Personal Website:
Scott Congreve

Teaching

Download << Back OutputCode

%% Question 3 -Comparison of Q1 and Q2 solution

%% Logistic Equation

figure
[t,x]=ode23(@logistic,[0,3], 2);

plot(t,x(:,1), 'DisplayName', 'ode23');
xlabel('t');
ylabel('x');
hold on;
disp('Logistic Equation:');

tic;
[t,x]=q1_solution(@logistic,0,3, 2);
duration = toc;
plot(t,x(:,1),'ro','DisplayName','Q1');
fprintf('  Q1 Computation Time: %f\n', duration);

tic;
[t,x]=q2_solution(@logistic,0,3, 2);
duration = toc;
plot(t,x(:,1),'mx','DisplayName','Q2');
fprintf('  Q2 Computation Time: %f\n', duration);

legend('Location', 'NorthEast');

%% Stiff Linear System

figure
[t,x]=ode23(@linsystem,[0,0.1], [2; 1]);

plot3(t,x(:,1),x(:,2), 'DisplayName', 'ode23');
xlabel('t');
ylabel('x');
hold on;
disp('Stiff Linear System:');

tic;
[t,x]=q1_solution(@linsystem,0,0.1, [2; 1]);
duration = toc;
plot3(t,x(:,1),x(:,2),'ro','DisplayName','Q1');
fprintf('  Q1 Computation Time: %f\n', duration);

tic;
[t,x]=q2_solution(@linsystem,0,0.1, [2; 1]);
duration = toc;
plot3(t,x(:,1),x(:,2),'mx','DisplayName','Q2');
fprintf('  Q2 Computation Time: %f\n', duration);

legend('Location', 'NorthEast');

%% Oscillator

figure
[t,x]=ode23(@oscillator,[0, 20], [1, 0]);

plot3(t,x(:,1),x(:,2), 'DisplayName', 'ode23');
xlabel('t');
ylabel('x');
hold on;
disp('Oscillator:');

tic;
[t,x]=q1_solution(@oscillator,0,20, [1, 0]);
duration = toc;
plot3(t,x(:,1),x(:,2),'ro','DisplayName','Q1');
fprintf('  Q1 Computation Time: %f\n', duration);

tic;
[t,x]=q2_solution(@oscillator,0,20, [1, 0]);
duration = toc;
plot3(t,x(:,1),x(:,2),'mx','DisplayName','Q2');
fprintf('  Q2 Computation Time: %f\n', duration);

legend('Location', 'NorthEast');

%%
% We note that for Q1 that for the low order method
% \[\begin{array}{rcl}
% \kappa_1 &=& f(t,x) \\
% \kappa_2 &=& f(t+\tau,x+\tau\kappa_1)
% \end{array}\]
% and for the high order method
% \[\begin{array}{rclcl}
% \overline\kappa_1 &=& f(t,x) &=& \kappa_1 \\
% \overline\kappa_2 &=& f(t+\frac13\tau,x+\frac\tau3\overline\kappa_1) \\
% \overline\kappa_3 &=& f(t+\frac23\tau,x+\frac23\tau\overline\kappa_2)
% \end{array}\]
% Therefore, four evaluations of $f$ are required.
%
% For Q2, as it is an embedded method, we only have three evaluations of
% $f$.
%
% We expected that the Q1 method is slower than the Q2 method, which
% appears to be confirmed by the computation time.