A posteriori error analysis of the virtual element method for second-order quasilinear elliptic PDE

Scott Congreve

Department of Numerical Mathematics, Faculty of Mathematics & Physics, Charles University

Joint work with Alice Hodson (Charles University)

POlytopal Element Methods in Mathematics and Engineering, Inria Paris

Quasilinear Problem

Given polygonal domain $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find u such that

$$-\nabla \cdot \{\mu(\boldsymbol{x}, |\nabla u|) \nabla u\} = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega.$$

Assumption

 $\mu \in C(ar{\Omega} imes [0,\infty))$ and there exists positive constants m_μ and M_μ such that

$$m_\mu(t-s) \leq \mu(oldsymbol{x},t)t - \mu(oldsymbol{x},s)s \leq M_\mu(t-s), \quad t \geq s \geq 0, \quad oldsymbol{x} \in ar{\Omega}.$$

Nonlinearities of this type appear in continuum mechanics

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

Quasilinear Problem

Given polygonal domain $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find u such that

$$-\nabla \cdot \{\mu(\mathbf{x}, |\nabla u|) \nabla u\} = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega.$$

From the assumption we have that there exists positive constants C_1 and C_2

$$egin{aligned} |\mu(m{x},|m{v}|)m{v}-\mu(m{x},|m{w}|)m{w}|&\leq C_1|m{v}-m{w}|,\ C_2|m{v}-m{w}|^2&\leq (\mu(m{x},|m{v}|)m{v}-\mu(m{x},|m{w}|)m{w})\cdot(m{v}-m{w}) \end{aligned}$$

for any $v, w \in \mathbb{R}^2$ and $\boldsymbol{x} \in \overline{\Omega}$.

[Barrett & Liu, 1994]

Quasilinear Problem

Given polygonal domain $\Omega \subset \mathbb{R}^d$, d = 2, 3 and $f \in L^2(\Omega)$, find u such that

$$-\nabla \cdot \{\mu(\mathbf{x}, |\nabla u|) \nabla u\} = f \qquad \text{in } \Omega,$$
$$u = 0 \qquad \text{on } \partial \Omega.$$

Weak formulation: Find $u \in H_0^1(\Omega)$ such that

$$a(u; u, v) \coloneqq \int_{\Omega} \mu(|\nabla u|) \nabla u \cdot \nabla v \, \mathrm{d} \boldsymbol{x} = \int_{\Omega} f v \, \mathrm{d} \boldsymbol{x},$$

for all $v \in H_0^1(\Omega)$.

- Nonlinear problem \implies solving via iteration (fixed point, Newton, etc.).
- Depending on the number of iterations and DoFs could be computationally expensive.
- Reduce computational expense two-grid method: Solve nonlinear problem on a coarse mesh, and use to linearise on a fine mesh

Xu 1992, 1994, 1996; Xu & Zhou 1999; Axelsson & Layton 1996; Dawson, Wheeler & Woodward 1998; Utnes 1997; Marion & Xu 1995; Wu & Allen 1999

- Nonlinear problem \implies solving via iteration (fixed point, Newton, etc.).
- Depending on the number of iterations and DoFs could be computationally expensive.
- Reduce computational expense two-grid method: Solve nonlinear problem on a coarse mesh, and use to linearise on a fine mesh

Xu 1992, 1994, 1996; Xu & Zhou 1999; Axelsson & Layton 1996; Dawson, Wheeler & Woodward 1998; Utnes 1997; Marion & Xu 1995; Wu & Allen 1999

- Nonlinear problem \implies solving via iteration (fixed point, Newton, etc.).
- Depending on the number of iterations and DoFs could be computationally expensive.
- Reduce computational expense two-grid method: Solve nonlinear problem on a coarse mesh, and use to linearise on a fine mesh

Xu 1992, 1994, 1996; Xu & Zhou 1999; Axelsson & Layton 1996; Dawson, Wheeler & Woodward 1998; Utnes 1997; Marion & Xu 1995; Wu & Allen 1999

- Nonlinear problem \implies solving via iteration (fixed point, Newton, etc.).
- Depending on the number of iterations and DoFs could be computationally expensive.
- Reduce computational expense two-grid method: Solve nonlinear problem on a coarse mesh, and use to linearise on a fine mesh

Xu 1992, 1994, 1996; Xu & Zhou 1999; Axelsson & Layton 1996; Dawson, Wheeler & Woodward 1998; Utnes 1997; Marion & Xu 1995; Wu & Allen 1999

How do we optimally construct the coarse mesh? Agglomeration and adaptive refinement...
PolyDG: C. & Houston 2022

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

POEMS24 — Inria Paris

3/19

Construct mesh \mathcal{T}_h of Ω consisting of simple polygons, with element diameter h_E , $E \in \mathcal{T}_h$.

Assumption (Mesh Regularity)

There exists $\rho > 0$ such that

- each element $E \in \mathcal{T}_h$ star-shaped w.r.t ball of radius ρh_E
- $h_e \ge \rho h_E$ for every $E \in \mathcal{T}_h$ and $e \subset \partial E$

Remark

As consequence each element $E \in T_h$ admits a sub-triangulation into triangles.

On each element we consider a order of approximation ℓ .

VEM Space

CHARLES UNIVERSITY Faculty of mathematics and physics

Given a local enlarged VEM space

$$\widetilde{V}^{\mathcal{E}}_{h,\ell} := \left\{ v_h \in H^1(\Omega) : \Delta v_h \in \mathbb{P}_{\ell}(E) ext{ and } v_h |_e \in \mathbb{P}_{\ell}(e) \; orall e \subset \partial E
ight\}$$

Given a local enlarged VEM space

$$\widetilde{V}^{\mathcal{E}}_{h,\ell} := \left\{ v_h \in H^1(\Omega) : \Delta v_h \in \mathbb{P}_{\ell}(\mathcal{E}) \text{ and } v_h|_e \in \mathbb{P}_{\ell}(e) \; \forall e \subset \partial \mathcal{E} \right\}$$

and a value projection $\Pi_0^E: \widetilde{V}_{h,\ell}^E \to \mathbb{P}_\ell$ we define the local virtual element space $V_{h,\ell}^E$ as

$$V_{h,\ell}^{\mathcal{E}} := \left\{ v_h \in \widetilde{V}_{h,\ell}^{\mathcal{E}} \, : \, (v_h - \Pi_0^{\mathcal{E}} v_h, p)_{\mathcal{E}} = 0 \quad orall p \in \mathbb{P}_\ell(\mathcal{E}) ackslash \mathbb{P}_{\ell-2}(\mathcal{E})
ight\}$$

Ahmad, Alsaedi, Brezzi, Marini, & Russo, 2013

Given a local enlarged VEM space

$$\widetilde{V}_{h,\ell}^{\mathcal{E}} := \left\{ v_h \in H^1(\Omega) : \Delta v_h \in \mathbb{P}_{\ell}(\mathcal{E}) ext{ and } v_h |_e \in \mathbb{P}_{\ell}(e) \; orall e \subset \partial \mathcal{E}
ight\}$$

and a value projection $\Pi_0^E: \widetilde{V}_{h,\ell}^E \to \mathbb{P}_\ell$ we define the local virtual element space $V_{h,\ell}^E$ as

$$V_{h,\ell}^{\mathcal{E}} := \left\{ v_h \in \widetilde{V}_{h,\ell}^{\mathcal{E}} \, : \, (v_h - \Pi_0^{\mathcal{E}} v_h,
ho)_{\mathcal{E}} = 0 \quad orall p \in \mathbb{P}_\ell(\mathcal{E}) ackslash \mathbb{P}_{\ell-2}(\mathcal{E})
ight\}$$

Ahmad, Alsaedi, Brezzi, Marini, & Russo, 2013

The global VEM space $V_{h,\ell}$ is defined as

$$V_{h,\ell} := \left\{ v_h \in H^1_0(\Omega) \, : \, v_h|_E \in V^E_{h,\ell} \quad orall E \in \mathcal{T}_h
ight\}$$

Scott Congreve (Charles University)

Local Degrees of Freedom

CHARLES UNIVERSITY Faculty of mathematics and physics

The local space $V_{h,\ell}^E$ is characterised by the degrees of freedom:

(D1) The value of v_h at each vertex of E

(D2) For $\ell > 1$, the moments of v_h up to order $\ell - 2$ on each edge $e \subset \partial E$

$$rac{1}{|e|}\int_e \mathsf{v}_h p \; \mathsf{d} s \;\;\; orall p \in \mathbb{P}_{\ell-2}(e)$$

(D3) For $\ell > 1$, the moments of v_h up to order $\ell - 2$ inside *E*

$$rac{1}{|E|}\int_E v_h p \; \mathsf{d} oldsymbol{x} \quad orall p \in \mathbb{P}_{\ell-2}(E)$$

Projections

Value projection $(\Pi_0^E : \widetilde{V}_{h,\ell}^E \to \mathbb{P}_{\ell}(E)) \Pi_0^E v_h$ linear combination of dofs, and satisfies

$$\int_E \Pi_0^E v_h p \, \mathrm{d} \boldsymbol{x} = \int_E v_h p \, \mathrm{d} \boldsymbol{x} \quad \forall p \in \mathbb{P}_{\ell-2}(E), \quad \text{and} \quad \Pi_0^E q = q \quad \forall q \in \mathbb{P}_{\ell}(E).$$

Edge projection $(\Pi_0^e : \widetilde{V}_{h,\ell}^E \to \mathbb{P}_{\ell}(e)) \Pi_0^e v_h$ linear combination of dofs, and satisfies $\Pi_0^e v_h(e^{\pm}) = v_h(e^{\pm}),$

$$\int_e \Pi_0^e v_h p \, \mathrm{d}s = \int_e v_h p \, \mathrm{d}s \quad \forall p \in \mathbb{P}_{\ell-2}(e), \qquad \text{and} \qquad \Pi_0^e q = q|_e \quad \forall q \in \mathbb{P}_{\ell}(E).$$

Gradient projection $(\Pi_1^E: \widetilde{V}_{h,\ell}^E \to [\mathbb{P}_\ell(E)]^2)$

$$\int_{E} \Pi_{1}^{E} v_{h} \cdot \boldsymbol{p} \, \mathrm{d}\boldsymbol{x} = -\int_{E} \Pi_{0}^{E} v_{h} \nabla \cdot \boldsymbol{p} \, \mathrm{d}\boldsymbol{x} + \sum_{e \subset \partial E} \int_{e} \Pi_{0}^{e} v_{h} \boldsymbol{p} \cdot \boldsymbol{n}_{e} \, \mathrm{d}\boldsymbol{s} \quad \forall \boldsymbol{p} \in [\mathbb{P}_{\ell-1}(E)]^{2}.$$

Here, $e \subset E$ is an element edge, and e^{\pm} denotes the vertices of e. Use CLS for choice of projections: Dedner & Hodson 2024

VEM Formulation

CHARLES UNIVERSITY Faculty of mathematics and physics

VEM Formulation

Find $u_h \in V_{h,\ell}$ such that

$$a_h(u_h; u_h, v_h) = L_h(v_h)$$
 for all $v_h \in V_{h,\ell}$.

VEM Formulation

CHARLES UNIVERSITY Faculty of mathematics and physics

VEM Formulation

Find $u_h \in V_{h,\ell}$ such that

$$a_h(u_h; u_h, v_h) = L_h(v_h) \qquad ext{for all } v_h \in V_{h,\ell}.$$

Here,

$$\begin{aligned} a_{h}(z_{h}, v_{h}, w_{h}) &= \sum_{E \in \mathcal{T}_{h}} a_{h}^{E}(z_{h}, v_{h}, w_{h}), \\ a_{h}^{E}(z_{h}, v_{h}, w_{h}) &= \int_{E} \mu(|\Pi_{1}^{E} z_{h}|)\Pi_{1}^{E} v_{h} \cdot \Pi_{1}^{E} w_{h} \, \mathrm{d}\mathbf{x} + S^{E}(z_{h}; (I - \Pi_{0}^{E})v_{h}, (I - \Pi_{0}^{E})w_{h}), \\ L_{h}(v_{h}) &= \sum_{E \in \mathcal{T}_{h}} \int_{E} \Pi_{0}^{E} f v_{h} \, \mathrm{d}\mathbf{x}, \end{aligned}$$

where S^E is a stabilisation to be defined.

Scott Congreve (Charles University)

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Existence and Uniqueness)

For $f \in L^2(\Omega)$ there exists a unique solution $u_h \in V_{h,\ell}$ to the VEM formulation.

Well-posedness

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Existence and Uniqueness)

For $f \in L^2(\Omega)$ there exists a unique solution $u_h \in V_{h,\ell}$ to the VEM formulation.

Proof:

Prove a_h is strongly monotone

$$a_h(w_h;w_h,w_h-z_h)-a_h(z_h;z_h,w_h-z_h)\geq C|w_h-z_h|_1^2\qquad orall w_h,z_h\in V_{h,\ell}$$

and Lipschitz continuous

$$|a_h(w_h;w_h,v_h)-a_h(z_h;z_h,v_h)|\leq C|w_h-z_h|_1|v_h|_1\qquad\forall v_h,w_h,z_h\in V_{h,\ell}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Existence and Uniqueness)

For $f \in L^2(\Omega)$ there exists a unique solution $u_h \in V_{h,\ell}$ to the VEM formulation.

Proof:

Prove a_h is strongly monotone

$$a_h(w_h;w_h,w_h-z_h)-a_h(z_h;z_h,w_h-z_h)\geq C|w_h-z_h|_1^2\qquad orall w_h,z_h\in V_{h,\ell}$$

and Lipschitz continuous

$$|a_h(w_h;w_h,v_h)-a_h(z_h;z_h,v_h)|\leq C|w_h-z_h|_1|v_h|_1\qquad\forall v_h,w_h,z_h\in V_{h,\ell}$$

Result follows from theory of monotone operators C. & Hodson (Submitted); Houston, Robson, & Süli 2005

Well-posedness

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Existence and Uniqueness)

For $f \in L^2(\Omega)$ there exists a unique solution $u_h \in V_{h,\ell}$ to the VEM formulation.

Proof:

Prove a_h is strongly monotone

$$a_h(w_h;w_h,w_h-z_h)-a_h(z_h;z_h,w_h-z_h)\geq C|w_h-z_h|_1^2\qquad orall w_h,z_h\in V_{h,\ell}$$

and Lipschitz continuous

$$|a_h(w_h;w_h,v_h)-a_h(z_h;z_h,v_h)|\leq C|w_h-z_h|_1|v_h|_1\qquad\forall v_h,w_h,z_h\in V_{h,\ell}$$

Result follows from theory of monotone operators

 C. & Hodson (Submitted); Houston, Robson, & Süli 2005

 Prove of the volume term follows from properties of µ, so only need to prove for stabilisation.

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

The stabilisation must satisfy the following:

admissible stabilisation; i.e., $\exists C_*, C^*$, independent of h, E, such that,

$$C_*a^{\mathcal{E}}(z_h;v_h,v_h) \leq S^{\mathcal{E}}(z_h;v_h,v_h) \leq C^*a^{\mathcal{E}}(z_h;v_h,v_h) \qquad \forall z_h,v_h \in V_{h,\ell}^{\mathcal{E}}, \forall \mathcal{E} \in \mathcal{T}_h.$$

CHARLES UNIVERSITY Faculty of mathematics and physics

The stabilisation must satisfy the following:

admissible stabilisation; i.e., $\exists C_*, C^*$, independent of h, E, such that,

$$C_*a^{\mathcal{E}}(z_h;v_h,v_h) \leq S^{\mathcal{E}}(z_h;v_h,v_h) \leq C^*a^{\mathcal{E}}(z_h;v_h,v_h) \qquad \forall z_h,v_h \in V^{\mathcal{E}}_{h,\ell}, \forall \mathcal{E} \in \mathcal{T}_h.$$

and either

• S^E is independent of the first argument and linear in the other two, or

CHARLES UNIVERSITY Faculty of mathematics and physics

The stabilisation must satisfy the following:

admissible stabilisation; i.e., $\exists C_*, C^*$, independent of h, E, such that,

$$\mathcal{C}_*a^{\mathcal{E}}(z_h;v_h,v_h)\leq S^{\mathcal{E}}(z_h;v_h,v_h)\leq C^*a^{\mathcal{E}}(z_h;v_h,v_h) \qquad orall z_h,v_h\in V_{h,\ell}^{\mathcal{E}},orall E\in\mathcal{T}_h.$$

and either

1

- S^E is independent of the first argument and linear in the other two, or
- it is strongly monotone and Lipschitz continuous in the sense that

$$\begin{split} S^{E}(w_{h};(I-\Pi_{0}^{E})w_{h},(I-\Pi_{0}^{E})(w_{h}-z_{h})) \\ &-S^{E}(z_{h};(I-\Pi_{0}^{E})z_{h},(I-\Pi_{0}^{E})(w_{h}-z_{h})) \geq C|w_{h}-z_{h}|_{1}^{2} \qquad \forall w_{h},z_{h} \in V_{h,\ell} \\ |S^{E}(w_{h};(I-\Pi_{0}^{E})w_{h},(I-\Pi_{0}^{E})v_{h}) \\ &-S^{E}(z_{h};(I-\Pi_{0}^{E})z_{h},(I-\Pi_{0}^{E})v_{h})| \leq C|w_{h}-z_{h}|_{1}|v_{h}|_{1} \quad \forall v_{h},w_{h},z_{h} \in V_{h,\ell} \end{split}$$

We use dofi-dofi as the basis and propose several stabilisations:

weighted by the constants from the non-linearity; e.g.,

$$S^{E}(z_{h}; v_{h}, w_{h}) := M_{\mu}m_{\mu}\sum_{\lambda \in \Lambda^{E}}\lambda(v_{h})\lambda(w_{h}).$$

This is admissible, and results in well-posed formulation.

We use dofi-dofi as the basis and propose several stabilisations:

weighted by the constants from the non-linearity; e.g.,

$$S^{\mathcal{E}}(z_h; v_h, w_h) := M_{\mu} m_{\mu} \sum_{\lambda \in \Lambda^{\mathcal{E}}} \lambda(v_h) \lambda(w_h).$$

This is admissible, and results in well-posed formulation.

weighted by the average over the element; i.e.,

$$S^{\mathcal{E}}(z_h; v_h, w_h) := \mu_{\mathcal{E}}(\boldsymbol{x}, |\Pi_1^{\mathcal{E}, 0} z_h|) \sum_{\lambda \in \Lambda^{\mathcal{E}}} \lambda(v_h) \lambda(w_h),$$

where $\Pi_1^{E,0}$ is gradient projection onto constants, and $\mu_E(\cdot)$ denotes the average of μ . Adak, Arrutselvi, Natarajan, Natarajan, 2022; Cangiani, Chatzipantelidis, Diwan, Georgoulis, 2020 This is admissible, but unable to prove well-posed without additional assumptions on μ .

We use dofi-dofi as the basis and propose several stabilisations:

weighted by the constants from the non-linearity; e.g.,

$$S^{\mathcal{E}}(z_h; v_h, w_h) := M_{\mu} m_{\mu} \sum_{\lambda \in \Lambda^{\mathcal{E}}} \lambda(v_h) \lambda(w_h).$$

This is admissible, and results in well-posed formulation.

weighted by the average over the element; i.e.,

$$S^{\mathcal{E}}(z_h; v_h, w_h) := \mu_{\mathcal{E}}(\boldsymbol{x}, |\Pi_1^{\mathcal{E}, 0} z_h|) \sum_{\lambda \in \Lambda^{\mathcal{E}}} \lambda(v_h) \lambda(w_h),$$

where Π₁^{E,0} is gradient projection onto constants, and μ_E(·) denotes the average of μ. Adak, Arrutselvi, Natarajan, Natarajan, 2022; Cangiani, Chatzipantelidis, Diwan, Georgoulis, 2020 This is admissible, but unable to prove well-posed without additional assumptions on μ.
multiplied by nonlinearity applied to dof; i.e.,

$$S^{\mathcal{E}}(z_h; v_h, w_h) := \sum_{\lambda \in \Lambda^{\mathcal{E}}} \mu(|\lambda(z_h)|) \lambda(v_h) \lambda(w_h).$$

Scott Congreve (Charles University)

We first quote a key result:

Theorem (Approximation using VEM functions)

Under the mesh regularity assumptions, for any $w \in H^1(\Omega)$ there exists a $w_I \in V_{h,\ell}$ such that for all $E \in \mathcal{T}_h$

$$\|w - w_I\|_{0,E} + h_E \|w - w_I\|_{1,E} \le Ch_E \|w\|_{1,E}$$

where C depends only on ℓ and mesh regularity.

Mora, Rivera, & Rodríguez, 2015; Cangiani, Georgoulis, Pryer, & Sutton, 2017

We also note that

$$\Pi_1^E v_h = \mathcal{P}_{\ell-1}^E (\nabla v_h)$$

where $\mathcal{P}_{\ell-1}^{\mathcal{E}}$ is the L^2 -orthogonal projection onto $\mathbb{P}_{\ell-1}$.

Dedner & Hodson, 2022

12/19

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u-u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \|f_{h} + \nabla \cdot \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}] \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \|f - f_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2} \\ &\quad + h_{E}^{2} \|f - f_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}] \|_{0,e}^{2}, \\ \mathcal{S}_{E}^{2} &:= \mathcal{S}^{E}(u_{h}; (I - \mathcal{P}_{\ell}^{E}) u_{h}, (I - \mathcal{P}_{\ell}^{E}) u_{h}), \\ \Psi_{E}^{2} &:= \|(\mathcal{P}_{\ell-1}^{E} - I)(\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u - u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \| \mathbf{f}_{h} + \nabla \cdot \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \| \llbracket \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \| \mathbf{f} - \mathbf{f}_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2} \\ &+ h_{E}^{2} \| \mathbf{f} - \mathbf{f}_{h} \|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \| \llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ S_{E}^{2} &:= S^{E} (u_{h}; (I - \mathcal{P}_{\ell}^{E}) u_{h}, (I - \mathcal{P}_{\ell}^{E}) u_{h}), \\ \Psi_{E}^{2} &:= \| (\mathcal{P}_{\ell-1}^{E} - I) (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u - u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \| f_{h} + \nabla \cdot \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \| \llbracket \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \| f - f_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2} \\ &+ h_{E}^{2} \| f - f_{h} \|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \| \llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ S_{E}^{2} &:= S^{E} (u_{h}; (I - \mathcal{P}_{\ell}^{E}) u_{h}, (I - \mathcal{P}_{\ell}^{E}) u_{h}), \\ \Psi_{E}^{2} &:= \| (\mathcal{P}_{\ell-1}^{E} - I) (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u - u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \| f_{h} + \nabla \cdot \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \|_{0,E}^{2} + \sum_{e \in \partial E} h_{e} \| \llbracket \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \| f - f_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2} \\ &+ h_{E}^{2} \| f - f_{h} \|_{0,E}^{2} + \sum_{e \in \partial E} h_{e} \| \llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h} (|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ S_{E}^{2} &:= S^{E} (u_{h}; (I - \mathcal{P}_{\ell}^{E}) u_{h}, (I - \mathcal{P}_{\ell}^{E}) u_{h}), \\ \Psi_{E}^{2} &:= \| (\mathcal{P}_{\ell-1}^{E} - I) (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u - u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \|f_{h} + \nabla \cdot \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \|f - f_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \Vert_{0,E}^{2} \\ &+ h_{E}^{2} \|f - f_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ S_{E}^{2} &:= S^{E} (u_{h}; (I - \mathcal{P}_{\ell}^{E}) u_{h}, (I - \mathcal{P}_{\ell}^{E}) u_{h}), \\ \Psi_{E}^{2} &:= \|(\mathcal{P}_{\ell-1}^{E} - I)(\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h})\|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Theorem (Upper bound [C. & Hodson (Submitted)])

$$|u-u_h|_1^2 \leq C \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2)$$

$$\begin{split} \eta_{E}^{2} &:= h_{E}^{2} \|f_{h} + \nabla \cdot \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \Theta_{E}^{2} &:= h_{E}^{2} \|f - f_{h} + \nabla \cdot (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h}) \Vert_{0,E}^{2} \\ &+ h_{E}^{2} \|f - f_{h}\|_{0,E}^{2} + \sum_{e \subset \partial E} h_{e} \|\llbracket (\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) - \mu_{h}(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|)) \mathcal{P}_{\ell-1}^{E} \nabla u_{h} \rrbracket \|_{0,e}^{2}, \\ \mathcal{S}_{E}^{2} &:= \mathcal{S}^{E}(u_{h}; (I - \mathcal{P}_{\ell}^{E})u_{h}, (I - \mathcal{P}_{\ell}^{E})u_{h}), \\ \Psi_{E}^{2} &:= \|(\mathcal{P}_{\ell-1}^{E} - I)(\mu(|\mathcal{P}_{\ell-1}^{E} \nabla u_{h}|) \mathcal{P}_{\ell-1}^{E} \nabla u_{h})\|_{0,E}^{2}. \end{split}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Corollary

$$\begin{aligned} |u - \Pi_0^h u_h|_1^2 &\leq \overline{C} \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2) \\ \|\nabla u - \Pi_1^h u_h\|_0^2 &\leq \widehat{C} \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2) \end{aligned}$$

CHARLES UNIVERSITY Faculty of mathematics and physics

Corollary

$$\begin{aligned} |u - \Pi_0^h u_h|_1^2 &\leq \overline{C} \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2) \\ \|\nabla u - \Pi_1^h u_h\|_0^2 &\leq \widehat{C} \sum_{E \in \mathcal{T}_h} (\eta_E^2 + \Theta_E^2 + \mathcal{S}_E^2 + \Psi_E^2) \end{aligned}$$

Theorem (Local lower bound [C. & Hodson (Submitted)])

For each element $E \in \mathcal{T}_h$

$$\eta_E^2 \leq C \sum_{E' \in \omega_E} \left(\|\nabla(u - u_h)\|_{0,E'}^2 + \mathcal{S}_{E'}^2 + \Theta_{E'}^2 \right)$$

where ω_E denotes the patch of elements containing E and its neighbouring elements.

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

Adaptive Refinement

$$\left(\sum_{E\in\mathcal{T}_h^M}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2}\geq\theta\left(\sum_{E\in\mathcal{T}_h}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2},$$

Adaptive Refinement

■ Mark for refinement elements $E \in \mathcal{T}_h$ based on error indicators using Dörfler marking; i.e., construct the smallest subset of elements $\mathcal{T}_h^M \subset \mathcal{T}_h$ such that, for given $\theta \in (0, 1)$,

$$\left(\sum_{E\in\mathcal{T}_h^M}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2}\geq\theta\left(\sum_{E\in\mathcal{T}_h}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2},$$

Refine polygon by joining midpoint of each edge to the barycentre of the element

Adaptive Refinement

■ Mark for refinement elements $E \in \mathcal{T}_h$ based on error indicators using Dörfler marking; i.e., construct the smallest subset of elements $\mathcal{T}_h^M \subset \mathcal{T}_h$ such that, for given $\theta \in (0, 1)$,

$$\left(\sum_{E\in\mathcal{T}_h^M}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2}\geq\theta\left(\sum_{E\in\mathcal{T}_h}\eta_E^2+\Theta_E^2+\mathcal{S}_E^2+\Psi_E^2\right)^{1/2},$$

Refine polygon by joining midpoint of each edge to the barycentre of the element

(assumes convex, but can use any point the element is star-shaped w.r.t.)

We let $\Omega = (0,1)^2$, define $\mu(\mathbf{x}, |\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$ and select f such that

 $u(x,y)=\sin(\pi x)\sin(\pi y).$

We let $\Omega = (0,1)^2$, define $\mu(\mathbf{x}, |\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$ and select f such that $u(x, y) = \sin(\pi x) \sin(\pi y).$

First consider quadrilateral elements:

Initial mesh

After 23 refinements

Scott Congreve (Charles University)

POEMS24 — Inria Paris

16/19

We let $\Omega = (0,1)^2$, define $\mu(\mathbf{x}, |\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$ and select f such that $u(x, y) = \sin(\pi x) \sin(\pi y).$

First consider quadrilateral elements:

We let $\Omega = (0,1)^2$, define $\mu(\mathbf{x}, |\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$ and select f such that $u(x, y) = \sin(\pi x) \sin(\pi y).$

Now consider voronoi elements:

Initial mesh

After 23 refinements

Scott Congreve (Charles University)

We let $\Omega = (0,1)^2$, define $\mu(\mathbf{x}, |\nabla u|) = 2 + (1 + |\nabla u|^2)^{-1}$ and select f such that $u(x, y) = \sin(\pi x) \sin(\pi y).$

Now consider voronoi elements:

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that

$$u(r, heta)=r^{2/3}\sin\left(2 heta/3
ight).$$

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3)$.

First consider quadrilateral elements:

Initial mesh

After 15 refinements

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

17 / 19

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3)$.

First consider quadrilateral elements:

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3).$

Now consider voronoi elements:

Initial mesh

After 15 refinements

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

POEMS24 — Inria Paris

17 / 19

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3)$.

Now consider voronoi elements:

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that

$$\mu(r,\theta) = r^{2/3} \sin(2\theta/3) + e^{-(1000(x-0.5)^2 + 1000(y-0.5)^2)}$$

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3) + e^{-(1000(x-0.5)^2+1000(y-0.5)^2)}.$

First consider quadrilateral elements:

Initial mesh

After 20 refinements

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

After 37 refinements

POEMS24 — Inria Paris

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3) + e^{-(1000(x-0.5)^2+1000(y-0.5)^2)}.$

First consider quadrilateral elements:

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3) + e^{-(1000(x-0.5)^2+1000(y-0.5)^2)}.$

Now consider voronoi elements:

Initial mesh

After 13 refinements

After 27 refinements

Scott Congreve (Charles University)

A posteriori of VEM for quasiliner PDE

POEMS24 — Inria Paris

We let $\Omega = (-1,1)^2 \setminus ([0,1) \times (-1,0])$, define $\mu(\mathbf{x}, |\nabla u|) = 1 + e^{-|\nabla u|^2}$ and select f such that $u(r,\theta) = r^{2/3} \sin(2\theta/3) + e^{-(1000(x-0.5)^2+1000(y-0.5)^2)}.$

Now consider voronoi elements:

CHARLES UNIVERSITY Faculty of mathematics and physics

Conclusions

- Conforming VEM for quasilinear PDE
- Well-posedness & implication to stabilisations
- Energy norm residual based error bounds and indicators

CHARLES UNIVERSITY Faculty of mathematics and physics

Conclusions

- Conforming VEM for quasilinear PDE
- Well-posedness & implication to stabilisations
- Energy norm residual based error bounds and indicators

Future

- hp-VEM
- quasi-Newtonian
- Two-grid
- Interpolation result for agglomerated elements