## **Finite Element Methods 1**

## Homework 2

Due date: 17th November 2025

Submit a PDF/scan of the answers to the following questions before the deadline via the *Study Group Roster* (*Záznamník učitele*) in SIS, or hand-in directly at the practical class on 17th November 2025.

1. (2 points) Let T be an n-simplex, let  $\{a_i\}_{i=1}^n$ ,  $\{a_{iij}\}_{i\neq j}$ ,  $\{a_{ijk}\}_{i< j< k}$  be the points of  $L_3(T)$  and let  $\{p_i\}_{i=1}^n$ ,  $\{p_{iij}\}_{i\neq j}$ ,  $\{p_{ijk}\}_{i< j< k}$  be the corresponding basis functions of  $P_3(T)$ . For i < j < k define the linear functionals

$$\Phi_{ijk}(p) = 12 p(a_{ijk}) + 2 \sum_{\ell \in \{i,j,k\}} p(a_{\ell}) - 3 \sum_{\substack{\ell,m \in \{i,j,k\}\\ \ell \neq m}} p(a_{llm})$$

and the space

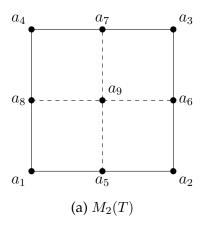
$$P_3'(T) = \{ p \in P_3(T) : \Psi_{ijk}(p) = 0, 1 \le i < j < k \le n+1 \}.$$

Prove that any function from the space  $P_3'(T)$  is uniquely determined by its values at the points  $\{a_i\}_{i=1}^n \cup \{a_{iij}\}_{i\neq j}$  and derive basis functions such that each basis function equals 1 at one of these points and vanishes at the rest.

*Hint*. The basis functions  $\{p_i\}_{i=1}^n$ ,  $\{p_{iij}\}_{i\neq j}$  can be modified by adding linear combinations of the functions  $\{p_{ijk}\}_{i< j< k}$  in such a way that the resulting functions are in  $P_3'(T)$ . Show that these function form a basis of  $P_3'(T)$  and find formulas for these basis functions.

2. (2 points) Consider finite elements  $(T, P_T, \Sigma_T)$ , where

$$T$$
 is a rectangle,  $P_T = Q_3(T),$   $\Sigma_T = \{p(z) : z \in M_3(T)\}.$ 



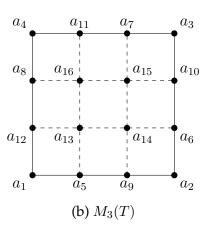


Figure 1: Principal lattices for rectangles

For  $T=[0,1]^2$ , and the points from the principal lattice  $M_3(T)$  numbered as per Figure 1b, write basis functions of the finite element  $(T, P_T, \Sigma_T)$ . It is sufficient to derive functions for only four basis functions, as the remaining twelve can be obtained by circular permutations of the indices. Let  $\mathcal{T}_h$  be a triangulation of a bounded domain  $\Omega \subset \mathbb{R}^2$  consisting of rectangles and assign the above finite element to each  $T \in \mathcal{T}_h$ . Write the definition of the corresponding finite element space  $X_h$  and verify that  $X_h \subset C(\overline{\Omega})$ .

3. (2 points) Let T be a pentahedral prism, see Figure 2, with vertices  $a_1, \ldots, a_6$ . The triangular faces are orthogonal to the  $x_3$  axis, and the quadrilateral faces are parallel to the  $x_3$  axis. Let

$$P_T = \{ p(x_1, x_2, x_3) = \gamma_1 + \gamma_2 x_1 + \gamma_3 x_2 + \gamma_4 x_3 + \gamma_5 x_1 x_3 + \gamma_6 x_2 x_3 : \gamma_1, \dots, \gamma_6 \in \mathbb{R} \}.$$

Show that any function  $p \in P_T$  is uniquely determined by its values at the vertices  $a_1, \ldots, a_6$  and that, for any  $p \in P_T$  and face  $F \subset \partial T$ , the restriction  $p|_F$  is uniquely determined by its values at the vertices of the face F.

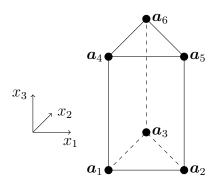


Figure 2: Pentahedral prism