H which satisfy ccc form a
pseudobase of H, then H contains a dense completely metrizable (locally separable)
subspace.

Proof. For b ∈ A \ C and n ∈ N put Ln
b = {µ ∈ H | (∃i ∈ {0, 1})(µ({(b, i)}) ≥ 1

n}.
Each Ln

b has empty interior in H, is Fσ (by Lemma 1(2)), and hence is meager in
H. Moreover, for fixed n, the family (Ln

b | b ∈ A \ C) is point-finite and the union
of each subfamily is co-Suslin (by Theorem 2), in particular has the restricted Baire
property. By Proposition 7(1) we have cardH ≤ 2ℵ0 . Therefore, by Theorem 1(ii)⋃
b∈A\C

Ln
b is meager in H for every n, so L =

⋃
n∈N

⋃
b∈A\C

Ln
b is meager in H, and the

rest follows by Proposition 7. �

Proof of Example. By [MS, Theorem 3.2], under the assumptions of Example, every
subset of R of cardinality ℵ1 is coanalytic. In particular, every subset of B is
coanalytic. Moreover, by [MS, p.162] each subset of B is relatively Fσ (i.e., it is a
Q-set). By [Ka3] the space KB is Stegall and non-fragmentable (in fact, we do not
need the fact that B is a Q-set, if we modify a bit Proposition 7(b) in [Ka3]). The
rest follows from Proposition 8. �
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