Homework 1 — Implicit RK

Numerical Solution for ODEs

Due date: November 23rd, 2024

Support files for this homework can be found as a ZIP file on the webpage.

Exercise 1. Write a MATLAB implementation of *one* of the following Implicit Runge-Kutta methods:

RadauI2			RadauII2			Lobatto3				1	Lobatto3B]	Lobatto3C			
0	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{3}$	$\left \frac{5}{12} \right $	$-\frac{1}{12}$	0	0	0	0		0	$\frac{1}{6}$	$-\frac{1}{6}$	0		0	$\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{6}$
$\frac{2}{3}$	$\frac{1}{4}$	$\frac{5}{12}$	1	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{5}{24}$	$\frac{1}{3}$	$-\frac{1}{24}$		$\frac{1}{2}$	$\frac{1}{6}$	$\frac{1}{3}$	0		$\frac{1}{2}$	$\frac{1}{6}$	$\frac{5}{12}$	$-\frac{1}{12}$
	$\frac{1}{4}$	$\frac{3}{4}$		$\frac{3}{4}$	$\frac{1}{4}$	1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$		1	$\frac{1}{6}$	$\frac{5}{6}$	0	_	1	$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$
							$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$			$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$			$\frac{1}{6}$	$\frac{2}{3}$	$\frac{1}{6}$

Initial templates for these methods (radauI2.m, radauII2.m lobatto3.m, lobatto3b.m and lobatto3C.m) can be found in the support files.

Exercise 2. Test your script on the following problems from the support files:

1. lin1p.m for $t \in [0, 2]$, $x_0 = 2$, $\tau = 0.04$ and plot t versus the solution x:

x0=2.0; h=0.04; figure; [t,x]=feval(method, @lin1p,0,2, x0, h); plot(t,x,'bo',t,x,'b');

2. lin2.m for $t \in [0, 0.1]$, $\boldsymbol{x}_0 = (2, 1)^{\top}$, $\tau = 0.001$ and plot t versus the solution x_1 :

figure; x0 = [2;1]; h = 1e-3; [t,x]=feval(method, @lin2, 0,.1, x0, h); plot(t,x(:,1),'b');

3. sat_ode.m for $t \in [0, 6.19216933131963970674]$,

 $\boldsymbol{x}_0 = (1.2, 0, 0, -1.04935750983031990726)^{\top},$

 $\tau = 0.001$ and x_1 versus x_2 :

figure
x0 = [1.2; 0; 0; -1.04935750983031990726]; h = 1e-3;
[t,x] = feval(method, @sat_ode, 0, 6.19216933131963970674, x0, h);
plot(x(:,1), x(:,2));

Save these plots as a PDF using Save > Save As. A function called test_problems.m is included in the support files, which performs the above operations when passed the name of the implicit Runge-Kutta method to run:

test_problems(@lobatto3);

Exercise 3. Estimate the order of the method by linear regression. See conv_analysis.m for a script to perform this, when called with the name of the implicit Runge-Kutta method:

conv_analysis(@lobatto3);

Submission

Submit the MATLAB script for the implemented method from *exercise* 1, the PDF files of the plots from *exercise* 2, and enter the order of the method deduced in *exercise* 3 via the *Study Group Roster* (*Záznamník učitele*) in SIS before the deadline.