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Task 1 (The obstacle problem)

This task will focus on the obstacle problem posed on a bounded Lipschitz domain Q ¢ R¢,
which consists in finding a function v € H}(Q) that minimises the following energy

I: Hj(Q) — RU{+oo}

1
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where f € H™1(Q2) = (H}(Q))* is given, and K is the admissible set associated to a given
obstacle ¢ € H'(Q) with p|sn < 0:

()
(b)

(c)

K :={ve Hy(Q)|v>¢yae onQ}.
Prove that I is convex, proper and lower semicontinuous on H} ().

Using the direct method of the calculus of variations, prove that there is a unique
solution to the obstacle problem.

Based on the optimality condition 0 € 9I(u), prove that the solution u satisfies the
following variational inequality:

/VU-V(U —u) > (f,v — w) g1 uH @) Vo e K.
Q

Assuming additional regularity, e.g. u € C?(Q), ¢, f € C(Q) should suffice, prove
that the obstacle problem can be re-written as:

Au—f>0  inQ,

u—p >0 in (2,
(u—9)(Au+ f) =0 in Q.

How can you interpret these conditions?

[Bonus for those with knowledge of distribution theory] Prove that any
positive distribution F' € D’(Q2) (meaning that F'(¢) > 0 for all ¢ € D(Q) with
1 > 0) can be extended to an element of M(S2).

Prove that u:= —Au— f € H1(Q) is positive and therefore can be identified with
a Radon measure.

It can be shown that every v € H}(Q) has a representative v that is py-measurable
for which one can write

<M7U>H*1(Q);H3(Q) :/5dﬂ-
Q

Moreover, the obstacle constraint can be interpreted also as u > ¢ p-a.e. in 2. In
addition, there is a sequence {¢ }reny C K such that ¢ decreases pointwise p-a.e.
to @.
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Using these facts, prove that u € K is the solution to the obstacle problem if and
only if g := —Au — f € H1(Q) is a positive Radon measure and the following
complementarity condition holds:

[@=au=o

This is the generalisation of (d) for less regular solutions.

Task 2 (The incompressible Navier—Stokes equations)

The focus of this task is the incompressible Navier—Stokes system. Here we look for a
velocity field u: Q@ — R? and a pressure p: Q@ — R (again Q@ C R? is bounded and
Lipschitz and d € {2,3}), such that

—Au+diviu®@u)+Vp=f inQ,
divu =0 in Q,
u=20 on 0f).

Here f: Q) — R? is a given forcing term.

(a) Assume that f € H~1(Q)% Derive a weak formulation of the Navier-Stokes equa-
tions posed on the space of divergence-free functions (i.e. w € Hy 4, (€2))

Hé,div(Q) ={v € H&(Q)d | diveo =0 a.e. in Q}

(You should check that this is in fact a Hilbert space.)

(b) Prove that for any v € Hj 4, () one has:

/Q('v®'v):Vv:0

(You should justify why this integral is well-defined in the first place.)
(¢) Consider the following operator T': Hy 4, () — Hj 4, (€):

T(v) = (=A)"(f — div(v @ v)),

where (—=A)™": (Hj 4, ()" = Hj g, () is the solution operator to the Laplace
problem with zero boundary conditions. Verify that 7" is well-defined and is in fact
a compact operator.

(d) Making use of T', reformulate the weak formulation from (a) as a fixed point problem
and with the help of Schaffer’s Fixed Point Theorem prove that a solution exists.

(e) [Bonus| Prove that if f is small enough, the solution u is unique.
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