

Advanced Methods in Mathematical Analysis

Winter Semester 2025/26 — Sheet 7

Task 1 (Integral operators on $L^2(\Omega)$ vs. $C(\overline{\Omega})$)

Let $\Omega \subset \mathbb{R}^d$ be a smooth bounded domain.

(a) Let $a: \overline{\Omega} \times \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ be a continuous map and define

$$A(u)(x) := \int_{\Omega} a(x, y, u(y)) \, \mathrm{d}y.$$

Prove that $A \colon C(\overline{\Omega}) \to C(\overline{\Omega})$ is well-defined and compact.

(b) Let $k \in L^2(\Omega \times \Omega)$ and define

$$K(u)(x) := \int_{\Omega} k(x, y)u(y) \, \mathrm{d}y.$$

Prove that $K: L^2(\Omega) \to L^2(\Omega)$ is well-defined and compact.

- (c) Give an example of continuous a such that A is not well-defined as an operator $L^2(\Omega) \to L^2(\Omega)$.
- (d) [Bonus] For $f \in C([-1,1])$ consider the following boundary value problem:

$$-u'' = f$$
 in $(-1, 1)$, $u(-1) = 0 = u(1)$.

Show that the solution to this problem is unique and that it is represented by the formula

$$u(x) = \int_{-1}^{x} \frac{(1+y)(1-x)}{2} f(y) \, dy + \int_{x}^{1} \frac{(1-y)(1+x)}{2} f(y) \, dy$$

Show that the solution operator $f \in L^2(-1,1) \mapsto u \in L^2(-1,1)$ is compact.

Task 2 (Nemytskiĭ operators)

Let Ω be a topological space with Borel measure μ and let $f: \Omega \times \mathbb{R}^m \to \mathbb{R}^n$ be a Carathéodory function such that

$$|f(x,z)| \le c|z|^{p/q} + g(x)$$
 for μ -a.e. $x \in \Omega$, and all $z \in \mathbb{R}^m$.

where c > 0, $p, q \in [1, \infty)$, and $g \in L^q(\Omega)$. The associated Nemytskii (or superposition) operator to f, denoted F(u), maps a function $u \colon \Omega \to \mathbb{R}^m$ to the function

$$x \in \Omega \mapsto F(u)(x) := f(x, u(x)) \in \mathbb{R}^n.$$

- (a) Prove that if $u \colon \Omega \to \mathbb{R}^m$ is measurable, then F(u) is also measurable.
- (b) Prove that $F(u) \in L^q(\Omega; \mathbb{R}^n)$ whenever $u \in L^p(\Omega; \mathbb{R}^m)$.
- (c) Assume that f is uniformly continuous and let $(u_k)_{k\in\mathbb{N}}\subset L^p(\Omega;\mathbb{R}^m)$ be a sequence such that $u_k\to u$ in $L^p(\Omega;\mathbb{R}^m)$ and $|u_k(x)|\leq R$ for some R>0, μ -a.e. in Ω . Prove that $F(u_k)\to F(u)$ in $L^q(\Omega;\mathbb{R}^n)$.
- (d) With the help of the Lusin-type theorem for Carathéodory functions, show that the previous statement holds also without the restrictions on f and u_k .

Hint: Show that $\int_A |f(x, u_k(x))|^q d\mu$ is small if $\mu(A)$ is small, even if $|u_k(x)|$ is large.

Task 3 (Lower-semicontinuity of convex functionals)

Let Ω be a topological space with Borel measure μ and let $f: \Omega \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ be a Carathéodory function that is convex in its third argument. Suppose that $u_k \to u$ in $L^p(\Omega; \mathbb{R}^m)$ and $v_k \to v$ weakly in $L^q(\Omega; \mathbb{R}^n)$. Prove that

$$\int_{\Omega} f(x, u(x), v(x)) d\mu \leq \liminf_{k \to \infty} \int_{\Omega} f(x, u_k(x), v_k(x)) d\mu.$$