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Finite Element Methods 1
Homework 1

Due date: 3rd November 2025

Submit a PDF/scan of the answers to the following questions before the deadline
via the Study Group Roster (Záznamnı́k učitele) in SIS, or hand-in directly at the practical
class on 3rd November 2025.

1. (2 points) Let Ω ⊂ Rn be a bounded domain with a Lipschitz continuous bound-
ary and let Γ ⊂ ∂Ω be a subset of the boundary of Ω with positive surface measure.
For any p ∈ [1,∞) prove that there exists a positive constant C such that

∥u∥0,p,Ω ≤ C

(
|u|1,p,Ω +

∣∣∣∣∫
Γ

u ds

∣∣∣∣)
for all u ∈ W 1,p(Ω).

2. (2 points) Consider the boundary value problem

−
n∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
+ cu = f in Ω,

n∑
i,j=1

niaij
∂u

∂xj

+ hu = g on ∂Ω,

where Ω ⊂ Rn is a bounded domain with a Lipschitz continuous boundary, aij ∈
L∞(Ω), c ∈ L∞(Ω), f ∈ L2(Ω), h ∈ L∞(∂Ω), and g ∈ L2(∂Ω). We assume the matrix
(aij)

n
i,j=1 is uniformly positive definite a.e. in Ω, c ≥ 0 a.e. in Ω, and h ≥ h0 on ∂Ω

where h0 is a positive constant.

Derive the variational formulation for the above boundary value problem, using
the test space V = H1(Ω), and prove a unique solution exists.

3. (2 points) Consider the Poisson equation on the unit square with homogeneous
boundary conditions:

−∆u = f in Ω := (0, 1)2

u = 0 on ∂Ω,
(3.1)

where f is a constant.

We define the finite element method for this problem as: Find uh ∈ Vh such that

a(uh, vh) = ⟨F, vh⟩ for all vh ∈ Vh, (3.2)

where
a(uh, vh) =

∫
Ω

∇uh · ∇vh dx, ⟨F, vh⟩ =
∫
Ω

fvh dx,

and Vh is finite-dimensional subspace of H1
0 (Ω). Let φ1, . . . , φN be the basis func-

tions of Vh; then, the solution uh of the finite element discretization (3.2) can be
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Figure 1: Question 2

written in the form uh =
∑N

j=1 ujφj . Hence, the discretization (3.2) is equivalent to
solving the following linear system of N unknown coefficients u1, . . . , uN :

N∑
j=1

a(φj, φi)uj = ⟨F, φi⟩ for i = 1, . . . , N. (3.3)

We denote by Th the triangulation of Ω into triangles in the following manner:

1. subdivide the domain into (M + 1)× (M + 1) squares of equal size,
2. divide each square into two triangles by splitting from the bottom left to top-

right corner of the square;

see Figure 1a for an example when M = 3. We define the width and height of each
square as h = 1/(M+1). Let

Vh = {vh ∈ H1
0 (Ω) : vh|T ∈ P1(T ) ∀T ∈ Th};

i.e. the space of continuous piecewise linear functions vanishing on the boundary
of Ω. To the interior vertices x1, . . . ,xN of Th, where N = M2, (see Figure 1a for
one possible numbering of the vertices) we assign a basis function of Vh such that

φi(xj) = δij for i, j = 1, . . . , N.

The support of the basis function φi consists of the six triangles sharing the vertex
xi, see Figure 1b. This implies that every row of the matrix for the linear system
(3.3) contains at most seven non-zero entries.

Compute the entries for the matrix and right-hand side vector for the linear sys-
tem (3.3) and compare these entries to a discretization using the finite difference
scheme on a uniform square mesh.
Hint. Computation of these entries is fairly trivial. Consider, for example, the
calculation of a(φj, φi), where j = i + 1. The nodes xj and xi+1 are connected by
an edge and only two triangles share this edge; see Figure 1b. We denote these
two triangles as T1 and T2, and note that suppφj ∩ suppφi = T1 ∪ T2. Note, also,
that ∇φj and ∇φi are constant on each triangle; therefore,

a(φj, φi) =

∫
T1∪T2

∇φj · ∇φi dx = |T1| (∇φj)|T1 · (∇φi)|T1 + |T2| (∇φj)|T2 · (∇φi)|T2 .

The derivatives of φj and φi with respect to x and y can be computed on the hori-
zontal and vertical edges, respectively, of the triangles T1 and T2.
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