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Abstract

Pulsed-beam wavelets [1] are a family of localized solutions of the wave equation in Minkowski space
R3,1. They are parameterized by points x + iy in the future and past tube domains of complex
Minkowski space (ie, with y in the future or past cones). The entire family is obtained from a single
member by scaling and Poincaré transformations, and the action extends to the conformal group
SU(2, 2). Various subfamilies form frames, giving representations of general solutions as superpo-
sitions of pulsed-beam wavelets. These representations are intermediate between the extremes of
localization by Green functions and delocalization by Fourier integrals. The event x specifies the
wavelet’s point and time of emission or absorption, while y (generalizing ‘scale’ when n = 1) gives
its spacetime extension as represented by the direction of propagation, beam collimation, and pulse
duration. These wavelets have no sidelobes and can be focused as sharply as desired by letting
y approach the light cone, becoming singular on the ray y R+ for lightlike y. Doppler effects are
represented by the action of the Lorentz group. For these reasons, Pulsed-beam wavelets and their
electromagnetic counterparts have been proposed as a natural basis for sonar, radar and commu-
nications [2–4]. However, to implement these applications it is necessary to realize the wavelets
by constructing antennas that simulate their sources. A key concept in the construction is the
complex distance in Cn and its associated potential theory. This interpolates smoothly from the
Euclidean to the Minkowskian regime, generalizing an old theorem by Garabedian [5]. It will be
shown that nonsingular (Huygens) sources required to radiate and absorb the wavelets can be built
by combining two branch cuts associated with the complex distance [6,7]. Interestingly, Sommerfeld
in his 1895 Habilitationsschrift [8] developed the first correct theory of diffraction by regarding a
diffracting screen as a branch cut in a “Riemannian double-space” covering R3. This suggests the
existence of a general theory where branch cuts represent various material properties, including
those associated with diffraction and radiation.
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