Homework 2 — Multi-step Predictor/Corrector Method

Numerical Solution for ODEs

Due date: December 12th, 2024

Support files for this homework can be found as a ZIP file on the webpage.

Exercise 1. Write a MATLAB function, with the name pred_corr, to implement one of the following *predictor/corrector* methods (see support files for initial template):

Algorithm	Predictor	Corrector
1. <i>PECE</i>	3-step Nyström	2-step Milne-Simpson
2. $P(EC)^4$	1-step Adams-Bashfort	3-step Adams-Moulton
3. $P(EC)^{3}E$		3-step Adams-Moulton
4. $P(EC)^{2}E$	2-step Nyström	2-step Milne-Simpson

Exercise 2. Test your script on the following problems from the support files:

1. The logistic equation x' = (1 - x)x (logistic.m) for $t \in [0, 3], x_0 = 2, \tau = 0.1$ and plot t versus the solution x:

```
x0=2.0; h=0.1;
figure;
[t,x]=pred_corr(@logistic, 0, 3, x0, h);
plot(t,x,'-bx');
```

2. The linear oscillator (oscillator.m)

$$x_1' = x_2$$

$$x_2' = -9x_1 + 10\cos(2.5t)$$

for $t \in [0, 10], \boldsymbol{x}_0 = (2, 1)^{\top}, \tau = 0.1$ and plot t versus the solution x_1 :

```
figure;
x0 = [2;1]; h = 0.1;
[t,x]=pred_corr(@oscillator, 0, 10, x0, h);
plot(t,x(:,1),'-bx');
```

3. The satellite problem (sat_ode.m) with $\mu = \frac{1}{82.45}$

$$x'_{1} = x_{3}$$

$$x'_{2} = x_{4}$$

$$x'_{3} = 2x_{4} + x_{1} - (1 - \mu) \frac{x_{1} + \mu}{((x_{1} + \mu)^{2} + x_{2}^{2})^{1.5}} - \mu \frac{x_{1} - 1 + \mu}{((x_{1} - 1 + \mu)^{2} + x_{2}^{2})^{1.5}}$$

$$x'_{4} = -2x_{3} + x_{2} - (1 - \mu) \frac{x_{2}}{((x_{1} + \mu)^{2} + x_{2}^{2})^{1.5}} - \mu \frac{x_{2}}{((x_{1} - 1 + \mu)^{2} + x_{2}^{2})^{1.5}}$$

for $t \in [0, 6.19216933131963970674]$, $\boldsymbol{x}_0 = (1.2, 0, 0, -1.04935750983031990726)^{\top}$, $\tau = 0.001$ and plot x_1 versus x_2 :

```
figure
x0 = [1.2; 0; 0; -1.04935750983031990726]; h = 1e-3;
[t,x] = pred_corr(@sat_ode, 0, 6.19216933131963970674, x0, h);
plot(x(:,1), x(:,2));
```

Save each of these plots as a PDF file using Save > Save As.

Exercise 3. Apply linear regression to estimate the method order. See conv_analysis.m for a script to perform this, when called with the pred_corr:

conv_analysis(@pred_corr);

Submission

Submit the MATLAB script for the implemented method from exercise 1, the PDF files of the plots from exercise 2, and enter the order of the method deduced in exercise 3 via the Study Group Roster ($Z\'{a}znamn\'{s}k$ $u\'{c}itele$) in SIS before the deadline.