

Advanced Methods in Mathematical Analysis

Winter Semester 2025/26 — Sheet 6

Task 1

Let $(V, \|\cdot\|)$ be a normed space and $(V^*, \|\cdot\|_*)$ its dual. Let $\varphi \colon \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ be a convex l.s.c. function that is even $(\varphi(t) = \varphi(-t))$. Prove that the function

$$f \colon V \to \mathbb{R} \cup \{+\infty\}$$
$$f(v) = \varphi(\|v\|)$$

is a closed convex proper function, and

$$f^*(v^*) = \varphi^*(\|v^*\|_*)$$

Hint. Write
$$f^*(v^*) = \sup_{t \ge 0} \sup_{v \in V, ||v|| = t} [\langle v^*, v \rangle - \varphi(||v||)].$$

Task 2 (Monotone Convergence Theorem and Fatou's Lemma for measurable sets)

Let (X, \mathcal{A}, μ) be a measure space and $(E_n)_{n \in \mathbb{N}}$ be a monotone increasing sequence of sets in \mathcal{A} (i.e. $E_n \subset E_{n+1}$ for all $n \in \mathbb{N}$).

(a) Show that

$$\lim_{n \to \infty} \mu(E_n) = \mu\left(\lim_{n \to \infty} E_n\right)$$

Hint. Express $\bigcup_{n\in\mathbb{N}} E_n$ as the countable union of $E_n\setminus\bigcup_{k=1}^{n-1} E_k$

(b) Prove that this is not necessarily true for decreasing sequences of sets, but it is true if one assumes additionally that $\mu(E_1) < \infty$.

Hint. Consider the counting measure and an infinite set.

(c) Let $(A_n)_{n\in\mathbb{N}}$ be a sequence of sets in \mathcal{A} . Prove with the help of (a) that

$$\mu\left(\liminf_{n\to\infty}A_n\right)\leq \liminf_{n\to\infty}\mu(A_n)$$

Task 3 (Properties of the Lebesgue integral)

Let $(\Omega, \mathcal{M}, \mu)$ be a measure space and $f, g: \Omega \to [0, +\infty]$ measurable functions. Prove the following statements:

- (a) If $f \leq g$ pointwise μ -almost everywhere, then $\int_{\Omega} f \, d\mu \leq \int_{\Omega} g \, d\mu$.
- (b) If $A \in \mathcal{M}$ is a measurable set, then $\int_A f \, d\mu \leq \int_{\Omega} f \, d\mu$.
- (c) For any $\lambda \in [0, +\infty]$: $\int_{\Omega} f \, d\mu = \lambda \int_{\Omega} f \, d\mu$.
- (d) If f(x) = 0 for μ -almost every x, then $\int_{\Omega} f \, d\mu = 0$.
- (e) For any $0 < \lambda < \infty$ one has

$$\mu(\{x \in \Omega \mid f(x) \ge \lambda\}) \le \frac{1}{\lambda} \int_{\Omega} f \,d\mu$$