Download<< Back
function pendfric_euler
% Comparing solving pendfric using euler with h=0.1,0.5 and ode23s
for h=[0.1 0.5]
figure;
hold on;
xlim([-10 10]);
ylim([-3 3]);
xlabel('x_1');
xlabel('x_2');
title(['h = ' num2str(h)]);
plot(pi*(-3:3), zeros(1,7), 'b*', 'DisplayName', 'Steady States');
x0=[-4; 1];
[~,x]=ode23s(@pendfric, [0 50], x0);
plot(x(:,1), x(:,2), '-r*');
[~,x]=eul(@pendfric, 0, 70, x0, h);
plot(x(:,1), x(:,2), '-k.');
x0=[2; 2];
[~,x]=ode23s(@pendfric, [0 50], x0);
plot(x(:,1), x(:,2), '-r*');
[~,x]=eul(@pendfric, 0, 70, x0, h);
plot(x(:,1), x(:,2), '-k.');
x0=[2; 1];
[~,x]=ode23s(@pendfric, [0 50], x0);
plot(x(:,1), x(:,2), '-r*');
[~,x]=eul(@pendfric, 0, 70, x0, h);
plot(x(:,1), x(:,2), '-k.');
x0=[-4; 0];
[~,x]=ode23s(@pendfric, [0 50], x0);
plot(x(:,1), x(:,2), '-r*');
[~,x]=eul(@pendfric, 0, 70, x0, h);
plot(x(:,1), x(:,2), '-k.');
end
end