

Advanced Methods in Mathematical Analysis

Winter Semester 2025/26 — Sheet 10

Task 1

Take $\Omega = (0,1)$ with the Lebesgue measure and consider the characteristic function $f(t) = \chi_{(0,t)}$ for $t \in \Omega$.

- (a) Prove that f is not strongly measurable considered as a function $f: \Omega \to L^{\infty}(0,1)$.
- (b) Prove that f is strongly measurable considered as a function $f: \Omega \to L^2(0,1)$.

Hint. Recall that a function $f: \Omega \to X$ into a Banach space X is strongly measurable if and only if it is weakly measurable $(t \in \Omega \mapsto \langle v^*, f(t) \rangle$ is measurable for all $x^* \in X^*$) and it is almost separably valued (there is a null set $E \subset \Omega$ such that $f(\Omega \setminus E)$ is separable).

Task 2

Prove that a strongly measurable function $f: \Omega \to X$ is Bochner integrable if and only if

$$\int_{\Omega} \|f\| \, \mathrm{d}\mu < +\infty,$$

and in this case

$$\left\| \int_{\Omega} f \, \mathrm{d}\mu \right\| \le \int_{\Omega} \|f\| \, \mathrm{d}\mu.$$

Task 3 (Vector Dominated Convergence Theorem)

Take a measurable space (Ω, Σ, μ) and a Banach space X. Let $f: \Omega \to X$ be strongly measurable and let $\{f_n\}_{n\in\mathbb{N}}$ be a sequence of Bochner integrable functions satisfying $\|f_n(\omega) - f(\omega)\| \to 0$ for μ -a.e. $\omega \in \Omega$. Suppose there is a non-negative (Lebesgue) integrable function $g: \Omega \to \mathbb{R}$ such that $\|f_n\| \leq g$ μ -a.e. for all $n \in \mathbb{N}$. Prove that f is Bochner integrable and for each $E \in \Sigma$ one has

$$\lim_{n \to \infty} \int_E f_n \, \mathrm{d}\mu = \int_E f \, \mathrm{d}\mu.$$

Definition. Let [a,b] be a compact interval with positive length. A tagged partition $\dot{\mathcal{P}} = (\mathcal{P}, \{x_i^*\}_{i=1}^n)$ consists of a partition $\mathcal{P} = \{[x_{i-1}, x_i]\}_{i=1}^n$ of [a,b] and a set of tags $\{x_i^*\}_{i=1}^n$ such that $x_i^* \in [x_{i-1}, x_i]$ for all $i \in \{1, \ldots, n\}$. The norm of a tagged partition is defined as $\|\dot{\mathcal{P}}\| := \max_{i \in \{1, \ldots, n\}} (x_i - x_{i-1})$

The Riemann sum of a bounded function $f:[a,b] \to X$ into a Banach space X with respect to the tagged partition $\dot{\mathcal{P}}$ is defined as

$$\mathcal{R}(f, \dot{\mathcal{P}}) := \sum_{i=1}^{n} f(x_i^*)(x_i - x_{i-1}).$$

The function $f:[a,b]\to X$ is said to be Riemann integrable with integral $\Lambda\in X$ if

$$\Lambda = \lim_{\|\dot{\mathcal{P}}\| \to 0} \mathcal{R}(f, \dot{\mathcal{P}}),$$

meaning that for any $\varepsilon > 0$ there is a $\delta > 0$ such that

$$\|\mathcal{R}(f,\dot{\mathcal{P}}) - \Lambda\| \le \varepsilon,$$

for all tagged partitions \dot{P} with $\|\dot{P}\| \leq \delta$. In this case one writes $\Lambda = \int_a^b f(x) \, \mathrm{d}x$.

Task 4 (Riemann vs. Bochner integral)

Let X be a Banach space and $f:[0,1]\to X$ continuous. Prove that f is Bochner integrable and that its Bochner and Riemann integrals coincide.