Download<< Back
function [t,x] = bdf2(field, t0, T, x0, h)
%BDF2 Implements the BDF two-step ODE solver
%
% Parameters:
% field -- Right hand side function of ODE system: x'=f(t,x)
% t0 -- Initial time
% T -- End time (T > t0)
% x0 -- Initial value
% h -- Size of time step (h <= T-t0)
%
% Outputs:
% t -- [t0; t-0+h, t0+2*h; ...; t0+i*h; ...]
% x -- Column vector containing numerical solution at each time step
tol = 0.001;
m = 2;
n = ceil((T-t0)/h);
t = t0+h*(0:n).';
x = ones(n+1,length(x0));
[to,xo] = rk_classical(field, t0, t0+(m-1)*h, x0, h);
t(1:m) = to(1:m);
x(1:m,:) = xo(1:m,:);
for i=m:n
f_old = feval(field, t(i)+h, x(i,:).');
x(i+1,:) = (4*x(i,:).' - x(i-1,:).' + 2*h*f_old)/3;
f_new = feval(field, t(i)+h, x(i+1,:).');
while norm(f_old-f_new, 'inf') >= tol
f_old = f_new;
x(i+1,:) = (4*x(i,:).' - x(i-1,:).' + 2*h*f_old)/3;
f_new = feval(field, t(i)+h, x(i+1,:).');
end
end