Download
<< Back
OutputCode
%% Question 5 - Collapse Example
% We investigate the blow-up behaviour of the following ODE:
%
% $$
% \begin{array}{rl}
% x'(t) &= -x^{-\frac12}, \\
% x(0) &= 1
% \end{array}
% $$
%% 5(a) - Direction field
% We first plot the direction field of the ODE over $t\in[-1,1]$ and
% $x\in[.01,2]$:
dirfield(@collapseex, -1, 1, .01, 2);
%% 5(b) - Simulation over various time periods
% We now simulate the ODE over the time period $t\in[0,\frac23]$ (which
% stops before the collapse will occur)
[t,x] = ode23(@collapseex, [0, 2/3], 1);
figure;
plot(t, x);
xlabel('t');
ylabel('x');
%%
% We now simulate the ODE over the time period $t\in[0,1]$ (which hits the
% blowup behaviour), we note that the solve completes, but the plot throws
% an error because the solution has complex parts
[t,x] = ode23(@collapseex, [0, 1], 1);
figure;
plot(t, x);
xlabel('t');
ylabel('x');