Numerical Solution of ODEs

Exercise Class

24th October 2025

Convergence Analysis

Theorem 2.23. Let there exist a positive constant C such that the local discretisation error is bounded by

$$d(t+\tau, t, u(t)) \le C\tau^{p+1},$$

for all $\tau \leq \tau_1$, $t \in [t_0, T]$. Consider an equidistant partition $\{t_j\}_{j=0}^N$ and approximate solution $\{u_j\}_{j=0}^N$, where

$$u_0 = x_0,$$
 $u_{j+1} = \psi(t_{j+1}, t_j, u_j),$ $j = 0, \dots, N-1.$

Then,

$$||u(t_j) - u_j|| \le \frac{e^{\Lambda(t_j - t_0)} - 1}{\Lambda} C \tau^p, \quad j = 1, \dots, N.$$

Here, p is the order of the method.

If we study the error at the last time step

$$\underbrace{\|u(T) - u_N\|}_{\mathcal{E}_N} \le \underbrace{\frac{e^{\Lambda(T - t_0)} - 1}{\Lambda} C}_{K - \text{constant}} \tau^p;$$

then,

$$\log_{10} \mathcal{E}_N \le \log_{10} K + p \log_{10} \tau.$$

Hence, we should observe asymptotically as $\tau \to 0$ that

$$\log_{10} \mathcal{E}_N = q + p \log_{10} \tau,$$

where $q = \log_{10} K$ is a constant.

Adaptive Timestepping

Algorithm 2.1. Given *two* one step methods

$$\psi$$
 — Order p
 $\overline{\psi}$ — Order $p+1$.

we define adaptive timestepping at each timestep as:

$$\begin{split} \tau &\leftarrow \max(\tau, \mathtt{tol}) \\ \delta &\leftarrow \left\| \bar{\psi}(t+\tau, t, x) - \psi(t+\tau, t, x) \right\| \\ \mathbf{while} \; \delta &> \mathtt{tol} \; \mathbf{do} \\ \tau &\leftarrow \tau \left(\frac{\mathtt{tol}}{\delta} \right)^{1/(p+1)} \\ \delta &\leftarrow \left\| \bar{\psi}(t+\tau, t, x) - \psi(t+\tau, t, x) \right\| \\ \mathbf{end} \; \mathbf{while} \end{split}$$

Accept
$$\tau$$
 \Rightarrow it now holds that $\left\| \bar{\psi}(t+\tau,t,x) - \psi(t+\tau,t,x) \right\| \leq \mathsf{tol}(t+\tau,t,x) \leq \mathsf{tol}(t+\tau,t,x)$

We provide three implementations of an algorithm with p = 1:

ode12_1.m Basic algorithm (using Euler and Heun)

ode12_2.m Adds damping to the timestep size update to prevent large changes.

ode12.m Adds heuristics for the initial timestep size.

Exercises

1. Modify one_step_order.m to calculate the order of the Runge, Runge-Kutta, Heun, Implicit Euler, and Crank-Nicholson methods, using the logistic equation

$$x'(t) = (a - bx(t))x(t),$$
 $t \in [0, 2],$
 $x(0) = x_0,$

with a = b = 1, $x_0 = 2$, and known exact solution

$$x(t) = \frac{x_0 e^t}{1 - x_0 (1 - e^t)}.$$

Additionally, for implicit Euler and Crank-Nicholson, try with different tolerances in the fixed point iteration.

Remark. Note that the implicit Euler method ieuler may not converge for $\tau = 1/2$. Therefore, the convergence analysis code needs to be changed to start from $\tau = 1/4$.

2. Modify ode12 to use Euler (order p=1 method) and Runge (order p+1=2 method). Solve

$$x'(t) = \begin{pmatrix} 998 & 1998 \\ -999 & -1999 \end{pmatrix} x(t), \qquad t \in [0, 0.1],$$
 (1)

$$x(0) = \begin{pmatrix} 2\\1 \end{pmatrix},\tag{2}$$

implemented by linsystem.m, using this method.