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Low-Mach flows
Low-Mach flows

Compressible fluid flows

@ Speed of sound a = \/yp/p.

@ Determines the maximal speed at which information (usually)
propagates in the flow.

e Mach number M = v/a.

Incompressible fluid flows
@ Infinite speed of information propagation.
@ Unphysical but useful model.

@ As M — 0, compressible — incompressible.
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Low-Mach flows

Low-Mach flows

M < 1 is challenging for numerics:

On the border between compressible and incompressible.

Explicit solvers: time step inversely proportional to maximal speed of
information propagation - 7 =~ Mh.

Implicit solvers: Condition number and properties of linear systems
deteriorate as M — 0.

Acoustic waves become a severe problem.

Numerical methods can produce incorrect solutions!!!
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Semi-implicit linearization

V. Dolejsi, M. Feistauer, V. Kucera

ow+V-f(w)=0 )

o Homogeneity: f(w) = f'(w)w
@ Semi-implicit scheme

Wn+1 _ W"

AtV (f’(w")w"ﬂ) =0. \

@ Discontinuous Galerkin method, non-reflecting boundary conditions,
local artificial diffusion with shock capturing, preconditioning, ...
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Linearly implicit schemes
RS-IMEX scheme

K. Kaiser, J. Schiitz, R. Schébel, and S. Noelle. A new stable splitting for
the isentropic Euler equations. Journal of Scientific Computing 70 (2017),
pp. 1390-1407.
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K. Kaiser, J. Schiitz, R. Schébel, and S. Noelle. A new stable splitting for

the isentropic Euler equations. Journal of Scientific Computing 70 (2017),
pp- 1390-1407.

@ Reference solution of incompressible equations: wg
o Flux splitting:

!

(w; wg) := F(wg) + F'(wg)(w — wg)
F(w; wg) := f(w) — f(w, wg)
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RS-IMEX scheme

K. Kaiser, J. Schiitz, R. Schébel, and S. Noelle. A new stable splitting for

the isentropic Euler equations. Journal of Scientific Computing 70 (2017),
pp- 1390-1407.

@ Reference solution of incompressible equations: wg
@ Flux splitting:

F(w; wg) := f(wg) + F(wg)(w — wg)
F(w; wg) := f(w) — f(w, wg)

@ Linearize:

o - _v. (?(w”+1; n+1) + f(w WR))
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Linearly implicit schemes
RS-IMEX scheme

K. Kaiser, J. Schiitz, R. Schébel, and S. Noelle. A new stable splitting for
the isentropic Euler equations. Journal of Scientific Computing 70 (2017),
pp. 1390-1407.

@ Reference solution of incompressible equations: wg
@ Flux splitting:

F(w; wg) := f(wg) + F'(wg)(w — wg)
F(w; wg) = f(w) — f(w, wg)
@ Linearize:

Wn+1 _ - . ,
T =V (Fwnwi) - F(ws w))

@ Discontinuous Galerkin method, non-hyperbolicity, ...
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Linearly implicit scheme based on a reference state
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Linearly implicit scheme based on a reference state

Wn+1 —w"

otV (f(w") +F (wh) (W — w")) ~0.

incompressible Euler, we get Kaiser et al.

n
e For wj

o For w}, = w", we get Dolejsi, Feistauer, Kucera.
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Linearly implicit schemes

ow+V-f(w)=0 J

Linearly implicit scheme based on a reference state

Wn+1 —w"

otV (f(w") +F (wh) (W — w")) ~0.

@ For w} = incompressible Euler, we get Kaiser et al.

o For w}, = w", we get Dolejsi, Feistauer, Kucera.

Asymptotic consistency: We get the correct solution as M =& — 0.
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Linearly implicit scheme

Wn+1 —w"
At

Formal Hilbert expansion

Assume that p, u, E and p have an expansion of the form

P"(x) = ploy(x) + epfyy (x) + €2p{y) (x) + O(?).

+V (f(w") 1 (wh)(w - w")) —0.
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Linearly implicit scheme

Wn+1 —w"
At

Formal Hilbert expansion

Assume that p, u, E and p have an expansion of the form

P"(x) = ploy(x) + epfyy (x) + €2p{y) (x) + O(?).

+V (f(w") 1 (wh)(w - w")) —0.

o We expect e.g. that pf’o) is constant for all n, similarly V- ”?0) =0.
@ Acoustics correspond to O(g) perturbations of p, p, V- u.

@ Plug in Hilbert expansions of all quantities into the scheme.

@ Collect terms according to powers of &.
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Asymptotic preserving property

Theorem 1

Let the initial condition satisfy V- ”?o) =0 and P(()o) be constant in space. Let
the reference solution satisfy V- “7?,(0) =0 and PE,(O) be constant in space
for all n. Assume either slip or periodic boundary conditions. Then for each
n, pfoy = Aoy and

ue)' — o) PGy
n+1 n+1 _ entl
2+ V- (ugg ®U(0))+Vp(n$1 = gntl,

V- "?o+)1 =0,

where £ is a consistency error term satisfying

€™ < Cllugst - ufyllwae (||u(n$1 — ulyllwae + |l — u,";,,(o)uwl,w),

where C depends only on +.
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Consistency error

e < C||u£’0+)1 - Ufo)||W1v°° (HUFJSI - Ufo)HWLw + ||Ufo) - U'k(o)Hle“)
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Consistency error

e < C||u£’0+)1 - Ufo)||W1v°° (HUFJSI - Ufo)HWLw + ||Ufo) - U'k(o)Hle“)

o Feistauer, Kucera: u} = u”

£ = O(At?).
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o Feistauer, Kucera: u} = u”
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£ = O(AP).

V. Kucera et al. Low-Mach consistency of a class of linearly implicit schemes



Asymptotic preserving analysis
Asymptotic preserving property

Consistency error

e < C||u£’0+)1 - Ufo)||W1v°° (HUFJSI - Ufo)HWLw + ||Ufo) - U'k(o)Hle“)

o Feistauer, Kucera: u} = u”

£ = O(At?).
o Kaiser et al.: ui = uf,

£ = O(At?).
@ Superconsistency
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Well prepared initial data

p° = const + O(e?), p° = const + O(e?), V-u® = 0(?).
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Asymptotic preserving analysis
Well prepared initial data

Well prepared initial data

p° = const + O(e?), p° = const + O(e?), V-u® = 0(?).

le. p?l) = p?l) =V ”?1) =0.

Let the assumptions of Theorem 1 hold. Let the initial data be well prepared
and let p’;\,,(l) =0 for all n. Then p(’l) = p(”l) =V- uf’l) =0 for all n.
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o It is not clear a priori that the Hilbert expansion at t"! exists!
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Wn+1 _ W"
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o It is not clear a priori that the Hilbert expansion at t"! exists!

Let Q = [—m, 7], periodic BCs, let all quantities be sufficiently smooth. Let
wpg be constant in space. Let v > 1. Let w", wg possess a Hilbert
expansion. Then w1 has a Hilbert expansion, i.e.

w'tl = wE’J)l + swgfgl + s2w?2+)1 + ...
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Existence of the Hilbert expansion

Wn+1 _ W"

— v (f(w") +F(wh) (Wt — w")) —0. \

o It is not clear a priori that the Hilbert expansion at t"! exists!

Let Q = [—m, 7], periodic BCs, let all quantities be sufficiently smooth. Let
wpg be constant in space. Let v > 1. Let w", wg possess a Hilbert
expansion. Then w1 has a Hilbert expansion, i.e.

w'tl = wE’J)l + swgfgl + s2w?2+)1 + ...

Proof:

@ “Gaussian elimination" on the ODE level.
3rd order ODE for “linearized pressure" p;.
Solve using Fourier analysis.

Hilbert expansion for p; = Fourier series.

From p; derive expansions for other quantities.
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V. Kuéera, M. Lukacova-Medvidova, S. Noelle, J. Schiitz: Asymptotic
properties of a class of linearly implicit schemes for weakly compressible Euler
equations, Numer. Math. (submitted).
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