

Advanced Methods in Mathematical Analysis

Winter Semester 2025/26 — Sheet 8

Task 1

Let (X, \mathcal{A}, μ) be a finite measure space and $f \in L^p(X)$ for some $p \in [1, \infty]$. Show that $f \in L^q(\Omega)$ for all $q \in [1, p]$ with

$$||f||_{L^q} \le \mu(X)^{\frac{1}{q} - \frac{1}{p}} ||f||_{L^p}$$

When does equality occur?

Task 2

Let (X, \mathcal{A}, μ) be a measure space and $(f_k)_{k \in \mathbb{N}}$ be a sequence of integrable functions. Suppose that $f_k(x) \to f(x)$ for μ -a.e. $x \in X$, and $\lim_{k \to \infty} \int_X |f_k| d\mu \to \int_X |f| d\mu$. Prove that

$$\lim_{k \to \infty} \int_X |f_k - f| \, \mathrm{d}\mu = 0.$$

Task 3

Consider the Lebesgue measure space $(\mathbb{R}, \mathcal{M}_L, \mu_L)$, and let ν be the counting measure on \mathcal{M}_L .

- (a) Show that $\mu_L \ll \nu$ but $\frac{\mathrm{d}\mu_L}{\mathrm{d}\nu}$ does not exist.
- (b) Show that ν does not have a Lebesgue decomposition with respect to μ_L .

Task 4

Let μ and ν be two positive measures on a measure space (X, \mathcal{A}) . Suppose $\frac{d\nu}{d\mu}$ exists so that $\nu \ll \mu$.

- (a) Show that if $\frac{d\nu}{d\mu} > 0$ μ -a.e. in X, then $\mu \ll \nu$ and thus $\mu \sim \nu$.
- (b) Show that if $\frac{d\nu}{d\mu} > 0$ μ -a.e. in X and if μ and ν are σ -finite, then $\frac{d\mu}{d\nu}$ exists and

$$\frac{\mathrm{d}\mu}{\mathrm{d}\nu} = \left(\frac{\mathrm{d}\nu}{\mathrm{d}\mu}\right)^{-1}$$
 μ -a.e. and ν -a.e. in X .