Low-Mach consistency of a class of linearly implicit schemes for the compressible Euler equations

<u>Václav Kučera</u> ¹ Mária Lukáčová-Medviďová ² Sebastian Noelle ³ Jochen Schütz ⁴

¹Charles University, ²Universität Mainz, ³Aachen University, ⁴Universiteit Hasselt

WP 2.4 - Nonlinear convection-diffusion-reaction problems

3 Asymptotic preserving analysis

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

Compressible fluid flows

- Speed of sound $a = \sqrt{\gamma p / \rho}$.
- Determines the maximal speed at which information (usually) propagates in the flow.
- Mach number M = v/a.

- Infinite speed of information propagation.
- Unphysical but useful model.
- As $M \rightarrow 0$, compressible \rightarrow incompressible.

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation $\tau \approx Mh$.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation - τ ≈ Mh.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation $\tau \approx Mh$.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation $\tau \approx Mh$.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation $\tau \approx Mh$.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

- On the border between compressible and incompressible.
- Explicit solvers: time step inversely proportional to maximal speed of information propagation $\tau \approx Mh$.
- Implicit solvers: Condition number and properties of linear systems deteriorate as $M \rightarrow 0$.
- Acoustic waves become a severe problem.
- Numerical methods can produce incorrect solutions!!!

2 Linearly implicit schemes

3 Asymptotic preserving analysis

V. Dolejší, M. Feistauer, V. Kučera

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

• Homogeneity:
$$f(w) = f'(w)w$$

Semi-implicit scheme

$$\frac{w^{n+1}-w^n}{\Delta t}+\nabla\cdot\left(f'(w^n)w^{n+1}\right)=0.$$

V. Dolejší, M. Feistauer, V. Kučera

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

• Homogeneity: f(w) = f'(w)w

Semi-implicit scheme

$$\frac{w^{n+1}-w^n}{\Delta t}+\nabla\cdot\left(f'(w^n)w^{n+1}\right)=0.$$

V. Dolejší, M. Feistauer, V. Kučera

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

• Homogeneity: f(w) = f'(w)w

• Semi-implicit scheme

$$\frac{w^{n+1}-w^n}{\Delta t}+\nabla\cdot\left(f'(w^n)w^{n+1}\right)=0.$$

V. Dolejší, M. Feistauer, V. Kučera

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

- Homogeneity: f(w) = f'(w)w
- Semi-implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}'(\boldsymbol{w}^n)\boldsymbol{w}^{n+1}\right)=0.$$

V. Dolejší, M. Feistauer, V. Kučera

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

• Homogeneity: f(w) = f'(w)w

Semi-implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}'(\boldsymbol{w}^n)\boldsymbol{w}^{n+1}\right)=0.$$

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

- Reference solution of incompressible equations: w_R
- Flux splitting:

$$\widetilde{f}(w; w_R) := f(w_R) + f'(w_R)(w - w_R)$$

 $\widehat{f}(w; w_R) := f(w) - \widetilde{f}(w, w_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{\boldsymbol{f}}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{\boldsymbol{f}}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right).$$

Discontinuous Galerkin method, non-hyperbolicity, .

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

- Reference solution of incompressible equations: w_R
- Flux splitting:

$$\widetilde{f}(w; w_R) := f(w_R) + f'(w_R)(w - w_R)$$

 $\widehat{f}(w; w_R) := f(w) - \widetilde{f}(w, w_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{\boldsymbol{f}}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{\boldsymbol{f}}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right).$$

Discontinuous Galerkin method, non-hyperbolicity, .

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

 $\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$

• Reference solution of incompressible equations: \boldsymbol{w}_R

• Flux splitting:

$$\widetilde{f}(w; w_R) := f(w_R) + f'(w_R)(w - w_R)$$

 $\widehat{f}(w; w_R) := f(w) - \widetilde{f}(w, w_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{f}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{f}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right)$$

Discontinuous Galerkin method, non-hyperbolicity, .

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

- Reference solution of incompressible equations: \boldsymbol{w}_R
- Flux splitting:

$$\widetilde{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w};oldsymbol{w}_R) + oldsymbol{f}'(oldsymbol{w}_R)(oldsymbol{w} - oldsymbol{w}_R)$$

 $\widehat{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w},oldsymbol{w}_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{\boldsymbol{f}}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{\boldsymbol{f}}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right)$$

• Discontinuous Galerkin method, non-hyperbolicity, ...

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

- Reference solution of incompressible equations: \boldsymbol{w}_R
- Flux splitting:

$$\widetilde{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w};oldsymbol{w}_R) + oldsymbol{f}'(oldsymbol{w}_R)(oldsymbol{w} - oldsymbol{w}_R)$$

 $\widehat{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w}) - \widetilde{f}(oldsymbol{w},oldsymbol{w}_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{\boldsymbol{f}}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{\boldsymbol{f}}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right).$$

Discontinuous Galerkin method, non-hyperbolicity, ...

K. Kaiser, J. Schütz, R. Schöbel, and S. Noelle. *A new stable splitting for the isentropic Euler equations*. Journal of Scientific Computing 70 (2017), pp. 1390-1407.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

- Reference solution of incompressible equations: \boldsymbol{w}_R
- Flux splitting:

$$\widetilde{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w};oldsymbol{w}_R) + oldsymbol{f}'(oldsymbol{w}_R)(oldsymbol{w} - oldsymbol{w}_R)$$

 $\widehat{f}(oldsymbol{w};oldsymbol{w}_R) := oldsymbol{f}(oldsymbol{w}) - \widetilde{f}(oldsymbol{w},oldsymbol{w}_R)$

• Linearize:

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}=-\nabla\cdot\left(\widetilde{\boldsymbol{f}}(\boldsymbol{w}^{n+1};\boldsymbol{w}_R^{n+1})+\widehat{\boldsymbol{f}}(\boldsymbol{w}^n;\boldsymbol{w}_R^n)\right).$$

• Discontinuous Galerkin method, non-hyperbolicity, ...

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

Linearly implicit scheme based on a reference state

$$\frac{w^{n+1}-w^n}{\Delta t}+\nabla\cdot\left(f(w^n)+f'(w^n_R)(w^{n+1}-w^n)\right)=0.$$

- For $\boldsymbol{w}_R^n =$ incompressible Euler, we get Kaiser et al.
- For wⁿ_R = wⁿ, we get Dolejší, Feistauer, Kučera.

Goal

Asymptotic consistency: We get the correct solution as $M = \varepsilon \rightarrow 0$.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

Linearly implicit scheme based on a reference state

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• For w_R^n = incompressible Euler, we get Kaiser et al.

• For $\boldsymbol{w}_R^n = \boldsymbol{w}^n$, we get Dolejší, Feistauer, Kučera.

Goal

Asymptotic consistency: We get the correct solution as $M = \varepsilon
ightarrow 0$.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

Linearly implicit scheme based on a reference state

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• For
$$\boldsymbol{w}_R^n =$$
 incompressible Euler, we get Kaiser et al.
• For $\boldsymbol{w}_R^n = \boldsymbol{w}_R^n$ we get Doleiší. Feistauer, Kučera

Goal

Asymptotic consistency: We get the correct solution as $M = \varepsilon
ightarrow 0$.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

Linearly implicit scheme based on a reference state

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

- For $\boldsymbol{w}_{R}^{n} =$ incompressible Euler, we get Kaiser et al.
- For $\boldsymbol{w}_R^n = \boldsymbol{w}^n$, we get Dolejší, Feistauer, Kučera.

Goal

Asymptotic consistency: We get the correct solution as M=arepsilon
ightarrow 0.

$$\partial_t \boldsymbol{w} + \nabla \cdot \boldsymbol{f}(\boldsymbol{w}) = 0$$

Linearly implicit scheme based on a reference state

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

- For $\boldsymbol{w}_{R}^{n} =$ incompressible Euler, we get Kaiser et al.
- For $\boldsymbol{w}_R^n = \boldsymbol{w}^n$, we get Dolejší, Feistauer, Kučera.

Goal

Asymptotic consistency: We get the correct solution as $M = \varepsilon \rightarrow 0$.

2 Linearly implicit schemes

3 Asymptotic preserving analysis

Formal asymptotic analysis

Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that ρ , \boldsymbol{u} , \boldsymbol{E} and ρ have an expansion of the form $\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3})$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all n, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot \boldsymbol{u}$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε .

Formal asymptotic analysis

Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that ρ , \boldsymbol{u} , \boldsymbol{E} and p have an expansion of the form $\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3}).$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all n, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot u$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε .
Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that ρ , \boldsymbol{u} , \boldsymbol{E} and p have an expansion of the form $\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3}).$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all *n*, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot u$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε.

Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that ρ , \boldsymbol{u} , \boldsymbol{E} and \boldsymbol{p} have an expansion of the form

$$\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3}).$$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all *n*, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot \boldsymbol{u}$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε.

Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that ρ , \boldsymbol{u} , \boldsymbol{E} and \boldsymbol{p} have an expansion of the form

$$\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3}).$$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all *n*, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot u$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε .

Linearly implicit scheme

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

Formal Hilbert expansion

Assume that $\rho, \boldsymbol{u}, \boldsymbol{E}$ and \boldsymbol{p} have an expansion of the form

$$\rho^{n}(x) = \rho^{n}_{(0)}(x) + \varepsilon \rho^{n}_{(1)}(x) + \varepsilon^{2} \rho^{n}_{(2)}(x) + O(\varepsilon^{3}).$$

- We expect e.g. that $\rho_{(0)}^n$ is constant for all *n*, similarly $\nabla \cdot \boldsymbol{u}_{(0)}^n = 0$.
- Acoustics correspond to $O(\varepsilon)$ perturbations of $\rho, p, \nabla \cdot \boldsymbol{u}$.
- Plug in Hilbert expansions of all quantities into the scheme.
- Collect terms according to powers of ε .

Theorem 1

Let the initial condition satisfy $\nabla \cdot \boldsymbol{u}_{(0)}^{0} = 0$ and $\rho_{(0)}^{0}$ be constant in space. Let the reference solution satisfy $\nabla \cdot \boldsymbol{u}_{R,(0)}^{n} = 0$ and $\rho_{R,(0)}^{n}$ be constant in space for all *n*. Assume either slip or periodic boundary conditions. Then for each *n*, $\rho_{(0)}^{n} = \rho_{(0)}^{0}$ and

$$egin{aligned} & m{u}_{(0)}^{n+1} - m{u}_{(0)}^n \ & \Delta t \ \end{pmatrix} +
abla \cdot \left(m{u}_{(0)}^{n+1} \otimes m{u}_{(0)}^{n+1}
ight) +
abla rac{p_{(2)}^{n+1}}{
ho_{(0)}^{n+1}} = \mathcal{E}^{n+1}, \ &
abla \cdot m{v} \cdot m{u}_{(0)}^{n+1} = 0, \end{aligned}$$

where \mathcal{E}^{n+1} is a consistency error term satisfying

$$|\mathcal{E}^{n+1}| \leq C \|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} \Big(\|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} + \|\boldsymbol{u}_{(0)}^{n} - \boldsymbol{u}_{R,(0)}^{n}\|_{W^{1,\infty}} \Big),$$

where C depends only on γ .

Consistency error

$$|\mathcal{E}^{n+1}| \leq C \|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} \left(\|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} + \|\boldsymbol{u}_{(0)}^{n} - \boldsymbol{u}_{R,(0)}^{n}\|_{W^{1,\infty}} \right)$$

• Feistauer, Kučera:
$$\boldsymbol{u}_R^n = \boldsymbol{u}^n$$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Kaiser et al.: $\boldsymbol{u}_R^n = \boldsymbol{u}_{(0)}^n$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

Superconsistency

Consistency error

$$|\mathcal{E}^{n+1}| \leq C \|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} \left(\|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} + \|\boldsymbol{u}_{(0)}^{n} - \boldsymbol{u}_{R,(0)}^{n}\|_{W^{1,\infty}} \right)$$

• Feistauer, Kučera: $\boldsymbol{u}_R^n = \boldsymbol{u}^n$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Kaiser et al.: $\boldsymbol{u}_R^n = \boldsymbol{u}_{(0)}^n$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Superconsistency

Consistency error

$$|\mathcal{E}^{n+1}| \leq C \|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} \left(\|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} + \|\boldsymbol{u}_{(0)}^{n} - \boldsymbol{u}_{R,(0)}^{n}\|_{W^{1,\infty}} \right)$$

• Feistauer, Kučera: $\boldsymbol{u}_R^n = \boldsymbol{u}^n$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Kaiser et al.:
$$\boldsymbol{u}_R^n = \boldsymbol{u}_{(0)}^n$$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

Superconsistency

Consistency error

$$|\mathcal{E}^{n+1}| \leq C \|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} \left(\|\boldsymbol{u}_{(0)}^{n+1} - \boldsymbol{u}_{(0)}^{n}\|_{W^{1,\infty}} + \|\boldsymbol{u}_{(0)}^{n} - \boldsymbol{u}_{R,(0)}^{n}\|_{W^{1,\infty}} \right)$$

• Feistauer, Kučera: $\boldsymbol{u}_R^n = \boldsymbol{u}^n$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Kaiser et al.:
$$\boldsymbol{u}_R^n = \boldsymbol{u}_{(0)}^n$$

$$|\mathcal{E}^{n+1}| = O(\Delta t^2).$$

• Superconsistency

Well prepared initial data

Well prepared initial data

$$\rho^0 = \operatorname{const} + O(\varepsilon^2), \qquad p^0 = \operatorname{const} + O(\varepsilon^2), \qquad \nabla \cdot \boldsymbol{u}^0 = O(\varepsilon^2).$$

I.e.
$$\rho_{(1)}^0 = \rho_{(1)}^0 = \nabla \cdot \boldsymbol{u}_{(1)}^0 = 0.$$

Theorem 2

Let the assumptions of Theorem 1 hold. Let the initial data be well prepared and let $\rho_{R,(1)}^n = 0$ for all n. Then $\rho_{(1)}^n = \rho_{(1)}^n = \nabla \cdot \boldsymbol{u}_{(1)}^n = 0$ for all n.

Well prepared initial data

Well prepared initial data

$$\rho^0 = \operatorname{const} + O(\varepsilon^2), \qquad p^0 = \operatorname{const} + O(\varepsilon^2), \qquad \nabla \cdot \boldsymbol{u}^0 = O(\varepsilon^2).$$

I.e.
$$\rho_{(1)}^0 = p_{(1)}^0 = \nabla \cdot \boldsymbol{u}_{(1)}^0 = 0.$$

Theorem 2

Let the assumptions of Theorem 1 hold. Let the initial data be well prepared and let $\rho_{R,(1)}^n = 0$ for all n. Then $\rho_{(1)}^n = \rho_{(1)}^n = \nabla \cdot \boldsymbol{u}_{(1)}^n = 0$ for all n.

Well prepared initial data

Well prepared initial data

$$\rho^0 = \operatorname{const} + O(\varepsilon^2), \qquad p^0 = \operatorname{const} + O(\varepsilon^2), \qquad \nabla \cdot \boldsymbol{u}^0 = O(\varepsilon^2).$$

I.e.
$$\rho_{(1)}^0 = \rho_{(1)}^0 = \nabla \cdot \boldsymbol{u}_{(1)}^0 = 0.$$

Theorem 2

Let the assumptions of Theorem 1 hold. Let the initial data be well prepared and let $\rho_{R,(1)}^n = 0$ for all *n*. Then $\rho_{(1)}^n = p_{(1)}^n = \nabla \cdot \boldsymbol{u}_{(1)}^n = 0$ for all *n*.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

It is not clear a priori that the Hilbert expansion at tⁿ⁺¹ exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let w_R be constant in space. Let $\gamma \ge 1$. Let w^n , w_R possess a Hilbert expansion. Then w^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" p_L .
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From *p*_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let w_R be constant in space. Let $\gamma \ge 1$. Let w^n , w_R possess a Hilbert expansion. Then w^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" *p*_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From *p*_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" *p*_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From *p*_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

Proof:

• "Gaussian elimination" on the ODE level.

- 3rd order ODE for "linearized pressure" *p*_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From p_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" *p*_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From p_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" p_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From *p*_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" p_L.
- Solve using Fourier analysis.
- Hilbert expansion for $p_L =$ Fourier series.
- From p_L derive expansions for other quantities.

$$\frac{\boldsymbol{w}^{n+1}-\boldsymbol{w}^n}{\Delta t}+\nabla\cdot\left(\boldsymbol{f}(\boldsymbol{w}^n)+\boldsymbol{f}'(\boldsymbol{w}^n_R)(\boldsymbol{w}^{n+1}-\boldsymbol{w}^n)\right)=0.$$

• It is not clear a priori that the Hilbert expansion at t^{n+1} exists!

Theorem 3

Let $\Omega = [-\pi, \pi]$, periodic BCs, let all quantities be sufficiently smooth. Let \boldsymbol{w}_R be constant in space. Let $\gamma \geq 1$. Let $\boldsymbol{w}^n, \boldsymbol{w}_R$ possess a Hilbert expansion. Then \boldsymbol{w}^{n+1} has a Hilbert expansion, i.e.

$$\boldsymbol{w}^{n+1} = \boldsymbol{w}_{(0)}^{n+1} + \varepsilon \boldsymbol{w}_{(1)}^{n+1} + \varepsilon^2 \boldsymbol{w}_{(2)}^{n+1} + \dots$$

- "Gaussian elimination" on the ODE level.
- 3rd order ODE for "linearized pressure" p_L.
- Solve using Fourier analysis.
- Hilbert expansion for p_L = Fourier series.
- From p_L derive expansions for other quantities.

V. Kučera, M. Lukáčová-Medviďová, S. Noelle, J. Schütz: Asymptotic properties of a class of linearly implicit schemes for weakly compressible Euler equations, Numer. Math. (submitted).