Personal Website:
Scott Congreve

Teaching

Download<< Back

function [t,x] = ieuler_newton(ode, t0, T, x0, h)
%IEULER_NEWTON Implements the Implicit Euler one-step ODE solver using Newton
%
% Parameters:
%  ode    -- Function which returns two function handles:
%               - Right hand side function of ODE system: x'=f(t,x)
%               - Derivative of right hand side w.r.t second (space) argument f_x(t,x)
%  t0     -- Initial time
%  T      -- End time (T > t0)
%  x0     -- Initial value
%  h      -- Size of time step (h <= T-t0)
%
% Outputs:
%  t  -- [t0; t-0+h, t0+2*h; ...; t0+i*h; ...]
%  x  -- Matrix containing numerical solution, with each row the value of x
%        at each time step

% Tolerance to use for solving the Newton iteration
tol = 0.01;

n = ceil((T-t0)/h);
t = t0+h*(0:n).';
x = ones(n+1,length(x0));
x(1,:) = x0;
I = eye(length(x0));
[f, df] = feval(ode);

for i=1:n
    k1_old = feval(f, t(i), x(i,:).'); % k1_{(0)}
    F = k1_old - feval(f, t(i)+h, x(i,:).'+h*k1_old);
    Fx = I - h*feval(df, t(i)+h, x(i,:).'+h*k1_old);
    k1_new = k1_old - Fx\F; % k1_{(1)}
    while norm(k1_old-k1_new, 'inf') >= tol
        k1_old = k1_new; % k1_{(n)}
        F = k1_old - feval(f, t(i)+h, x(i,:).'+h*k1_old);
        Fx = I - h*feval(df, t(i)+h, x(i,:).'+h*k1_old);
        k1_new = k1_old - Fx\F; % k1_{(n+1)}
    end
    x(i+1,:) = x(i,:).' + h*k1_new;
end